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The paper presents the results of the application of the hierarchical clustering methods for the classification
of the acoustic emission (AE) signals generated by eight basic forms of partial discharges (PD), which can occur
in paper-oil insulation of power transformers. Based on the registered AE signals from the particular PD forms,
using a frequency descriptor in the form of the power spectral density (PSD) of the signal, their representation
in the form of the set of points on plane XY was created. Next, these sets were subjected to analysis using
research algorithms consisting of selected clustering methods. Based on the suggested numeric performance
indicators, the analysis of the degree of reproduction of the actual distribution of points showing the particular
time waveforms of the AE signals from eight adopted PD forms (PD classes) in the obtained clusters was
carried out. As a result of the analyses carried out, the clustering algorithms of the highest effectiveness in the
identification of all eight PD classes, classified simultaneously, where indicated. Within the research carried
out, an attempt to draw general conclusions as to the selection of the most effective hierarchical clustering
method studied and the similarity function to be used for classification of the selected basic PD forms.
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1. Introduction

Damages of high power transformers, the function
of which is the transformation of electrical energy at
various voltage levels, is, next to the dominant role
of catastrophic atmospheric conditions, one of the es-
sential causes of the power system failures. A signifi-
cant part of the general number of power transformer
failures, about 40%, is connected with various types
of damages to the insulation system. These are typi-
cal internal damages caused by the occurrence of coil
short-circuits due to, among others, local decrease of
endurance of electrical insulation. This phenomenon is
caused directly by the occurrence of partial discharges
(PD) in these places, the causes of which may be as
follows: damage of the cellulose insulation of the ac-
tive part; the presence of dissolved gas inclusions in
oil; also improper drying, degassing and impregnation

of the insulating paper. Other causes of power trans-
former damages, which constitute about 18% of their
general number, also include dampness of the electrical
insulating oil leading to PD occurrence in gas bubbles
at the voltage lower than the rated voltage, and also
the occurrence of local electrical discharges in the areas
of the irregular distribution of electric filed, connected
with the application of dielectrics of various values of
dielectric permittivity – development of surface par-
tial discharges (SPD). Hence, the development of PD
of various types can be the cause of over 50% of all
power transformer failures, and detection and recog-
nition of these phenomena play a key role in ensuring
their continuous and failure-free operation (Cichoń,
2013; Kapinos et al., 2014).

For the assessment of the technical condition of
power transformers about PD detection in their in-
sulation system, the engineering practice suggests us-
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ing many diagnostic methods, including, among oth-
ers, the electric method (measurement of the ap-
parent charge) or the dissolved gas analysis (DGA)
(Akbari et. al., 2010; Boczar et. al., 2014; Kaz-
imierski, Olech, 2013). Also, the so-called supple-
mentary methods, which include, among others, the
acoustic emission (AE) method, have been used suc-
cessfully for many years. The AE method is used
mainly for detection, location, and intensity assess-
ment of PD occurring in the insulation system of
the transformers strategic for the system. Presently,
the very method of the AE measurement taking is
recognized to a significant degree, especially in the
scope of inferences and the ways of their elimination
(Olszewska, Witos, 2012; Rubio-Serrano et al.,
2012; Soltani et al., 2012). Current works on the de-
velopment of this method are directed towards the at-
tempts to find effective mechanisms of the analysis of
the measurement results obtained, in particular for ef-
fective identification of the particular PD forms and
referring them to the assessment of the degradation de-
gree of the transformer insulation system. So far, the
attempts to identify basic PD forms have been carried
out using for this purpose the results of frequency and
time-frequency transformations of the AE signals mea-
sured, which were then analyzed using statistical and
correlation methods, and also the elements of artifi-
cial intelligence (Boczar, 2001; Borucki et al., 2007;
Fuhr, 2005; Lalitha, Satish, 2002).

