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M-estimators are widely used in active noise control (ANC) systems in order to update the adaptive FIR
filter taps. ANC systems reduce the noise level by generating anti-noise signals. Up to now, the evaluation
of M-estimators capabilities has shown that there exists a need for further improvements in this area. In this
paper, a new improved M-estimator is proposed. The sensitivity of the proposed algorithm to the variations
of its constant parameter is checked in feedforward control. The effectiveness of the algorithm in both types is
proved by comparing it with previous studies. Simulation results show the steady performance and fast initial
convergence of the proposed algorithm.
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1. Introduction

Nowadays, acoustic noises become one of the most
common and yet troublesome problems that humanity
is dealing with. Because of the increasing application of
industrial equipment, such as engines, gears, and com-
pressors, people suffer from acoustic noises alongside
mechanical vibration practically everywhere (Kuo,
Morgan, 1999; Nunez, Miranda et al., 2019). Based
on the temporal feature of the acoustic noises, they
can be categorized into two general groups, i.e. high-
frequency and low-frequency acoustic noises. Passive
noise control (PNC) methods have been used widely
in order to compensate acoustic noises, for instance
using enclosures to limit the acoustic noise of vacuum
pumps or utilizing noise barriers to protect inhabitants
of urban areas from roadway noise. Although there are
various PNC methods for mitigating the noise level,
these methods are bulky, costly, and are able to atten-
uate only high-frequency noises therefore they are in-
effective at low frequencies (Lee et al., 2010; Darvish
et al., 2015; Sabet et al., 2018). In order to reduce low-
frequency noises, active noise control (ANC) (Nelson,
Elliott, 1991; Elliott, 2000; Tan, Jiang, 2015;

Lu, Zhao, 2017; Sabzevari, Moavenian, 2017) was
proposed by (Paul, 1936) in the early 20th century.

ANC is a wave control technique based on the su-
perposition principle, in other words, the ANC sys-
tem cancels noise around the target location by gene-
rating an anti-noise wave with the same amplitude but
the opposite phase of the primary noise. Consequently,
the transmitted acoustic wave combines with the pri-
mary noise, resulting in mitigation of primary noise
(Akhtar, Mitsuhashi, 2010; Li, Chen, 2018; Khan
et al., 2019). As can be seen in Fig. 1, a simple ANC
system consists of two microphones, to pick up pri-
mary noise and the ambiance noise at the focused area,
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Fig. 1. Structure of an ANC system.
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a loudspeaker for producing the anti-noise wave, and
the control system.

In general, the control of ANC can be classified
into two main groups, i.e. feedback methods and feed-
forward techniques. According to the type of primary
noise, feedforward control can be further categorized
into narrow-band and broad-band types (Kuo, Mor-
gan, 1999). In contrast, in the feedback type, the ANC
system does not use the primary noise measurements
for mitigating the primary noises. Consequently, utiliz-
ing the feedback control method simplifies the control
system and reduce the cost of the system. This method
has been utilized by a wide range of headphone (Ang
et al., 2017; Vu, Chen, 2017).

The quality of the performance of the ANC system
depends on the phase and amplitude of the generated
anti-noise signal. As the recorded primary noise is sub-
jected to a signal processing algorithm for analyzing,
the characteristics of the generated anti-noise can be
affected by the performance of the signal processing
algorithm. The feature of the environment and char-
acteristics of the noise are time-dependent inherently.
Therefore, in order to overcome these fluctuations, al-
most all types of advanced ANC systems use adap-
tive algorithms to adjust ANC parameters (Patel,
George, 2015; Behera et al., 2017). The most well-
known adaptation approach used in ANC systems is
based on filtered-x least mean square (FxLMS) algo-
rithm due to its simplicity and robustness. However,
in the impulsive environment, the transient outliers
lead to transient fluctuation. These fluctuations could
have adverse influences on the convergence and reduce
the stability of the control system. In order to im-
prove the performance of adaptive filters against out-
liers, M-estimators have been proposed in the litera-
ture (Sen, Morgan, 1996; Thanigai et al., 2007).
Wu and Qiu (2013) presented a new M-estimator al-
gorithm subjected to impulse-like noise control. The
proposed method shows better performance in com-
parison to the Hampel algorithm in Gaussian noises
while it has a lower complexity. Thanigai et al. (2007)
proposed an M-estimator for enhancing the perfor-
mance of the LMS algorithm. The presented method
was implemented in the infant incubator and the simu-
lation results indicate rather improved performance
with respect to the simple LMS. However, the simu-
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Fig. 2. Feedforward block diagrams of FxLMME based ANC system.

