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The diversity of wave modes in the magnetic gas gives rise to a wide variety of nonlinear phenomena
associated with these modes. We focus on the planar fast and slow magnetosound waves in the geometry
of a flow where the wave vector forms an arbitrary angle θ with the equilibrium straight magnetic field.
Nonlinear distortions of a modulated signal in the magnetic gas are considered and compared to that
in unmagnetised gas. The case of acoustical activity of a plasma is included into consideration. The
resonant three-wave non-collinear interactions are also discussed. The results depend on the degree of
non-adiabaticity of a flow, θ, and plasma-β.
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1. Introduction

Violation of the principle of superposition of per-
turbations in nonlinear acoustics leads to the fact that
waves can interact with each other in the course of
propagation. If an exciter transmits two planar waves
with frequencies ω1 and ω2, there appears a combina-
tion frequencies, mω1 ± nω2, where m and n are some
integers. In the general case, the mathematical con-
tent of a problem is fairly difficult. It is simplified in
the case of two close frequencies. In the course of prop-
agation, the combination tone Ω = ω1 − ω2 enhances.
That is of importance in Newtonian flows where low
frequencies fade out slower than high ones. The shift
of the spectral maximum towards lower frequency may
take place starting from some distance from a trans-
ducer (Rudenko, Soluyan, 2005). Propagation of
a modulated signal with the carrier frequency much
larger than that of the modulation reveals similar fea-
tures.

The nonlinear phenomena in flows different from
Newtonian have been of special interest in the last
decades. Propagation of perturbations in the open sys-
tems is described by similar equations (enriched by the
terms originating from heating/cooling of a fluid) in
spite of different physical processes in them (Osipov,
Uvarov, 1992; Molevich, 2001; Nakariakov et al.,

2000; Leble, Perelomova, 2018). We may list flows
with destroyed adiabaticity in gases: with excited de-
grees of a molecule’s freedom, with chemical reactions,
and in open plasma. All these flows may be acous-
tically active under some conditions, that is, sound
may enhance in the course of propagation due to
some kind of heating-cooling function (Field, 1965;
Parker, 1953). In some conditions, the wave pertur-
bations weaken. The Newtonian attenuation always
contributes to the losses in momentum and energy, as
well as attenuation, due to thermal conduction. Inter-
action of modes may also occur unusually. This makes
the linear and nonlinear features of open flows par-
ticular. The most complex case is the flow of mag-
netic gases. Even in the simplest case of a planar ge-
ometry and constant angle between the wave vector
and straight magnetic field, the wave parameters (the
sound velocity and parameter of nonlinearity) reveal
strong dependence on this angle and the plasma-β.
There are two Alfvén modes and four modes which
rely on compressibility, that is, magnetosound modes
(two slow and two fast ones). Attenuation or enhance-
ment of sound also depends on a balance between
degree of deviation from adiabaticity due to some
heating-cooling function and mechanical and thermal
attenuation. The anisotropy of magnetosound speed
makes non-collinear interactions of wave modes pos-
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sible. That may happen to wave processes in media
with dispersion which is a rare case in acoustics of flu-
ids. The wave perturbations may excite also non-wave
modes. This excitation occurs unusually in open flows,
especially in flows of magnetic gases. Acoustic heating
and streaming (that is, excitation of the entropy and
vorticity modes) in a plasma has been considered by
Perelomova (2016; 2018a; 2018b). They are out of
the subject of this study.

2. Magnetosound waves

We start from the set of ideal MHD (magnetohy-
drodynamic) equations which describe perfectly elec-
trically conducting gas without losses due to mechan-
ical friction and thermal conduction. It includes the
continuity equation, momentum equation, energy ba-
lance equation, and electrodynamic equations in the
differential form (Freidberg, 1987; Krall, Trivel-
piece, 1973; Nakariakov et al., 2000):

