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Measurement of vital signs of the human body such as heart rate, blood pressure, body temperature and
respiratory rate is an important part of diagnosing medical conditions and these are usually measured
using medical equipment. In this paper, we propose to estimate an important vital sign – heart rate
from speech signals using machine learning algorithms. Existing literature, observation and experience
suggest the existence of a correlation between speech characteristics and physiological, psychological
as well as emotional conditions. In this work, we estimate the heart rate of individuals by applying
machine learning based regression algorithms to Mel frequency cepstrum coefficients, which represent
speech features in the spectral domain as well as the temporal variation of spectral features. The estimated
heart rate is compared with actual measurement made using a conventional medical device at the time
of recording speech. We obtain estimation accuracy close to 94% between the estimated and actual
measured heart rate values. Binary classification of heart rate as ‘normal’ or ‘abnormal’ is also achieved
with 100% accuracy. A comparison of machine learning algorithms in terms of heart rate estimation and
classification accuracy is also presented. Heart rate measurement using speech has applications in remote
monitoring of patients, professional athletes and can facilitate telemedicine.

Keywords: heart rate from speech; machine learning; MFCC; regression and classification; speech as
a biomedical signal.

1. Introduction

Vital signs of human body are conventionally mea-
sured using medical equipment. These can be compli-
cated to use, expensive and also cause inconvenience
to the patient/individual. This is especially true for
measuring vital signs of athletes during their train-

ing which involves intense physical activity. Connec-
ting electrodes, sensors and other medical equipment
on athletes while they are training is likely to be intru-
sive and affect their performance. Physiological as well
as emotional changes in an individual result in varia-
tions in the speech produced (Trouvain, Truong,
2015; Science Encyclopedia, 2019; Borkovec et al.,
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1974; Ramig, 1983; Reynolds, Paivio, 1968). Age-
ing, health condition, stress level, exposure to pol-
lution as well as physical exercise and activity are
some factors which can cause physiological changes
in the human body. While existing literature sug-
gests that speech production process is affected by
physiological changes in individuals, the effect of such
physiological changes on the actual speech parameters
needs thorough investigation (Trouvain, Truong,
2015). The work presented in this paper is directed
towards the estimation of heart rate from features ex-
tracted from speech signals using machine learning.
While there is sufficient evidence from published lit-
erature linking physiological and emotional conditions
to speech production, research on the actual estimation
of physiological parameters accurately using speech is
still at a nascent stage. If the prediction is indeed
accurate, it would substantiate clinical findings that
there exists a correlation between physiological condi-
tion and speech characteristics of individuals and pave
the way for non-invasive and non-contact based, re-
mote medical monitoring. It should be noted however
that such speech based medical monitoring shall com-
plement existing medical devices rather than replace
them.

The topic of this research has the potential for rapid
development leading to a plethora of application sce-
narios, if estimation accuracy is improved. The results
presented in this article will have valuable impact and
can lead to interdisciplinary research involving elec-
tronics, signal processing and medicine. By being able
to measure vital parameters of the human body with-
out complex and expensive medical equipment, it will
simplify the cost of medical diagnosis and treatment.
Furthermore, it can make it possible for medical prac-
titioners and professional sport trainers to monitor pa-
tients/athletes from remote location by collecting their
speech samples over the telephone or internet.

2. Speech as a biomedical signal

2.1. Related work

The existence of relationship between human
speech and physiological parameters is evident from
published literature. In (Schuller et al., 2013), mea-
surement of heart rate and skin conductance as well
as classification of pulse rate as ‘high’ or ‘low’ has
been done using audio recordings of breath and sus-
tained vowel sounds with nominal accuracy. Extrac-
tion of electrocardiogram (ECG) features from two di-
mensional spectrum of vowel speech is demonstrated in
(Skopin, Baglikov, 2009; Mesleh et al., 2012)
in which the vowel sound ‘i’ as in the word ‘email’ is
shown to yield better accuracy compared to the other
vowel sounds. Heart rate extraction using statistical
analysis of speech is presented in (Kaur, Kaur, 2014),

