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In the present work, the radiation of sound waves from a coaxial duct is considered. This coaxial duct
has an inner wall which is infinite and has piecewise acoustically absorbent material, while the outer wall
is semi-infinite and rigid. The analytical solution of the problem is found by means of the Wiener-Hopf
technique. Applying the Fourier transformation to the boundary value problem, the explicit expression for
the scattered field is obtained. In the end, some numerical results are displayed for different parameters
and compared to rigid case.
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1. Introduction

The investigation of sound wave propagation and
radiation is an important subject in noise pollution
and relevant for many engineering applications. For
this reason, lots of semi-infinite or infinite cylindri-
cal structures which include the aperture or acousti-
cally absorbent lining on their inner or outer walls
have been investigated by numerous authors. Ana-
lytical solution for the problem of sound radiation
from a semi-infinite unflanged rigid circular duct has
been obtained by Levine and Schwinger (1948)
via Wiener-Hopf method. Wiener-Hopf technique has
been used in acoustic problems extensively (Lawrie
et al., 1993; Buyukaksoy, Polat, 1998; Çinar, 2013;
Snakowska et al., 2017; Ozturk, 2020). Case in
which the inner wall of an infinite annular duct has
a finite aperture has been considered by Çinar et al.
(2011). Also, as a very effective parameter, absorbing
lining first has been theoretically studied in the lit-
erature (Morse, 1939; Cremer, 1953; Lapin, 1975).
The common ground of these studies is that they ex-
amine an infinite ducts. Rawlins (1978) later has re-
vealed the effect of internal duct lining on the radia-

tion from semi-infinite rigid duct. Besides, Demir and
Buyukaksoy (2003) have investigated the rigid circu-
lar cylindrical pipe with a partial internal impedance
loading. Recently, the acoustic radiation by a semi-
infinite duct with outer lining and perforated end is
analyzed rigorously by Tiryakioglu (2020). In ad-
dition to all these studies, the absorbing lining has
been investigated extensively with and without flow in
the literature (Reinstra, 2007; Tiwana et al., 2017;
Peake, Abrahams, 2020).

From these investigations we concluded that it is
neccessary to adopt different geometries and parame-
ters to reduce noise pollution. For this purpose, a coax-
ial duct with a semi-infinite rigid outer cylinder and an
infinite inner cylinder having different linings has been
considered. In order to provide noise reduction, such
structures have been used as a model for many engi-
neering applications, such as exhausts of automobile
engines, modern aircraft jet and turbofan engines, etc.
By using the Fourier transform technique in conjunc-
tion with the Wiener-Hopf method, a rigorous solution
of the related boundary value problem is obtained. It
is shown that the presence of different inner duct lin-
ings makes significance loss on sound pressure levels
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when it is compared with the rigid duct. The effect of
these parameters is presented graphically in Sec. 7 in
detail. Throughout this paper a time dependence e−iωt

is assumed, where ω is the angular frequency.

2. Formulation of the problem

We shall consider the acoustic radiation of the wave
mode from a coaxial duct with a semi infinite rigid
outer duct and an infinite two-part acoustic impedance
inner duct. From the symmetry of the geometry of
the problem and of the incident field, the total field
will be independent of azimuth φ everywhere in circu-
lar cylindrical coordinate system (ρ,φ, z). Therefore,
a scalar potential ψ(ρ, z) which defines the acoustic
pressure and velocity by p = iωρ0ψ and v = gradψ,
respectively, is introduced. Here ρ0 is the density of
the undisturbed medium. The liner impedances are
denoted by Z1(z ∈ (−∞,0)) and Z2(z ∈ (0,∞)), re-
spectively. In Fig. 1, η1,2 = ρ0c/Z1,2 are the specific ad-
mittances where c is the velocity of sound. Duct walls
are assumed to be infinitely thin. The outer duct occu-
pies the region {ρ = b,−∞ < z < 0} while the inner duct
occupies the region {ρ = a,−∞ < z <∞} as shown in
Fig. 1.

Fig. 1. Geometry of the problem.