lations were performed only in a few scenarios. Ertaş
et al. (2017) proposed a novel Li-type M-estimator.
Although the proposed algorithm shows robust perfor-
mance against outliers and multicollinearity, the su-
periority of the proposed method limited to scenar-
ios with several assumptions and specific conditions.
Suhail et al. (2019) proposed a ridge M-estimator
based on a quantile value. The performance of the pre-
sented method compared with fair amount of different
M-estimators and the simulations result showed a sa-
tisfactory performance.

In this paper, an improved M-estimator for ANC
of impulsive noises is proposed. The presented method
shows a better performance in comparison with the
other methods presented in previous studies. In addi-
tion, not only the proposed algorithm shows robust-
ness along with convenient stability but also achieves
convergence more quickly than other methods.

The rest of the paper is laid out as follows: in Sec. 2
the proposed improved M-estimator algorithm is de-
rived. The simulations that confirm the effectiveness
of the proposed algorithm are described in Sec. 3, and
the paper is concluded in Sec. 4.

2. The system structure

The block diagram of a feedforward ANC system
is illustrated in Fig. 2 where x(n) and y(n) repre-
sent the primary noise and anti-noise signals, respec-
tively. As can be seen, the structure of the system
consists of two main paths. The P (z) is equivalent
to the plant response which is basically dynamic and
has the unknown characteristics. The secondary path
which produces the corresponding response from the
ANC algorithm and the loudspeaker contains a FIR
filter called S(z). The S(z) function is a finite impulse
response (FIR) filter used to produce the acoustic re-
sponse to the reference microphone signals. Because
the primary noise is sampled only in feedforward sys-
tems, this path is not available in the structure of feed-
back type systems. It is important to notice that al-
though the responses of the two paths are subtracted
as shown in Fig. 2, in fact, the acoustic responses of
the two paths are summed in the target zone. The use
of subtraction is only needed because of building con-
sistency with the common control structures.
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The W (z) function is an adaptive filter meant to
minimize the error signal, i.e. the e(n) signal. The
coefficients of the W (z) function are adjusted by us-
ing an algorithm called the Least Mean M-estimator
(LMME). The LMME algorithm attempts to mini-
mize a cost function represented as ∑i ρ(ei), where
ρ(x) is a symmetric positive definite function that has
a minimum at zero (Wum, Qiu, 2013). The most com-
mon form of ρ(x) is x2/2 and it is known as the Least
Mean Square (LMS). The cost function of the LMME
based ANC system is given in Eq. (1) (Sen, Morgan,
1996; Wu, Qiu, 2013)

JME = E[ρ (e(n))] ≈ ρ (e(n)). (1)

The parameters of the adaptive filter, W (z), are
updated according to Eq. (2) (Sen, Morgan, 1996)

W (n + 1) = W (n) − µ∇JME

= W (n) + µφ (e(n)) [ŝ(n) ∗ x(n)], (2)

Table 1. Equivalent M-Estimators and their schematic influence function.
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where µ is the step size demonstrating the convergence.
The maximum value of µ was derived by (Kuo, Mor-
gan, 1999). The function φ(e(n)) is the derivative of
the function ρ(e(n)) which is called the influence fun-
ction. Here “∗” stands for the linear convolution and
the result of ŝ(n) ∗ x(n) is the filter’s reference signal.