but there is no mention regarding the accuracy of the
technique. A data mining approach is used in (Sakai,
2015b) to establish a correlation between heart rate
and vocal frequency from which heart rate is estimated
using multiple speech recordings from only two users.
A comparison of different classifiers to detect emotions
based on Mel frequency cepstrum coefficients (MFCC)
is presented in (James, 2015). Blood pressure (BP)
detection from speech using support vector machine
(SVM) is suggested to be feasible in (Sakai, 2015a)
with high correlation between estimated and actually
measured values of BP. It is also shown in (Orlikoff,
Baken, 1989) that heartbeat has an influence on the
vocal fundamental frequency causing it to fluctuate.
In (Schuller et al., 2014), measurement of heart rate
and skin conductance from various speech features, us-
ing machine learning algorithms such as support vec-
tor regression (SVR), SVM, artificial neural networks
(ANN) as well as linear regression has been presented
with moderate accuracy and the authors conclude that
MFCC features are particularly relevant for the task
of measuring heart rate from speech.

Heart rate is affected by physical activity per-
formed by an individual and based on observation,
speech is affected when performing physical activity
such as exercise or sport. It has been shown in (Usman,
2017) that the accuracy of speaker recognition system
based on MFCC is reduced when speech is recorded
immediately after intense physical activity, suggest-
ing that speech features are altered. Heart rate va-
riation depends on the level of physical activity as well
as the fitness of the individual, in addition to other
factors (James, 2015). Furthermore, the physiological
response to activity depends on the intensity, dura-
tion and regularity of performing the activity (Burton
et al., 2004). These strongly suggest that there exists
some correlation between speech and heart rate which
provides a basis and motivation for conducting this
research. Accurate prediction of heart rate and other
physiological parameters based on speech signals has
the potential to revolutionize medical care by monitor-
ing patients remotely and provide timely medical in-
tervention. With the advent of telemedicine and wide
availability of portable medical devices, this could be
a game changer as the ubiquitous and humble smart-
phone can extend its functionality as a medical device,
without the need to incorporate additional sensors.

Non-contact based measurement of physiological
parameters such as heart rate, heart rate variability,
respiratory rate and blood volume pulse, by applying
independent component analysis (ICA) to facial im-
ages and video has been proposed in (Poh et al., 2011).
Extraction of heart rate, heart rate variability, blood
oxygen saturation and breathing rate using video of
finger tip has been presented in (Scully et al., 2012).
While there is significant evidence from literature sug-
gesting the existence of correlation between speech and
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certain physiological parameters, the focus of this work
is to measure heart rate from speech and compare it
with actual heart rate measured concurrently at the
time of recording speech using a conventional medical
device.

3. Materials and methods

3.1. Speech samples and heart rate measurement

Speech recordings have been made for 42 individ-
uals, all male, in the age group of 20–45 years using
a Logitech H540 headphone set, which is equipped
with a noise-cancelling microphone to minimize back-
ground noise, in a quiet office environment. The sen-
tence uttered is ‘A quick brown fox jumped over
the lazy dogs’ which is chosen in order to capture the
sounds of all letters in the English alphabet. The du-
ration of each audio recording is 5 seconds stereo for-
mat and sampling rate is fs = 16 000 samples per sec-
ond, which is a standard value used in speech process-
ing since it corresponds to wideband (8 kHz) represen-
tation of speech that faithfully restores all frequency
components of the speech signal (Usman et al., 2018).
As most of the salient features of speech lie within
the 8 kHz bandwidth, increasing the sampling rate be-
yond 16 000 samples per second leads to a point of di-
minishing returns while increasing the length of data
leading to increased computational complexity. Lower
sampling rate can cause aliasing effect of some high fre-
quency components and hence 16 000 samples per sec-
ond is considered a reasonable choice to avoid aliasing
effects as well as avoiding unnecessary increase in com-
plexity. Higher sampling rate is required for non-speech
sounds such as breathing sounds, cough sounds etc.
The focus of this article is on speech sounds and there-
fore 16 000 samples per second is an appropriate sam-
pling rate. The recordings are stored on a PC as un-
compressed WAV file format that uses a quantization
depth of 16 bits per sample (Kabal, 2017) resulting
in audio bit rate of 256 kbps. Heart rate measurements
of each individual are taken using a pulse oximeter
(CONTEC Model No. CMS50DL) concurrently dur-
ing the speech recording. These measurements are used
for comparison with the predicted heart rate values to
obtain the accuracy of the machine learning methods
used to predict heart rate from speech. A pulse oxime-
ter is a medical device that is attached to the finger
tip to measure pulse rate and blood oxygen satura-
tion. “Pulse rate is exactly equal to the heart rate as
the contraction of the heart leads to a noticeable pulse”
(MacGill, 2017).