Let the incident sound field is taken to be

ψi (ρ, z) = [ikη1S(a, ρ, σn) − S′(ρ, a, σn)] eiκnz, (1)1

where

S(a, ρ, σn)=[Y0(σna)J0(σnρ)−J0(σna)Y0(σnρ)]. (1)2

Above, derivative with respect to ρ is denoted by
a prime (′) and κn is the root of the equation

ikη1 [Y1 (σnb)J0 (σna) − J1 (σnb)Y0 (σna)]
+σnikη1 [Y1(σna)J1(σnb)−J1(σna)Y1(σnb)] = 0 (1)3

with
κn =

√
k2 − σ2

n. (1)4
Here Jn and Yn (n = 0,1) are the well-known Bessel
and Neumann functions, k = ω/c denotes the wave
number of the medium. In order to obtain the solu-
tion, the total diffracted field can be defined as

ψT (ρ, z) =
⎧⎪⎪⎨⎪⎪⎩

ψ1(ρ, z);

ψ2(ρ, z) + ψi(ρ, z);

ρ > b,

a < ρ < b,
(2)

where ψj (ρ, z) , j = 1,2 are the potential functions
which satisfy the following Helmholtz equation

[1

ρ

∂

∂ρ
(ρ ∂
∂ρ

) + ∂2

∂z2
+ k2]ψj(ρ, z) = 0, j = 1,2 (3)

and the following conditions:

∂

∂ρ
ψ1(b, z) = 0, z < 0,

∂

∂ρ
ψ2(b, z) = 0, z < 0,

(ikη1 +
∂

∂ρ
)ψ2(a, z) = 0, z < 0,

ψ1(b, z) = ψ2(b, z) + ψi(b, z), z > 0,

(ikη2 +
∂

∂ρ
) [ψ2(a, z) + ψi(a, z)] = 0, z > 0,

∂

∂ρ
ψ1(b, z) =

∂

∂ρ
ψ2(b, z), z > 0.

(4)

3. Derivation of the Wiener-Hopf equation

The unknown fields ψ1 (ρ, z) and ψ2 (ρ, z) satisfy
(3) for z ∈ (−∞,∞). By taking Fourier transform of
these equations, one can obtain the following integral
representations

ψ1(ρ, z)=∫
L

A(α)H(1)
0 (Kρ)e−iαz dα,

ψ2(ρ, z)=∫
L

[B(α)J0(Kρ) +C(α)Y0(Kρ)] e−iαz dα,
(5)

where L is an inverse Fourier transform integration
contour in the complex α-plane. A(α), B(α), and
C(α) are spectral coefficients to be determined. H(1)

0 =
J0 + iY0 is the Hankel function of the first type. K =√
k2 − α2 is the square root function which is defined in

the complex α-plane (Rienstra, Peake, 2005). Ap-
plying the boundary condition (4)1 and (4)3 on ρ = b,
ρ = a respectively and taking Fourier transforms give

−A(α)KH(1)
1 (Kb) = Φ+

1(α), (6)

B(α)J(η1, α) +C(α)Y (η1, α) = Φ+
2(α). (7)

Similarly, continuity relations for (4)4 and (4)5 at ρ = b,
ρ = a give

A(α)H(1)
0 (Kb) −B(α)J0(Kb) − C(α)Y0(Kb)

+ F (b, σn)
2πi(κ0 + α)

= Φ−
1(α), (8)

B(α)J(η2, α) +C(α)Y (η2, α) = Φ−
2(α)

+ 1

2πi(κ0 + α)
[ikη2F (a, σn) + F ′(a, σn)], (9)
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where
J(ηm, α) = ikηmJ0(Ka) −KJ1(Ka), m = 1,2,

Y (ηm, α) = ikηmY0(Ka) −KY1(Ka), m = 1,2,

F (ρ, σn) = ikη1S(a, ρ, σn) − S′(ρ, a, σn).