The area of interest in the subject of clustering for
the analysis of EA signals from PDs is, among oth-
ers publication (Castro Heredia, Rodrigo Mor,
2019), in which the authors note that contempo-
rary digital measurement systems of the electrical dis-
charges allow you to isolate and create certain clusters
and then link them to specific PDs sources. For this
purpose, the authors of the publication propose the
use of clustering methods based on spatial density, in-
cluding DPC (Density Peak Clustering) and DBSCAN
(Density-based Spatial Clustering of Applications with
Noise). In the publication (Rodrigo Mor et al., 2017)
it was proposed for example to use clustering meth-
ods to try to separate and distinguish between PD
sources. The identification of defects in the insulation
system of high voltage devices based on the cluster-
ing of acoustic signals from PD is also presented in
the publication (Radionov et al., 2015). The authors
of this publication state that by appropriate positio-
ning of the periodic acoustic signal and based on the
SCM (Subtractive Clustering Method) clustering tech-
nique, it is possible to identify selected main insulation
defects of the transformer. The use of the SCM clus-
tering method as a mechanism of the inference expert
system was proposed by the authors of the publica-
tion (Mohan Rao et al., 2015). According to the au-
thors of the publication, the expert system based on
the SCM clustering method is characterized by high

efficiency in identifying the modeled damage and good
accuracy of decisions made. In the article (Chia-Hung
et al., 2009) the authors presented the concept of using
GCA (Gray Clustering Analysis) clustering methods to
analyze the concentration of gases dissolved in the in-
sulating oil of the transformer, which was determined
by the DGA (Dissolved Gas Analysis) method. Based
on the conducted research, it was found that the use of
the GCA method in the DGA analysis is characterized
by higher efficiency in identifying faults in the trans-
former insulation system, compared to solutions based
on AI (Artificial Intelligent) techniques.

Probabilistic neural networks (PNN) and the
method of clustering fuzzy C-means (FCM) for classi-
fication of PD in isolation of circuit breakers with SF6

gas were proposed by the authors of the publication
(Ming-Shou et al., 2014). During the conducted ex-
periments on the identification of the modeled defects
of the tested circuit breaker, the authors confirmed the
high efficiency of classification of the measured PD us-
ing the proposed methods.

In the studies presented in this article, concerning
the evaluation of the efficiency of classification of AE
signals from eight PD forms using hierarchical cluster-
ing methods, the patterns of AE signals generated in
laboratory conditions at the Laboratory of Diagnos-
tics of Insulation Systems of the Opole University of
Technology were used, using the prepared measuring
system, shown in Fig. 1.

Fig. 1. Schematic diagram of the system used for the gen-
eration of PD and EA signals: 1 – transformer tank filled
with electro–insulating oil, 2 – modeling spark gap, 3 – gas
bubble generator (GP), 4 – measuring transducer, 5 – mea-
suring amplifier and filter, 6 – a computer with measuring

card.

For the generation of PD corresponding to various
defects of paper-oil insulation of power transformers,
a high-voltage test system was used, the main element
of which was a single-phase TP60 type test transformer
with a rated transmission ratio of 220/60.000 [V/V],
using which appropriately selected modeling spark
gaps was supplied. For the results of measurements
and analysis of AE signals generated by the analyzed
PD forms to be of general value and to allow for
their comparison and reproduction, the value of the
discharge generation voltage was 80% of the break-
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down voltage (Up) of each of the adopted modeling
systems. During PD generation in the following sys-
tems: blade–blade and multi-blade–plate in gassed oil,
an air bubble generator (GP) was used to generate
gas bubbles. Its nozzle, which enabled the generation
of bubbles reproducible in terms of shape and size, was
placed under the above-mentioned. with spark gaps in
such a way that the bubbles escaping on average every
0.1 s are located in the space between the electrodes
of the spark gap. To record the EA signals generated
by the PDA, a measuring circuit was used, consisting of
broadband, differential, piezoelectric measuring trans-
ducer type WD AH17, by Physical Acoustics Corpo-
ration (PAC), a measuring amplifier AE Signal Condi-
tioner with filtering systems, by EA System and a com-
puter equipped with a measurement card type NI 5911
from National Instruments. Detailed information on
the conditions of AE signals generated from the tested
PD forms and the measuring equipment used are pre-
sented in the publications (Boczar et. al., 2009; 2014;
Borucki et al., 2018; Kurtasz, 2011). To classify the
recorded acoustic emission signals from the forms of
partial discharges considered in the article, with the
use of hierarchical clustering methods, the following
designation of individual classes was adopted:

Class 1 – discharges in needle-to-needle setup in oil;
Class 2 – discharges in needle-to-needle setup in oil

with gas bubbles;
Class 3 – needle-to-plane discharges in oil;
Class 4 – discharges in the surface setup of two flat

electrodes with paper-oil insulation between
them;

Class 5 – discharges in the surface set up with one
flat electrode and the other multi-needle
electrode with paper-oil insulation between
them;

Class 6 – discharges in multi-needle-to-plane setup in
oil;

Class 7 – discharges in multi-needle-to-plane setup in
oil with gas bubbles;

Class 8 – discharges on particles with unspecified po-
tential.