2.1. Influence function

If LMS is not used, there will be instability in
the results when the data contain outliers samples
(Wu, Qiu, 2013). The influence function for LMS is
φ(x) = dρ(x)

dx = x. Therefore, the results would increase
unrestrictedly which leads to instability as the input
of the function increases. To overcome this deficiency,
various forms of ρ(x) were introduced.

In most of the existing methods, ρ(x) is deter-
mined to enforce a bounded influence function. Table 1
demonstrates some of the most commonly used func-
tions in which p, ι, ξ, α, and β are the arbitrary para-
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meters. The mentioned influence functions show differ-
ent performance according to the value of the p. There-
fore, in order to be able to evaluate the performance of
selected influence functions properly, the value of Lp
when p = 2 as in (Wu, Qiu, 2013), is assumed as the
fundamental performance. For example, when p = 2,
Lp gives ρ(x) = 0.5 ⋅ ∣x∣2 and the influence function is
equal to φ(x) = x. The mentioned restriction of LMS
can also be expressed according to Table 1. Consider-
ing the discussions had by Lifu Wu and Xiaojun Qiu
(Kuo, Morgan, 1999) regarding the functions shown
in Table 1, one can notice that although Lp is a direct
algorithm, it causes instability by not implementing
a limit on the influence function value.

The Huber function is a combination of two values
of Lp, when p = 1 and p = 2. Although the simula-
tion results of the Huber function show better stabil-
ity than fundamental Lp, its abrupt limitations may
cause instability. On the other hand, the Hampel func-
tion which resembles a combination of the Huber, Lp,
and an incipient decrease in limitation of the influence
function value, requires a considerable computational
effort. The Fair function bounds φ(x) take advantage
of both L1 and L2 in order not only to reduce the ef-
fect of large errors but also remain convex (Thanigai
et al., 2007). These functions (ρ(x)) and their influ-
ence functions using arbitrary constant parameters are
illustrated in Fig. 3.
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Fig. 3. Influence function of Fair, Modified Fair, Huber,
Hampel, and L2 algorithms.

2.2. The proposed influence function

The Fair function is a modified form of the Huber
function calculated by changing the hard limitations

Influence function ρ(x)

Fair φ(x) = x

1 + ∣x∣

Modified φ(x) = xe
−∣x/λ∣

1 + ∣x∣

Fig. 4. Comparison of Fair and Modified Fair algorithm.

into a smooth one. However, in this paper an influ-
ence function will be proposed which takes advantage
of both the Fair and the Hampel functions by chang-
ing the hard limitations into a smooth function. The
proposed influence function is called the Modified Fair
and is presented in Fig. 4. This figure indicates the dif-
ferences between the Fair and the proposed Modified
Fair function.

A value between 1 and 2 is recommended for the pa-
rameter C in the Fair algorithm (Wu, Qiu, 2013). The
value of C is chosen to be equal to one here. According
to the value of input errors, the behaviour of the in-
fluence function of the Modified Fair algorithm can be
categorized into three parts, i.e. Part-1 – small errors,
Part-2 – moderate errors, and Part-3 – large errors.
When the input error is limited to small values, the
Modified Fair algorithm acts like L2. If the value of
errors increases, the performance of the Modified Fair
algorithm adapts accordingly and benefits from the ad-
vantage of the Fair algorithm. By further incensement
of the input errors, the Modified Fair method covers
the advantages of the Hampel function.

In the Modified Fair algorithm, λ is a constant pa-
rameter related to the average absolute amplitude of
error (AE)

λ = C ×AE, (3)

where C is a constant number, and AE is represented
by Eq. (4):

AE(n) = 1

M

M−1

∑
i=0

∣e(n − i)∣ . (4)

In Eq. (4), the parameter M is a moving window with
the length M = 350.