(10)

By using (4)1, (4)2 together with (4)6 and taking
Fourier transform gives

A(α)H(1)
1 (Kb) = B(α)J1(Kb) +C(α)Y1(Kb), (11)

where Φ+
1,2(α) and Φ−

1,2(α) are analytic functions in
the upper (Imα > Im(−k)) and in the lower (Imα <
Imk) half planes, respectively and defined as

Φ+
1(α) =

1

2π

∞

∫
0

∂

∂ρ
ψ1(b, z)eiαz dz,

Φ+
2(α) =

1

2π

∞

∫
0

(ikη1 +
∂

∂ρ
)ψ2(a, z)eiαz dz,

Φ−
1(α) =

1

2π

0

∫
−∞

[ψ1(b, z) − ψ2(b, z)] eiαz dz,

Φ−
2(α) =

1

2π

0

∫
−∞

(ikη2 +
∂

∂ρ
)ψ2(a, z)eiαz dz.

(12)

From the relations (6) and (11), we obtain

B(α)KJ1(Kb) +C(α)KY1(Kb) = −Φ+
1(α), (13)

Y1(Kb) and J1(Kb) can be eliminated from Eqs (11)
and (13), one gets

B(α) = 1

K

Y (η1, α)Φ+
1(α) +KY1(Kb)Φ+

2(α)
Y1(Kb)J(η1, α) − J1(Kb)Y (η1, α)

,

C(α) = − 1

K

J(η1, α)Φ+
1(α) +KJ1(Kb)Φ+

2(α)
Y1(Kb)J (η1, α) − J1(Kb)Y (η1, α)

.

(14)

The substitution of A(α), B(α), and C(α) given by
Eqs (6) and (14) into Eqs (8), (9) yields
⎡⎢⎢⎢⎢⎣
a∗−

H
(1)
0 (Kb)

KH
(1)
1 (Kb)

⎤⎥⎥⎥⎥⎦
Φ+

1(α)

+ 2

πKb

Φ+
2(α)

Y1 (Kb)J(η1, α) − J1(Kb)Y (η1, α)

+ F (b, σn)
2πi(κ0 + α)

= Φ−
1(α),

2ik

πa

(η2 − η1)Φ+
1(α)

K [Y1(Kb)J(η1, α) − J1(Kb)Y (η1, α)]

+ Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)
Y1(Kb)J(η1, α) − J1(Kb)Y (η1, α)

Φ+
2(α)

= Φ−
2(α) +

[ikη2F (a, σn) + F ′(a, σn)]
2πi(κ0 + α)

,

(15)

where

a∗ = J(η1, α)Y0(Kb)−Y (η1, α)J0(Kb)
K [Y1(Kb)J(η1, α)−J1(Kb)Y (η1, α)]

Φ+
2(α) can be eliminated from Eqs (15)1 and (15)2,

then we get the following two systems of Wiener-Hopf
equation:

M1(α)Φ−
2(α) +

M1(α) [ikη2F (a, σn) + F ′(a, σn)]
2πi(κ0 + α)

= 2ik (η2 − η1)Φ+
1(α)

πaK [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]
+Φ+

2(α),

M2(α)Φ+
1(α) =

b∗Φ−
2(α)

[Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]

+ b∗ [ikη2F (a, σn) + F ′(a, σn)]
[Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]2πi(κ0 + α)

−Φ−
1(α) +

F (b, σn)
2πi(κ0 + α)

,

(16)
where

b∗ = J1(Kb)Y0(Kb) − Y1(Kb)J0(Kb),

and M1(α) and M2(α) are kernel functions to be fac-
torized

M1(α) =
Y1(Kb)J (η1, α) − J1(Kb)Y (η1, α)
Y1(Kb)J(η2, α) − J1 (Kb)Y (η2, α)

,

M2(α) = −
2 [J(η2, α) + iY (η2, α)]

c∗KH
(1)
1 (Kb)

,

(17)

where

c∗ = πKb[Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)].