Figure 2 shows examples of time courses and avera-
ged over one period of the supply voltage (T = 20 ms)
spectral density of AE signals, which were recorded in
laboratory conditions for each of the PD forms adopted
by the authors.

2. Selection methodology of the AE signal
parameter subjected to clustering

One of the statistical methods used for the classi-
fication and analysis of a big number of data is the
so-called cluster analysis, i.e. clustering. This method
is used mainly for the assessment and comparison of

measurement results. Due to the lack of necessity to
carry out the teaching process, it is also much faster
than the methods based on artificial neural networks
(ANN), neuro-fuzzy algorithms, and fuzzy logic. The
use of clustering makes it also possible to classify a big
number of measurement data simultaneously, in this
case, PD classes, and to implement complex methods
of the AE signal description in the calculation algo-
rithms structure. From among five clustering methods
described in the literature (Han et al., 2012; Krzyśko
et al., 2008; Borucki et al., 2018), the so-called hie-
rarchical methods are mentioned most often, which,
among others, include:

• single linkage method,
• complete linkage method,
• average linkage method,
• Ward’s method.

The existence of separate areas, clusters possess-
ing the property that any two objects belonging to
the same cluster are similar to each other to a larger
degree than two objects selected out of two different
clusters indicates the existence of a structure in the
dataset subjected to the process of clustering. There-
fore, determining the similarity measure (function) be-
tween the objects remains a significant element of the
clustering process, although in many situations it is
more convenient to use the term of dissimilarity or non-
probability, e.g. distance. The most common measures
of dissimilarity are as follows:

• the Euclidean Metric,
• the Standardized Euclid Metric,
• the Minkowski Metric,
• the City-Block Metric,
• the Mahalanobis Metric.

Selection of the set of features – representations
of the objects under study is an important step in
the clustering process of the AE signals from PD.
In the case presented in this paper, the objects un-
der study were AE signals from eight PD forms, out
of which information in the form of a time wave-
form of the value of the discharge generation level
of the length of 20 ms was separated. A character-
istic of the power spectral density was determined
for these waveforms, using the power spectral density
(PSD) function normally available in the Matlab sim-
ulation and calculation environment, realized through
pwelch(D, fp) instruction. On PSD images obtained,
for each AE signal from a selected PD class, two weight
values of spectral density for two frequency values were
indicated, obtaining in this way a two-element vec-
tor, of which the first element was recognized as the
so-called component X and the other as the so-called
component Y – two coordinates in the Euclidean space.
This process is shown in a diagram form in Fig. 3.
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Fig. 2. Examples of time courses and averaged spectral power density of recorded AE signals from the analyzed forms
of PD: a) Class 1, b) Class 2, c) Class 3, d) Class 4, e) Class 5, f) Class 6, g) Class 7, h) Class 8.

Coordinates of the points obtained in the way
shown in Fig. 3 constituted a set of the following fea-
tures – representation of the objects studied – AE sig-
nals from PD – and it was them that were subjected

to further analysis using the above-mentioned cluster-
ing algorithms. The PSD frequency values for which
the set of features was determined – the coordinates
of the points imaging on the XY plane, the individual
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a)

b)

c)

Fig. 3. Sample diagram of the procedure of determining the AE signal feature subjected to clustering: a) time waveform
of the AE signal, b) PSD of the AE signal with two frequencies: X = 40 kHz, Y = 700 kHz, c) adopted feature of the AE

signal subjected to clustering (coordinate XY).

time courses of the EA signals were experimentally se-
lected from among 10,000 characteristics, which were
determined for the PSD frequency pairs in the range
10–990 kHz, with a step of 10 kHz. The main indicator
used to assess the quality of the selected PSD frequency
pair was the distribution of points on the XY plane ob-
tained as a result of its application, showing the indi-
vidual studied AE waveforms in individual PD classes.
Images with the highest possible degree of grouping

a) b)