2.3. Noise model

There are two famous noise models which use pro-
bability density functions:

• Gaussian Mixture Model (GMM)

f(x) = (1 − ε)G(x) + εI(x), (5)

where ε is a small constant number; and G(x) and
I(x) are Gaussian probability functions. The va-
riance of I(x) should be greatly larger than G(x)
(Wu, Qiu, 2013).
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• Additive Impulsive Noise (AIN)

g(x) = G(x) + φ(x), (6)

where G(x) is the same as before and φ(x) is
a non-Gaussian distribution which is often a stan-
dard symmetricα stable distribution (standard
SαS) where SαS is represented by:

SαS(t) = e−γ∣t∣
α

, (7)

where α is a characteristics exponent (0 < α < 2)
and γ is a positive number known as dispersion
which is equal to one in the standard SαS. For
α = 2 the distribution is a Gaussian and for α = 1 it
is a Cauchy distribution (Akhtar, Mitsuhashi,
2010). In this paper, both models are used.

3. Simulation results

In this section, the effectiveness of the Modified Fair
algorithm is discussed and compared with the Fair Al-
gorithm. In addition, the ANC models are generated
to verify the behaviour of the proposed algorithm by
carrying out in four steps. At first, the primary noise
is modelled. Then, the performance comparisons are
designed and in the next step, the constant parame-
ter is selected. Finally, the sensitivity test and noise
simulation are utilized.

3.1. Performance comparison

In order to compare the performance of different
LMME algorithms, most studies have used average
(arithmetic mean) noise reduction (ANR/AMR) de-
fined as:

ANR(n) = 20 log10

Ad(n)
Ae(n)

, (8)

Ad(n) = vAd(n − 1) + (1 − v) ∣e(n)∣ ,

Ae(n) = vAe(n − 1) + (1 − v) ∣d(n)∣ ,
(9)

where ν is a constant number 0.9 < ν < 1 called for-
getting factor, signals d and e are the disturbance and
error, respectively as illustrated in Fig. 2. Each ANR
curve is obtained as shown in (Wu, Qiu, 2013) by
calculating the average of 100 ANR curves generated
using 100 different noise models.

3.2. Parameter values

All the constant parameters are chosen to be the
same as in (Wu, Qiu, 2013) in order to make the re-
sults comparable with each other. S(z), P (z), and
W (z) are modelled by FIR filters with 250, 800,
and 350 taps, respectively. The ε in GMM is chosen to
be 0.05 and the forgetting factor in ANR is v = 0.999.

3.3. The sensitivity of the Modified Fair Algorithm

The constant parameter C in the Modified Fair al-
gorithm, as shown in Eq. (3), may have a large domain
of values. In order to choose a specific value, the sensi-
tivity of the algorithm was analysed by using different
values of C. The feedforward model was generated and
the reference noise signal was modelled by both GMM
and AIN (α = 1.1). The parameter C in Eq. (3) was
chosen to be 1, 1.5, 5, 10, and 20, respectively. The
results are illustrated in Fig. 5.

a)

b)

Fig. 5. The average noise reduction of Modified Fair al-
gorithm in “feedforward model” associated with references

noise signal modelled by: a) GMM and b) AIN.

According to Fig. 5, the maximum difference be-
tween the curves in the feedforward model with GMM
and AIN is around 2 and 9 dB, respectively. In both
cases, the differences decrease rapidly by increasing the
value of C; and the maximum difference in the curves
with C > 4 was less than 0.5 dB.

Therefore, the Modified Fair algorithm is insensi-
tive to the choice of parameter C when C > 4. Hence,
the optimum value of parameter C should be greater
than 4. In this study, the parameter C is set to be
C = 5.

3.4. Simulated noise

In this section, the performance of the Fair and the
proposed Modified Fair algorithms are compared in the
feedforward model. In each model, GMM and AIN are
used to generate the reference noise signals with three
different conditions as shown in Table 2. For GMM,
the distributions of G(x) and I(x) are chosen to be
normal with average equal to zero. In both models, the
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Table 2. Different conditions for AIN and GMM models.