∂ρ

∂t
+∇ ⋅ (ρv) = 0,

ρ
Dv
Dt

= −∇p +
1

µ0
(∇ ×B) ×B,

Dp

Dt
− γ

p

ρ

Dρ

Dt
= (γ − 1)L(p, ρ),

∂B
∂t

= ∇ × (v ×B),

∇ ⋅B = 0,

(1)

where p, ρ, v are thermodynamic pressure and density
of a plasma and particles velocity. The magnetic flux
density is denoted by B, and µ0 is the permeability of
the free space. The third equation in the set (1) refers
to an ideal gas with the ratio of specific heats under
constant pressure and constant density γ, γ = CP /CV .
The fourth equation is the ideal induction equation,
and the fifth one is the Maxwell’s equation reflect-
ing solenoidal character of B. L(p, ρ) is the heating-
cooling function responsible for non-isentropicity of
a flow. Nakariakov et al. (2000) reviewed physically
meaningful kinds of the heating function in the con-
text of astrophysical applications (heating by Alfvén
mode/mode conversion, coronal current dissipation,
constant heating per unit mass, heating by cosmic rays
and grain photoelectrons, etc). The heating-cooling
function accounts also losses due to radiation.

Following Nakariakov et al. (2000) and Chin et al.
(2010), we assume that the wave vector of a planar
flow forms some constant angle θ (0 ≤ θ ≤ π) with
the constant straight equilibrium magnetic field B0.
The y-component of B0 equals zero, so as

B0,x = B0 sin(θ), B0,z = B0 cos(θ),

B0,y = 0.

In this geometry of a flow, B0,z is constant and
there are seven unknown termodynamic functions in
the system (1) and seven modes specifying the flow
of infinitely small magnitudes: the entropy non-wave
mode and six wave modes including two Alfvén ones.
The detailed analysis may be found in (Nakariakov
et al., 2000; Perelomova, 2018a; 2018b). Employing
a normal mode analysis with all perturbations propor-
tional to exp(iωt − ikz), the dispersion relation of the
magnetosound modes is given as

ω = Ck − iCD, (2)

where C is the magnetosound speed, one of four pos-
sible (corresponding to two fast and two slow modes),
including two negative ones, which satisfies the equa-
tion

C4
−C2

(c20 +C
2
A) + c

2
0C

2
A,z = 0, (3)

and CA and c0

CA =
B0

√
µ0ρ0

, c0 =

√
γp0

ρ0

designate the Alfvén speed and the acoustic speed in
non-magnetised gas in equilibrium,

CA,z = CA cos(θ),

and

D =
C(C2 −C2

A)(γ − 1)

2c20(C
4 − c20C

2
A,z)

(c20Lp +Lρ).

The magnetosound perturbations may enhance if
a linear flow is adiabatically unstable (Field, 1965;
Parker, 1953) that is, if

c20Lp +Lρ > 0. (4)

We do not consider mechanical and thermal losses
which have impact on the energy balance in the flow
and may prevent enhancement of wave perturbations
even if the above condition is satisfied.

3. Nonlinear distortion of modulated wave
and three waves interaction

The evolutionary equation governing longitudinal
velocity in individual magnetosound wave has been de-
rived and used by Nakariakov et al. (2000), Chin
et al. (2010). It takes the form

∂vz
∂t

+C
∂vz
∂z

−DCvz + εvz
∂vz
∂z

= 0, (5)

where ε is responsible for nonlinear distortions,

ε =
3c20 + (γ + 1)C2

A − (γ + 4)C2

2(c20 − 2C2 +C2
A)

.
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Equation (5) refers to both slow and fast modes.
It is very similar to equations describing pertur-
bations in other open flows which may be acous-
tically active (Osipov, Uvarov, 1992; Molevich,
2001; Leble, Perelomova, 2018), but its parame-
ters (sound speed and parameter of nonlinearity) vary
with θ and plasma-β,

β =
2

γ

c20
C2
A

.

For better precision, we consider modes with C > 0,
that is, slow or fast modes propagating in the posi-
tive direction of the axis z. The sign of D coincides
with the sign of c20Lp + Lρ, hence, D > 0 is the case
of acoustical activity. Equation (5) rearranges into the
well known equation for velocity in the Riemann’s wave
which propagates in the positive direction of axes z
with D = 0, C = c0, and ε = γ+1

2
(Landau, Lifshitz,

1987; Rudenko, Solyan, 1977). Equation (5) in the
new variables (for non-zero D, C)

V = vz exp(−Dz), Z =
eDz − 1

D
,

τ = t − z/C

(6)

may be readily rearranged into the leading order equa-
tion:

∂V

∂Z
−
ε

C2
V
∂V

∂τ
= 0. (7)

Note that Z is always positive for non-zero D. Equa-
tion (7) is well studied in the nonlinear wave theory
(Landau, Lifshitz, 1987; Rudenko, Solyan, 1977).
It may be solved by the method of characteristics.