Fig. 4. Sets of points showing AE signals from PD for all tested PD classes and examples of PSD frequency pairs: a) with
values of 570 kHz for the X component and 670 kHz for the Y component b) with values of 40 kHz for the X component

and 700 kHz for the Y component.

were sought. The grouping result for the exemplary
two pairs of PSD frequencies with values of 570 kHz
for the X component and 670 kHz for the Y compo-
nent and 40 kHz for the X component and 700 kHz for
the Y component are shown in Fig. 4.

Under this article, 5 types of clustering were distin-
guished out of all images obtained. One PSD frequency
pair was selected for each of them. The selected fre-
quency pairs are listed in Table 1.
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Table 1. Listing of selected PSD frequency pairs.

Component X [kHz] Component Y [kHz]
20 80
40 700
170 350
430 550
570 670

It should be stressed that a proper selection of the
PSD frequency pairs had a key significance for the fur-
ther research on the effectiveness of the research al-
gorithms obtained because an unsatisfactory result of
the clustering analysis could have been a consequence
of an improper selection of the set of features describ-
ing an object, which turned out to have been non-
representative (Morzy, 2013).

Within the research work carried out, the authors
assessed the effectiveness of classification of the AE sig-
nals from eight PD classes for all the above-mentioned
clustering methods and measures of dissimilarity. Ne-
vertheless, due to a considerable number of the results
obtained, only the most favorable results have been
presented in the following chapters.

3. Adopted criteria of assessment
of the effectiveness of the AE signals

classification using the clustering methods
studied and the results obtained

Combining the selected clustering methods, sim-
ilarity functions, and also PSD frequency pairs of
components XY, 140 clusterings (research) parameters
were obtained. Their effectiveness was verified by ana-
lyzing a degree of reproduction of a real distribution of
the points illustrating the particular time waveforms of
the AE signals in the obtained clusters for 8 PD classes.
Therefore, numeric parameters were determined – the
so-called performance indicators, which included:

• modulus of the average difference ∣∆x∣, given as
(for n = 20):

∣∆x∣ = ∣x(cluster)−x(class)∣

= ∣ 1

n

n

∑
i=1
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1

n

n

∑
i=1

xn(class)∣, (1)

where ∣∆x∣ is modulus of the average difference,
x(cluster) is arithmetic average of the weight values
of spectral density for the cluster studied, x(class)
is arithmetic average of the weight values of spec-
tral density for the PD class studied, xn(cluster)
is n-weight value of spectral density in the clus-
ter studied, xn(class) is n-weight value of spectral
density in the PD class studied;

• and modulus of standard deviations difference
∣∆σ∣, given as (for n = 20):
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where ∣∆σ∣ is modulus of standard deviations
difference, σ(cluster) is standard deviation of weight
values of spectral density for the cluster studied,
σ(class) is standard deviation of weight values of
spectral density for the PD class studied WNZ,
xn(cluster) is n-weight value of spectral density in
the cluster studied, x(cluster) is arithmetic aver-
age of the weight values of spectral density for
the cluster studied, xn(class) is n-weight value of
spectral density in the PD class studied, x(class)
arithmetic average of the weight values of spec-
tral density for the PD class studied.

The modulus of the averages difference ∣∆x∣ and
the modulus of the standard deviations difference ∣∆σ∣
were calculated for the weight values of spectral den-
sity, determined for the real distribution of the PD
classes studied and the distribution of clusters obtained
as a result of clustering carried out, separately for com-
ponent X and component Y . 20 weight values of spec-
tral density were adopted for calculations, which were
obtained from the analysis of contingency table of both
distributions, using function hist. normally available in
Matlab environment. The difference values obtained
for component X and component Y were averaged us-
ing the mathematical average.

Taking into account the similarity of the indica-
tors presented above, given with formulae (1) and (2),
it was decided to combine them in the next step into
the common indicator of quality assessment, which is
an arithmetic average value, given as the following de-
pendence:

∆ = ∆xav +∆σav
2

, (3)

where ∆ is averaged value of modules of averages dif-
ference and modules of standard deviations difference,
∆xav is averaged value of modules of averages differ-
ence for components X and Y , ∆σav is averaged value
of modules of standard deviations difference for com-
ponents X and Y .