Noise model AIN GMM

Case-1 α = 1.6
variance I(x)
variance G(x) = 10

Case-2 α = 1.4
variance I(x)
variance G(x) = 100

Case-3 α = 1.2
variance I(x)
variance G(x) = 1000

impulsiveness of generating noise is increasing as the
case number is increased (Case-3 > Case-2 > Case-1).
Figures 6 and 7 illustrate the performance of the Fair
and the Modified Fair algorithms in several different
scenarios.
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Fig. 6. Comparison of Fair and Modified Fair algorithms
in feedforward type:

a) GMM Case-1 (µFair = 1 ⋅ 10−4, µModified = 1 ⋅ 10−4),
b) GMM Case-2 (µFair = 1 ⋅ 10−5, µModified = 2 ⋅ 10−5),
c) GMM Case-3 (µFair = 1 ⋅ 10−6, µModified = 2 ⋅ 10−6).

Figures 6 and 7 show the performance of the al-
gorithms with GMM and AIN noise models of feed-
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Fig. 7. Comparison of Fair and Modified Fair algorithms
in feedforward type:

a) AIN Case-1 (µFair = 1 ⋅ 10−7, µModified = 1 ⋅ 10−7),
b) AIN Case-2 (µFair = 1 ⋅ 10−8, µModified = 2 ⋅ 10−8),
c) AIN Case-3 (µFair = 2 ⋅ 10−9, µModified = 3 ⋅ 10−9).

forward type. In the GMM cases, the maximum dif-
ferences between the algorithms are decreasing by in-
creasing the impulsiveness of noise, whereas they are
increasing in the AIN cases. When errors are small,
the performance of the two algorithms is exactly sim-
ilar to each other. So, the differences between them
after convergence can be neglected while those before
convergence cannot.

However, the Modified Fair model shows a faster
initial convergence than the Fair model in the case of
both noise models in all scenarios as demonstrated in
Table 3. The proposed Modified Fair algorithm shows
the best performance improvement in its initial conver-
gence rate in case 3 with a reduction of the number of
iterations to reach 90% of its final value to 11366 and
9156 in the GMM and AIN cases, respectively. The
residual error signal, e(n), of the Fair and the pro-
posed Modified Fair algorithms for both noise models
are illustrated in Fig. 8.
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Table 3. Comparison of the number of iterations for the Fair and the Modified Fair models to converge to 90%
of their final values.

Noise Model
GMM AIN

Case-1 Case-2 Case-3 Case-1 Case-2 Case-3
Fair 22491 26134 33058 15848 24025 34481

Modified Fair 14575 18113 21692 12084 16922 25325
The reduction in the number of iterations 7916 8021 11366 3764 7103 9156
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Fig. 8. Residual error of Fair and Modified Fair algorithm: a) GMM Case-1, b) GMM Case-2, c) GMM Case-3,
d) AIN Case-1, e) AIN Case-2, f) AIN Case-3.

From the simulation results presented in Figs 4–7
and Tables 2 and 3, we can conclude that:

• The proposed Modified Fair algorithm has a faster
initial convergence compared with the Fair algo-
rithm in all three scenarios. Quantitative data re-
vealed that the proposed Modified Fair algorithm
is superior, e.g. it is able to yield a fast conver-
gence in impulsiveness noises.

• The Modified Fair algorithm has a similar residual
noise performance to the Fair algorithm. However,

it has a faster initial convergence than the Fair
algorithm without losing stability.

4. Conclusion

The new modified M-estimator proposed in this pa-
per demonstrates considerable improvements regard-
ing its influence function capabilities. It was shown
that the sensitivity of the proposed algorithm to its
constant parameter is negligible. Conducted computer
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simulations indicate that the proposed modified M-
estimator has a fast initial convergence rate, steady
performance, and proper robustness. The results are
compared with recently published works while gene-
rating primary noise with Gaussian and Non-Gaussian
models. In the future, it would be interesting to per-
form a real-time experiment by developing a prototype
system and comparing the proposed method with other
existing modified M-estimator algorithms such as the
one considered in (Sun et al., 2015).
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