3.2. Speech pre-processing

The speech recordings are preprocessed to remove
any unwanted components as well as silence inter-

vals in speech that may have been introduced dur-
ing the recording process. PC audio cards introduce
a small DC offset (Partila et al., 2012) that is re-
moved using a DC removal filter which is a first or-
der infinite impulse response (IIR) filter. Silence in-
tervals in the recorded sentence, which do not con-
tain voice activity are removed using a voice activity
detection (VAD) algorithm (Tan, Lindberg, 2010).
The VAD algorithm identifies speech frames contain-
ing voice activity by assigning higher frame rate to
consonant sounds, lower frame rate to vowel sounds
and no frames to silence intervals. The effect of noise
is also mitigated by the VAD algorithm using a poste-
riori signal to noise ratio (SNR) weighting to empha-
size reliable segments of speech even under low SNR.
The identified frames are then concatenated together
resulting in uttered sentence without silence intervals
and improved SNR.

3.3. Feature extraction

Feature extraction is a term derived from the disci-
pline of pattern recognition and refers to characteriz-
ing a signal in a manner that allows some algorithm to
recognize a pattern (Wolf, 1980). We extend this def-
inition to “characterize a signal that allows some algo-
rithm to recognize a pattern or some ‘intrinsic’ param-
eter associated with that pattern”. We conjecture that
such an intrinsic parameter obtained from patterns in
speech features to be a representation of a physiological
parameter such as heart rate of the individual who ut-
tered that speech. This is based on the fact that speech
production process involves movement of air from the
lungs and through the vocal tract. As lungs interact
with heart for oxygenation of blood, it is suggested in
(Reilly, Moore, 2003) that cardiovascular responses
are affected by cognitive activity such as reading, which
involves speech production. As breathing is utilized for
speech production, the inhalation and exhalation rates
are governed by the speech production mechanism,
thus altering the breathing pattern during speech pro-
duction (Von Euler, 1982). Heart rate variability due
to changes in respiratory pattern, termed as respira-
tory sinus arrhythmia (RSA) is discussed in (Yasuma,
Hayano, 2004). These strongly suggest that speech
signals contain information about heart rate and per-
haps other physiological parameters which may be de-
termined by extracting appropriate speech features
and processing those features using machine learning
algorithms. Results presented in this article indeed val-
idate this idea as heart rate values are obtained from
speech features with a high degree of accuracy. A va-
riety of speech feature extraction techniques are avail-
able in the literature for various speech processing ap-
plications such as speech recognition, speaker recogni-
tion, speech enhancement etc. Some of the well-known
techniques are linear prediction coefficients (LPC), lin-
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ear prediction cepstral coefficients (LPCC), Mel fre-
quency cepstral coefficients (MFCC), perceptual linear
prediction (PLP), feature extraction based on princi-
pal component analysis (PCA) and wavelets (Magre
et al., 2013).