Indicator ∆ obtained reflects the effectiveness of
class reproduction in a cluster, at the same time en-
suring taking into account both complementary effec-
tiveness indicators – arithmetic average and standard
deviation. The selection of the most effective repre-
sentation of the adopted PD classes in the particular
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Table 2. Listing of the results of PD class representation in the created clusters for a sample research algorithm
Ward-Seuclidean-50/700 and selected three PD classes (classes 1, 3, 5).

Class Cluster Component
Indicator values

in a class
Indicator values

in a cluster ∣∆x∣ ∣∆σ∣ ∆xav ∆σav ∆

x σ x σ

1 1 X −3.15 0.5910 −2.79 0.3810 0.3550 0.2100
0.1794 0.1061 0.1428

1 1 Y −5.58 0.0817 −5.57 0.0795 0.0038 0.0022
1 2 X −3.15 0.5910 −3.90 0.2860 0.7540 0.3050

0.4325 0.1656 0.2991
1 2 Y −5.58 0.0817 −5.69 0.0557 0.1110 0.0261
1 3 X −3.15 0.5910 −2.94 0.5470 0.2030 0.0442

0.4295 0.0323 0.2309
1 3 Y −5.58 0.0817 −4.92 0.1020 0.6560 0.0204
3 1 X −4.05 0.1970 −2.79 0.3810 1.2600 0.1850

0.6875 0.1044 0.3960
3 1 Y −5.69 0.0557 −5.57 0.0795 0.1150 0.0238
3 2 X −4.05 0.1970 −3.90 0.2860 0.1510 0.0891

0.0755 0.0446 0.0601
3 2 Y −5.69 0.0557 −5.69 0.0557 0.0000 0.0000
3 3 X −4.05 0.1970 −2.94 0.5470 1.1100 0.3500

0.9390 0.1982 0.5686
3 3 Y −5.69 0.0557 −4.92 0.1020 0.7680 0.0464
5 1 X −2.94 0.5470 −2.79 0.3810 0.1510 0.1660

0.4020 0.0943 0.2482
5 1 Y −4.92 0.1020 −5.57 0.0795 0.6530 0.0226
5 2 X −2.94 0.5470 −3.90 0.2860 0.9570 0.2610

0.8625 0.1537 0.5081
5 2 Y −4.92 0.1020 −5.69 0.0557 0.7680 0.0464
5 3 X −2.94 0.5470 −2.94 0.5470 0.0000 0.0000

0.0000 0.0000 0.0000
5 3 Y −4.92 0.1020 −4.92 0.1020 0.0000 0.0000

clusters was made by indicating the smallest value of
the indicator ∆ (Borucki, Łuczak, 2017; Borucki
et al., 2018).

Table 2 shows sample results of the experiment
carried out, which were obtained for one of the ana-
lyzed clustering algorithms (Ward-Seuclidean-50/700)
– Ward’s clustering method, distance measures Stan-
dardized Euclid Metric and PSD components: X =
50 kHz, Y = 700 kHz – and three PD classes classified
simultaneously (classes 1, 3, 5). The results character-
istic of the highest representation indicator of the par-
ticular PD classes in the clusters obtained is marked
in bold.

To carry out a conclusive assessment of the effec-
tiveness of the research algorithms analyzed, an ad-
ditional percentage was suggested – the so-called re-
search algorithm efficiency, which bases on the compar-
ison of the number of multiple indications of the most
effective representation of the particular PD classes
in a single cluster, and the repetition was counted
from the consecutive indication and the number of PD
classes analyzed. This indicator was given by the fol-
lowing dependence:

S = 100 − NR
NC

× 100 [%], (4)

where S – research algorithm efficiency, NR – number
of repetitions, NC –number of PD classes analyzed.

The results of the research experiment carried out
included the analysis of 140 clustering algorithms and
eight PD classes occurring simultaneously. Based on
the results obtained, it was found that maximum effec-
tiveness for all algorithms assessed, determined in com-
pliance with the percentage of the research algorithm

Table 3. Listing of the averaged value of the indicator ∆
for research algorithms of 87.5% efficiency in an increasing

order.