3.1. Propagation of a modulated wave

Let us consider nonlinear propagation of a modu-
lated at an exciter perturbation, fast or slow,

V (Z = 0, τ) = V0(1 +m sin(Ωτ)) sin(ωτ)

= v(z = 0, t)

= v0(1 +m sin(Ωt)) sin(ωt), (8)

where Ω ≪ ω, and m > 0 is the depth of modulation.
An exciter is situated at Z = 0. The nonlinear part of
the solution to Eq. (5) which oscillates with the fre-
quency Ω, takes the form

VΩ =
ΩεmV 2

0

2C2
Z cos(Ωτ) (9)

before formation of a discontinuity (Rudenko, Soluyan,
1977; Osipov, Uvarov, 1992), that is, if

0 < z < zsh = ln (1 + zsh,0D)D−1,

where

zsh,0 =
C2

εωV0
=

C2

εωv0

denotes the distance of shock formation for harmonic
at a transducer wave with frequency ω if D = 0. We
may conclude that zsh is smaller than zsh,0 for pos-
itive D. This is due to enlargement of sound pertur-
bations and enhancement of nonlinear distortions in
acoustically active flows (zsh is larger than zsh,0 for
negative D). A discontinuity always forms in acousti-
cally active or neutral flows with D ≥ 0 and, for neg-
ative D, in the case −1 < zsh,0D < 0 and does not
form at all otherwise. After formation of discontinu-
ity, the approximate solution may be found by means
of the standard method which eliminates ambiguity of
the exact solution to the nonlinear Eq. (5) by establish-
ment of the front so that the momentum per unit mass
remains constant at any distance from a transducer. It
was found out by Rudenko, Soluyan (1977):

VΩ = −
ΩmV0π

4ω

⎛

⎝
1 −

π2

2(π
2
+ Z
zsh,0

)2

⎞

⎠
cos(Ωτ). (10)

Hence, the solution to Eq. (5) with the boundary con-
dition (8), sounds as

vΩ =
Ωmv0

2Dωzsh,0
exp(Dz)(exp(Dz) − 1) cos(Ωτ) (11)

before formation of discontinuity, and

vΩ = −
Ωmv0π

4ω
exp(Dz)(1 −

π2

a∗
) cos(Ωτ), (12)

where

a∗ = 2(
π

2
+

(exp(Dz) − 1)

Dzsh,0
)

2

after formation of discontinuity The dimensional am-
plitude of the velocity ωvΩ,A

mv0Ω
of the wave with fre-

quency Ω, is shown in Fig. 1 for different Dzsh,0.
Whereas dynamics of the longitudinal velocity in the
magnetosound wave if D ≠ 0 is described by Eq. (7)
with variables (6), the neutral case D = 0 corresponds
to the same equation but with variables

V = vz, Z = z, τ = t − z/C.

On Fig. 1, the plot in the bottom row, right
panel represents dimensional magnitude of velocity
ωvΩ,A
mv0Ω

∣D∣zsh,0 in the case of negative D when disconti-
nuity does not form at all.

Some mismaches in junction of curves before and
after formation of discontinuity are caused by approx-
imate solution (10) which considers a triangular pro-
file as modulated wave propagates in order to simplify
analysis (Rudenko, Soluyan, 1977). For a triangu-
lar profile of signal at an exciter, the shock formation
distance equals π

2
zsh,0 if D = 0.
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Fig. 1. Dimensionless amplitude of velocity in the modulation wave as a function of a dimensionless distance from a trans-
ducer. The solid lines correspond to distances before formation of discontinuities, and the dotted lines correspond to
distances after formation of discontinuities. The plot in the bottom row, right panel is the case of Dzsh,0 < −1 when

a discontinuity does not form at all.

3.2. Non-collinear interaction of harmonic waves

In this section, we consider three frequency interac-
tion between harmonic waves: pump wave (ω3), signal
wave (ω1), and differential frequency wave (ω2),

ω1 + ω2 = ω3. (13)

For effective nonlinear interaction, they should be in
the phase synchronism (Rudenko, Soluyan, 1977),

k1 + k2 = k3, (14)

that is, modules of wave vectors k1, k2, k3, and θ1, θ2,
θ3 must satisfy the system

k1 cos(θ1) + k2 cos(θ2) = k3 cos(θ3),

k1 sin(θ1) + k2 sin(θ2) = k3 sin(θ3),

C1k1 +C2k2 = C3k3.