4. Solution of the Wiener-Hopf Equation

Consider first the Wiener-Hopf equation in (16)1
and rearrange it using (17)1 in the following form

Φ−
2(α)

M−
1 (α)

+ [ikη2F (a, σn) + F ′(a, σn)]
2πi(κ0 + α)M−

1 (α)

= 2ik(η2 − η1)
πaK [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]

Φ+
1(α)

M+
1 (α)

+ Φ+
2(α)

M+
1 (α)

. (18)

Here, M+
1 (α) and M−

1 (α) are the split functions, regu-
lar and free of zeros in the upper and lower half planes,
respectively, result from the factorization ofM1(α) as,

M1(α) =
M+

1 (α)
M−

1 (α)
. (19)
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The right hand side of Eq. (18) is analytic in the upper
half plane except for the poles of the first term resulting
from the zeros of

K [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]

lying in the upper half-plane, namely at α = αm with

√
k2 − α2

m [Y1 (
√
k2 − α2

mb)J (η2, αm)

−J1 (
√
k2 − α2

mb)Y (η2, αm)] = 0. (20)

If the infinite system of poles are substracted from both
sides of Eq. (18), we obtain

Φ−
2(α)

M−
1 (α)

−
∞

∑
m=1

fm
(α − αm)

+ ikη2F (a, σn) + F ′(a, σn)
2πi (κ0 + α)

[ 1

M−
1 (α)

− 1

M−
1 (−κ0)

]

= − ikη2F (a, σn) + F ′(a, σn)
2πi(κ0 + α)M−

1 (−κ0)
−

∞

∑
m=1

fm
(α − αm)

+ Φ+
2(α)

M+
1 (α)

+ 2ik (η2 − η1)
πaK [Y1(Kb)J(η2, α)−J1(Kb)Y (η2, α)]

Φ+
1(α)

M+
1 (α)

,

(21)

where

fm = 2ik (η2 − η1)Φ+
1 (αm)

πaM+
1 (αm)

⋅ lim
α→αm

1
d
dα
K [Y1(Kb)J(η2, α)−J1(Kb)Y (η2, α)]

. (22)

The application of the analytical continuation prin-
ciple together with the Liouville’s theorem yields

Φ−
2(α) = M−

1 (α)
∞

∑
m=1

fm
(α − αm)

− [ikη2F (a, σn) + F ′(a, σn)]M−
1 (α)

2πi(κ0 + α)

⋅( 1

M−
1 (α)

− 1

M−
1 (−κ0)

). (23)

Next we consider Eq. (16)2. By using the classical fac-
torization and decomposition procedure, we get

M+
2 (α)Φ+

1(α)=
2M−

2 (α)Φ−
2(α)

πKb [Y1(Kb)J(η2, α)−J1(Kb)Y (η2, α)]

+ [ikη2F (a, σn)+F ′(a, σn)]M−
2 (α)

πKb[Y1(Kb)J(η2, α)−J1(Kb)Y (η2, α)]πi(κ0 + α)

−M−
2 (α)Φ−

1(α) +
F (b, σn)M−

2 (α)
2πi (κ0 + α)

, (24)

where the split functions M+
2 (α) and M−

2 (α), result
from the factorization of M2(α) as,

M2(α) =
M+

2 (α)
M−

2 (α)
, (25)

they are regular and free of zeros in the upper and
lower half planes, respectively. The regularity of the
right hand side of (24) is violated by the zeros on the
lower half plane. Subtraction of the residue contribu-
tion of these poles as an infinite sum from both sides
and using Liouville’s theorem, we get the Wiener-Hopf
solution

Φ+
1(α) =

1

M+
2 (α)

[F (b, σn)M−
2 (−κ0)

2πi(κ0 + α)

+
∞

∑
m=1

gm
(α + αm)

+
∞

∑
m=1

rm
(α + αm)

]

+ [ikη2F (ξ0, a) + F ′ (ξ0, a)]M−
2 (−κ0)

πbπi (κ0 + α)M+
2 (α)

⋅ lim
α→−κ0

1

K[Y1 (Kb)J(η2, α) − J1(Kb)Y (η2, α)]
, (26)

where

gm = 2M−
2 (−αm)Φ−

2(−αm)
πb

⋅ lim
α→αm

1
d
dαK [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]

,

(27)

rm = [ikη2F (a, σn) + F ′(a, σn)]M−
2 (−αm)

πbπi (κ0 − αm)

⋅ lim
α→αm

1
d
dαK [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]

.