No. Research algorithm

The averaged
value

of the indicator
∆

1 Ward-Cityblock-570/670 0.0399
2 Complete-Cityblock-570/670 0.0403
3 Ward-Mahalanobis-40/700 0.0978
4 Ward-Euclidean-40/700 0.0998
5 Ward-Seuclidean-40/700 0.0998
6 Ward-Minkowski 0.3-40/700 0.1021
7 Ward-Minkowski 0.5-40/700 0.1030
8 Ward-Cityblock-40/700 0.1037
9 Complete-Seuclidean-40/700 0.1052
10 Complete-Minkowski 0.8-40/700 0.1096
11 Complete-Minkowski 0.5-40/700 0.1170
12 Ward-Mahalanobis-170/350 0.1865
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efficiency (4) was 87.5%, which means that 7 original
indications and 1 repetition. To indicate unambigu-
ously a clustering algorithm showing the highest clas-
sification effectiveness of the PD forms analyzed, an
averaged value of an indicator ∆ (3) was used additio-
nally. The value of this parameter was determined for
all algorithms studied, for which the percentage of the
research algorithm efficiency was 87.5%. The results of
the calculations carried out are shown in Table 3. The
clustering algorithm of the highest classification effec-
tiveness of the AE signals from PDs is the algorithm
for which the averaged value ∆ is of the lowest number
(Item no. 1, Table 3).

4. Conclusion

Based on the research carried out it was found that
there exists the possibility of effective use of the hier-
archical clustering methods for classifying the AE sig-
nals from PD. The analysis of the averaged value of
the indicator ∆ for the particular research algorithms
proved that the Ward-Cityblock-570/670 algorithm is
characteristic of the highest effectiveness, which re-
alizes Ward’s clustering method, with the similarity
function in the form of the City-Block Metric for the
PSD frequency pair of 570 kHz for component X and
670 kHz for component Y (∆ = 0.0399). A slightly
higher value of the averaged indicator ∆ = 0.0403,
thus slightly lower effectiveness, was obtained for the
Complete-Cityblock-570/670 research algorithm reali-
zing the clustering method of complete linkage with
the similarity function in the form of the City-Block
Metric for the same PSD frequency pair. Therefore,
the two most effective research algorithms were based
on the same similarity function – the City-Block Met-
ric and the same PSD frequency pair of the values of
570 kHz and 670 kHz.

The analysis results of the averaged value of the
indicator ∆ also showed that nine consecutive out of
the remaining algorithms studied, beginning with the
third most effective algorithm, were based on the same
PSD frequency pair of the values of 40 kHz for compo-
nent X and 700 kHz for component Y . This analysis
result shows that the application of the PSD frequency
pair of a big difference of the values between compo-
nent X and component Y has a positive influence on
the effectiveness of the clustering algorithm, which re-
sults in a more accurate representation of PD classes
in the clusters created.

It should be also observed that all algorithms, for
which the highest percentage of the research algorithm
efficiency (4) – 87.5% was obtained in the experiment
carried out, were based on two clustering methods:
Ward’s method – 8 research algorithms and the com-
plete linkage method – 4 research algorithms. Hence,
it can be concluded that these methods, in particu-
lar Ward’s method, are the most suitable for carrying

out the analyses aimed at the classification of basic
PD forms in the datasets created for the selected PSD
frequency pairs.

All similarity functions (the Euclidean Metric,
Standardized Euclidean Metric, Minkowski Met-
ric, City-Block Metric, and Mahalanobis Metric) se-
lected for the research experiment, found their applica-
tion in the research algorithms listed in Table 3, which
indicates a smaller significance of the selection of simi-
larity function in the algorithms tested compared with
the clustering and the PSD frequency pair methods
applied.

The research results presented in this article are
based entirely on the analysis of standard AE signals,
which were generated in the Laboratory of Diagnostics
of Insulation Systems of the Opole University of Tech-
nology. The satisfactory results of classification of AE
signals from PD forms modeled in laboratory condi-
tions with the use of hierarchical clustering methods
obtained in this article constitute the first stage of re-
search in this direction. The next stage of scientific
and research works will be the use of the proposed by
the authors clustering methods for the analysis of EA
signals recorded on real energy facilities, in particular
power transformers.
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