LPC, which represents speech parameters by an
all pole filter using auto-regressive modeling and
LPCC, which are cepstral coefficients computed from
a smoothed auto-regressive power spectrum were
widely used in automatic speech recognition until the
introduction of MFCC (Huang et al., 2001). Since
the introduction of MFCC’s in 1980, it has been
widely used in several speech processing applications
and considered to be the most popular feature ex-
traction method. Discriminating features in speech are
better represented in spectral domain and temporal
variation of spectral components also have a signifi-
cant effect in characterizing speech. MFCC captures
the spectral domain details along with their tempo-
ral variations elegantly with a low dimensional fea-
ture vector. A detailed discussion of MFCC is avail-
able in (Davis, Mermelstein, 1980). PLP is a spec-
tral warping technique used to model and obtain an
estimate of human auditory spectrum (Hynek Her-
mansky, 1990) and is more suited for speech recog-
nition application. PCA is used to reduce the dimen-
sionality of feature vectors by transforming the fea-
ture vectors to lower dimension (Huang et al., 2001).
Wavelets have also been proposed in the literature
to obtain a modified version of MFCC in which the
discrete wavelet transform (DWT) is applied instead
of discrete cosine transform (DCT) in the MFCC
computation process, resulting in what is termed as
Mel frequency discrete wavelet coefficients (MFDWC)
(Tufekci, Gowdy, 2000). DWT has the advantage of
providing better time-frequency resolution but there
is not enough evidence from literature to purport
a broad range of applications for DWT based speech
features. Relative spectra (RASTA) is a technique
which focuses on mitigating channel effects to im-
prove speaker recognition systems. It is suggested that
RASTA makes short term spectrum based techniques
such as PLP more robust to linear spectral distortions
(Hermansky, Morgan, 1994). In this work, MFCC’s
have been used as features applied to machine learn-
ing algorithms in order to estimate heart rate from
speech signals. MFCC features have been chosen due
to their ability to capture spectral details along with
their temporal variations. Some existing results in liter-
ature to estimate heart rate from speech are also based
on MFCC.

3.4. MFCC computation

Implementation of MFCC computation is avail-
able in (Davis, Mermelstein, 1980). The specifics
of MFCC computation in the context of this work

are described here for the sake of completeness. The
preprocessed speech signal in which silence intervals
are removed is framed using a Hamming window ha-
ving length 256 samples with a 50% overlap with ad-
jacent windows. At sampling rate of fs = 16 000 sam-
ples per second, this corresponds to each frame hav-
ing a length of 16 ms which is within the stationary
duration of 20–25 ms for speech signals and overlap
duration of 8 ms. Each frame ‘i’ is denoted as xi(n),
where n = 1,2, ...,256. An N -point Fast Fourier Trans-
form (FFT) is computed with N = 256 for each 16 ms
speech frame to obtain the spectrum of that segment.
The combined process of windowing and FFT is rep-
resented as

Xi(k) =
N

∑
n=1

xi(n)h(n) exp(−j2πkn
K

)

for k = 1, ...,K,

(1)

over the entire range of i, i.e. the total number of fra-
mes, k denotes the discrete Fourier transform (DFT)
coefficients computed using FFT and K = 256. The
energy spectral estimate of each frame is then compu-
ted as

Ei(k) = ∣Xi(k)∣2 for all i. (2)

Energy spectral estimate is used rather than power
spectral estimate as the length of each speech recording
is short (less than 5 seconds) and the frame duration
of 16 ms is not considered infinitesimally small relative
to the length of each recording. The power spectral es-
timate is used when the signal duration is long enough
to be considered infinite relative to the frame duration
over which power is computed (Oppenheim, Vergh-
ese, 2015). Mel filterbank comprising of 20 triangular
filters with 50% overlap between adjacent filters is then
applied to each frame. Since the sampling rate is 16 000
samples per second, the frequency range for each frame
extends from zero Hz to 8000 Hz. The corresponding
minimum and maximum Mel frequencies are zero Mels
and 2834.99 Mels respectively obtained using (Lyons,
2012)

Mel(f) = 1125 ln(1 + f

700
). (3)