(28)

5. Determining the coefficient fm and gm

Wiener-Hopf solutions (23) and (26) contain un-
known coefficients fm and gm which have to be deter-
mined. Substituting α = −αr in Eq. (23) and using the
relation in (27) we obtain

πb

2

lim
α→−αr

d
dαK [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]

M−
2 (−αr)

gr

=
∞

M−
1 (−αr)∑
m=1

fm
(−αr − αm)

− M
−
1 (−αr) [ikη2F (a, σn) + F ′(a, σn)]

2πi(κ0 − αr)

⋅ ( 1

M−
1 (−αr)

− 1

M−
1 (−κ0)

). (29)
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Similarly substituting α = αr in Eq. (26) and using the
relation in (22) we obtain

πaM+
1 (αr)

2ik(η2 − η1)
lim
α→αr

d
dα

⋅K [Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)] fr

= F (b, σn)M−
2 (−κ0)

2πi(κ0 + αr)M+
2 (αr)

+ 1

M+
2 (αr)

∞

∑
m=1

gm
αr + αm

+
∞

∑
m=1

rm
(αr + αm)M+

2 (αr)

+ [ikη2F (ξ0, a) + F ′(ξ0, a)]M−
2 (−κ0)

πbπi(κ0 + αr)M+
2 (αr)

⋅ lim
α→−κ0

1

K[Y1(Kb)J(η2, α) − J1(Kb)Y (η2, α)]
. (30)

To determine unknown coefficients fm and gm these
systems of algebraic equations will be solved numeri-
cally.

6. Far field

The radiated field in the region ρ > b can be evalu-
ated from (5)1 and using (6)

ψ1(ρ, z) = −∫
L

Φ+
1(α)

KH
(1)
1 (Kb)

H
(1)
0 (Kρ)e−iαz dα. (31)

Utilizing the asymptotic expansion of H(1)
0 (Kρ) as

kρ→∞

H
(1)
0 (Kρ) =

√
2

πKρ
eiKρ−iπ/4. (32)

The substitution α = −k cosµ in Eq. (31) and making
the following substitutions

ρ = r sin θ, z = r cos θ, (33)

the integral can be evaluated through the saddle-point
technique (Snakowska, Idczak, 2006), we obtain

ψ1(r, θ) ∼ 2i
Φ+

1(−k cos θ)
sin θH

(1)
1 (kb sin θ)

eikr

kr
. (34)

Here r and θ are the usual spherical coordinates.

7. Results

In this section, some computational results dis-
playing the effect of various parameters such as the
surface impedances, the radii of the inner and outer
ducts and the frequency on the sound pressure level are

presented. In these figures, the Sound Pressure Level
(SPL) is defined as

SPL = 20 log10 ∣ p

2 ⋅ 10−5
∣,

where p is the amplitude of the acoustic pressure
of the sound wave, with the observation angle θ
changing from 0 to π. The far field values are plot-
ted at a distance 46 m away from the duct edge
(Demir, Rienstra, 2010). The problem parameters
related to absorbing lining are chosen from the stud-
ies of (Tiryakioglu, 2019; Peake, Abrahams, 2020)
which are exist in the literature. During the numerical
analysis, since the series converge rapidly the infinite
set of linear algebraic equations is solved by truncating
the infinite series at some number N . It can be seen
from Fig. 2 that the sound pressure level becomes in-
sensitive to the truncation number N for N > 2 with
different values of observation angle. Hence for the nu-
merical examples, the truncation number N is chosen
by taking into account this criterion.

Fig. 2. Sound pressure level versus the truncation number
N with f = 1000 Hz, a = 0.025 m, b = 0.050 m, η−11 = 1 − i,

η−12 = 2 − i.

In order to show the effectiveness of the lining, the
sound pressure level is computed numerically for some
particular values and compared to rigid case in Figs 3

Fig. 3. Sound pressure level for rigid-lined duct with
f = 1000 Hz, a = 0.025 m, b = 0.050 m, η−11 = 1−i, η−12 = 2−i.
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and 4. It is observed that existing of lining makes sig-
nificant decrease in the sound pressure level.

Fig. 4. Sound pressure level for rigid-lined duct with
f = 1500 Hz, a = 0.025 m, b = 0.050 m, η−11 = 1−i, η−12 = 2−i.