The general description is fairly difficult in view of
a complex form of C(θ, c0,CA) and different species
of magnetosound waves, fast or slow ones. The possi-
bility of non-collinear three wave interaction is due to
dependence of C on θ.

For example, let us consider the first mode corre-
spondent to the wave vector parallel to the magnetic
field, θ1 = 0, and the third mode correspondent to the
wave vector perpendicular to the magnetic field, θ3 =

π
2

(Fig. 2, top row, left panel). This geometry leads to
equation

C1 cos(θ2) −C2 = −C3 sin(θ2) = −

√

c20 +C
2
A sin(θ2),

which determines θ2 in dependence to the ratio CA
c0

.
C1 = c0, if c0 ≥ CA, and C1 = CA, if c0 < CA. The
effective angle θ2 is the same if the second mode is fast
or slow. It is shown in Fig. 2 (top row, right panel).
There are two solutions. In the limit zero or infinite
CA
c0

, they both tend to 3π
4
. There are also degenerative

solutions θ2 = 0, θ2 = π, and θ2 = π
2
corresponding to

zero or infinitely large k2 and k3. The next geometry
of interaction is shown in Fig. 2 in the bottom row, left
panel. It corresponds to equation

C1 cos(θ3) +C2 sin(θ3) = C3.

The solutions θ3 in fact equals π − θ2 from the first
example. As well as θ2 does not depend on fast or slow
C2, θ3 does not depend on fast or slow C3, and θ3

tends to π
4
as CA

c0
tends to infinity. The limiting values

(θ2 = π and θ3 = 0) correspond to the cases of zero
k3 and zero k2. The top and middle rows of Fig. 3
show geometry and effective angle θ1 for k1 = k2 and
symmetric wave vectors which produce perturbations
with perpendicular to the direction of magnetic field
wave vector k3. The cases of both interacting waves
are slow or fast, are degenerative and yield a single
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Fig. 2. Geometry of three wave interaction (left panels). The angles θ2, θ3 ensure effective interaction (right panels).

Fig. 3. Geometry of three wave interaction (left panels). The interacting waves with wave vectors k1, k2 may be
simultaneously fast or slow (top row) or simultaneously different (middle row). The angle θ1 provides effective

interaction (right panels).
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solution (top row, right panel at Fig. 3). The equation
establishing θ1 sounds as

C1 +C2 = 2C3 sin(θ1).

The left panel in the bottom row of Fig. 3 represents
the geometry of interaction with summary vector k3

parallel to the magnetic field. The plot in the bottom
row, right panel shows the solution θ1 satisfying the
equation

C1 +C2 = 2C3 cos(θ1)

for both fast first and second waves. The solution takes
the same form if either of these modes is fast, and the
other is slow. In the case of two slow modes, there are
only degenerate solutions 0, π

2
, π.

All types of non-collinear interactions are described
by Eqs (13) and (14). There are mathematical difficul-
ties in establishing solutions to them (that is, angles
between the wave vectors and axis z in dependence to
CA
c0

) in the general case.

4. Concluding remarks

This study continues the author’s investigations
concerning nonlinear flows of magnetic gases. The first
important results on this way starting from the choice
of geometry, derivation of nonlinear dynamic equation,
and analysis of some of its approximate solutions were
done by Nakariakov et al. (2000), Chin et al. (2010).
Perelomova (2019) has derived exact solutions in
the case of saw-tooth at an exciter periodic or im-
pulsive perturbations. Also, interaction of wave and
non-wave entropy mode, that is, excitation of acoustic
heating, has been discussed in detail (Perelomova,
2018a; 2018b).

In this study, we consider nonlinear propagation of
modulated perturbations and three wave interactions
in a magnetic gas. The magnitude of the low-frequency
oscillations in the modulated wave behaves differently
in the cases zsh,0D ≤ −1, −1 < zsh,0D ≤ 0, D = 0,
and D > 0 (D is responsible for deviation from adia-
baticity of the wave processes due to some kind of the
heating-cooling function). This entails a difference in
the forms of modulated waves before and after forma-
tion of a discontinuity, as well as a difference in the
distances of formation of discontinuity, zsh and zsh,0.
In particular, the magnitude of the modulated wave
grows accordingly to Eq. (12) as exp(Dz) at large dis-
tances from a transducer, exp(Dz)−1

Dzsh,0
≫ 1 in acoustically

active flow (that is, if D > 0). When D < 0, there are
two special cases: −1 < zsh,0D ≤ 0 in which discontinu-
ity forms, and zsh,0D ≤ −1, in which discontinuity does
not form at all. In both cases, magnitude of the modu-
lated signal tends to zero at large z as exp(Dz). In the
case when discontinuity does not form, magnitude of
the modulated signal v0 achieves maximum Ωmv0

8ω∣D∣zsh,0

at z = ∣D∣−1 ln 2 (Fig. 1, bottom row, right panel). It
varies in accordance to Eq. (11). In the case of D = 0,
magnitude of the modulated signal grows linearly with
the distance from a transducer before formation of dis-
continuity. In this case, the magnitude tends to πΩmv0

4ω
as z

zsh,0
tends to infinity (Fig. 1, top row, right panel).

In synchronous interactions, accumulation of non-
linear interactions occurs. As a result, the energy of
a dominant wave can be completely converted into the
energy of initially weak waves of different frequencies.
This phenomenon is well known in radio engineering
and nonlinear optics and has much in common with
the wave interaction in acoustics. Equations (13) and
(14) are responsible for the parametric interaction in
quadratically nonlinear medium. Parametric phenom-
ena can be clearly interpreted in quantum language
as processes of splitting of high-frequency phonons
of a pump wave h̵ω3 into two phonons of lower fre-
quencies h̵ω1 and h̵ω2. If we evaluate the products
of the Planck constant h̵, Eq. (13) and the condition
of synchronism (14), these equations can be interpreted
as the laws of conservation of energy and quasimo-
mentum during an elementary three phonon interac-
tion. Parametric phenomena in radio engineering and
nonlinear optics are usually treated by the spectral
method (Kharkevich, 1965; Landau et al., 1984).
This method is very convenient in MHD applications,
because presence of a strong dispersion makes interac-
tion between only a few waves possible. The spectral
methods in acoustics are used much less frequently
in view of weak dispersion. In the magnetic gas, the
anisotropy in propagation of planar waves, that is, de-
pendence of sound speed on the angle between the wave
vector and magnetic field, causes the possibility of non-
collinear interactions.

The starting point is the conservation system of
PDE in ideal MHD equations. Ideal magnetohydrody-
namics refers to the single fluid model dealing with
macroscopic equilibrium quantities and equal temper-
atures of electrons and ions. It approximates well the
majority of astrophysical gases which are weakly cou-
pled plasmas. In particular, the results may be useful
in coronal seismology, that is, in remote observations
of wave perturbations in the solar corona and conclu-
sions about plasma’s properties and heating/cooling
in it. The solar corona consists of loops which ex-
tend up to 700 000 km and have radii between 1000
and 10 000 km. Hence, the model of a plasma column
affected by straight magnetic field considered in the
present paper is a good approximation for coronal
loops. The results may be used in the flows of labo-
ratory plasmas. We do not consider effects connected
with mechanical viscosity and thermal conduction of
a plasma. The impact of thermal conduction on the
magnetosound wave propagation has been considered
by Nakariakov et al. (2000). The damping mecha-
nisms alter conditions of acoustical activity and have
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impact on all nonlinear phenomena in the course of
wave propagation. In the case of small Reynolds num-
bers, that is, strong damping compares to nonlinearity,
Dzsh,0 < −1, magnitude of the modulated wave en-
larges at small distances from the exciter, then passes
through a maximum, and attenuates at the large dis-
tances slower than the carrier wave. This is the case
of plot in Fig. 1 (bottom row, right panel). We may
expect that Newtonian attenuation and thermal con-
duction may prevent acoustical activity and growth of
the magnitude of the modulated wave, if D > 0. That
happens if

DC3
<
b(Ω − ω)2

ρ0
,

where b designates the total attenuation, including
mechanical and the one due to thermal conduction
(Rudenko, Soluyan, 1977). Observed dissipation
of slow magnetosound modes is difficult to explain
by linear damping mechanisms (Krishna Prasad
et al., 2014). The application of nonlinear theory seems
promising because it considers nonlinear damping at
discontinuities and nonlinear transfer of energy be-
tween wave and non-wave modes.
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