Figures 5 and 6 show how the acoustically ab-
sorbent material affects the sound pressure level. Note
that the sound pressure level can be reduced by chang-
ing the values of real and imaginary part of the liner
impedance.

Fig. 5. Sound pressure level for different values
of impedances with f = 1000 Hz, a = 0.015 m, b = 1.5a.

80

Fig. 6. Sound pressure level for different values
of impedances with f = 1000 Hz, a = 0.015 m, b = 1.5a.

Figures 7, 8, and 9 depict the sound pressure level
versus the observation angle for different values of a, b,
and f . Again it is observed that these different param-
eter values can be used to decrease the sound pressure
level.

Figures 10 and 11 depict the variation of the
sound pressure level versus the imaginary part of
the impedances for different values of the real part
of the impedances while a = 0.015 m, b = 1.5a, f =

Fig. 7. Sound pressure level for different values of inner duct
radius with f = 1000 Hz, b = 0.050 m, η−11 = 1− i, η−12 = 2− i.

Fig. 8. Sound pressure level for different values of outer
duct radius withh f = 1000 Hz, a = 0.010 m, η−11 = 1 − i,

η−12 = 2 − i.

Fig. 9. Sound pressure level for different values of frequency
with a = 0.015 m, b = 1.5a, η−11 = 1 − i, η−12 = 2 − i.

Fig. 10. Sound pressure level versus the imaginary part of
η−11 with f = 1000 Hz, a = 0.015 m, b = 1.5a m, η−12 = 4 − i.
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Fig. 11. Sound pressure level versus the imaginary part of
η−12 with f = 1000 Hz, a = 0.015 m, b = 1.5a m, η−11 = 1 − i.

1000 Hz. In Fig. 10, it is seen that for negative β1 val-
ues, the sound pressure level increases as the real part
of η−1

1 increases. However, opposite case is exist for
positive β1 values. In Fig. 11, it is observed that the
sound pressure level increases rapidly as the value of
β2 increases. The effect is relatively weaker in positive
values of β2.

Figure 12 shows the variation of the sound pres-
sure level against the frequency (f) for three differ-
ent values of angle while a = 0.025 m, b = 0.050 m,
η−1

1 = 1 − i, η−1
2 = 2 − i. It is observed that the sound

pressure level amplitude increases with increasing val-
ues of frequency. At higher angle values this increase
is more than lower ones.

Fig. 12. Sound pressure level versus the frequency f with
a = 0.025 m, b = 0.050 m, η−11 = 1 − i, η−12 = 2 − i.

The accuracy of the results obtained in this paper
has to be investigated. Figure 13 depicts an excellent

Fig. 13. Comparison of the sound pressure level with the
study of (Demir, Rienstra, 2010) for rigid coaxial duct

f = 1250 Hz.

agreement for sound pressure level between the present
paper and the study of (Demir, Rienstra, 2010).
When the admittances go to zero, i.e., η1, η2 → 0,
Fig. 13 is obtained for f = 1250 Hz. Notice that the
curve corresponding to η1, η2 → 0 coincides exactly
with the result obtained in the paper by Demir and
Rienstra (2010, Fig. 6a, dash line). Similar analysis
is also carried out in Fig. 14 with f = 3150 Hz. When
the admittances go to zero, the curve corresponding to
η1, η2 → 0 coincide exactly with the result obtained in
(Demir, Rienstra, 2010, Fig. 8a, dash line).

Fig. 14. Comparison of the sound pressure level with the
study of (Demir, Rienstra, 2010) for rigid coaxial duct

with f = 3150 Hz.

8. Conclusions

In this work, Wiener-Hopf technique is carried out
to analyze a coaxial duct whose inner surface is lined
by different acoustically absorbing materials. Some nu-
merical results are presented to show the effects of vari-
ous parameters on the sound pressure level. The results
show that it is possible to obtain sound absorption by
properly changing the parameters. The solution also
compares well with the results where the waveguide
is assumed to be rigid. Thus, in order to have fur-
ther development in the noise pollution reduction, this
mechanism can be included.
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