To generate a filterbank with 20 filters, 20 linearly
spaced points are generated between zero and 2834.99.
The resulting Mel frequencies are Mel(f) = {0,135,
270,405,540,675,810,945,1080,1215,1350,1485,1620,
1755, 1890, 2025, 2160, 2295, 2430, 2565, 2700, 2835}.
The first Mel window extends from zero to 270 Mels,
the second Mel window from 135 to 405 Mels and so
on. The conversion from ‘Mels’ to ‘Hz’ is performed
using

f = 700 exp{(Mel(f)
1125

) − 1}, (4)

resulting in f = {0,89.2,189.9,303.3,431.3,575.5,738.1,
921.5, 1128.2, 1361.3, 1624.1, 1920.4, 2254.5, 2631.2,
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3055.9, 3534.7, 4074.6, 4683.4, 5369.8, 6143.6, 7016.2,
7999.9}. It should be noted that Mel frequencies are
linearly spaced and the corresponding frequencies in
Hz are logarithmically spaced. These logarithmically
spaced frequencies are mapped to their nearest FFT
bins as follows (Lyons, 2012)

FFTbins = ⌊(N + 1) × f/fs⌋ , (5)

where ⌊.⌋ is the floor operator, N is the number of
FFT points used, and fs is the sampling rate. For these
chosen values, the FFT bin corresponding to 8000 Hz
is bin 128. The sequence of Mel warped FFT bins
is FFTbins = {0,1,3,4,6,9,11,14,18,21,26,30,36,42,
49,56,65,75,86,98,112,128}.

Thus, 20 Mel filter windows are produced each ha-
ving a length of 256, which is chosen to be the same as
the number of FFT points computed for each frame.
Each of the 20 Mel filters is multiplied with the en-
ergy spectrum Ei(k) and the coefficients are added to
obtain the energy within each band. For each 16 ms
speech frame, this results in a vector of length 20
where each element represents the signal energy within
a Mel filter band. The log-energy is computed by tak-
ing the logarithm of the 20 filter-bank energies. The
log filter-bank energies so obtained have a high degree
of correlation due to overlapping filters in the filter-
bank.

A decorrelation transform is applied to decorre-
late the Mel-spectral vector. Discrete cosine trans-
form (DCT) is shown to be a near optimal decorre-
lation transform for log spectra of speech (Merhav,
Lee, 1993; Logan, 2000). DCT is therefore applied
to the 20 log filter-bank energies resulting in 20 coef-
ficients for each 16 ms speech frame which are called
the Mel Frequency Cepstral Coefficients. MFCC’s are
computed for all the frames that comprise the pre-
processed speech signal resulting in a matrix of size
20× I, where I is the total number of frames. This
matrix of MFCC coefficients is analyzed using machine
learning algorithms to estimate the heart rate of indi-
viduals from their speech signals and also to classify
heart rate as ‘normal’ or ‘abnormal’.

3.5. Predictive analytics for heart rate estimation

In this study, we have utilized the Microsoft
Azure Machine Learning Studio (MAMLS) cloud
platform which is accessible through a web interface.
MAMLS allows for high volume secure data storage
and transmission, computational analytics and remote
visualization. Machine learning algorithms available in
MAMLS have been tuned and configured for maximiz-
ing resting heart rate (HR) regression and classification
accuracy. Machine learning techniques learn the statis-
tical relationship between input data (e.g. MFCC co-

efficients extracted from speech signals) and output
data (e.g. HR) by fitting a flexible model to the data.
The model hyper-parameters are optimally parameter-
ized to minimize the regression/classification error in
an independent test dataset, thereby allowing for cre-
ating a generalized model that can perform well not
only on the training dataset, which would give rise
to an over fitted solution but also on test dataset.
For comparative analysis, six state-of-the art machine
learning algorithms available in MAMLS, have been
considered for regression (numerical estimation of HR
of the individual) and binary classification analysis.
Here, we have briefly summarized them for brevity.
Linear Regression (LiR) is a very common statistical
method utilized in machine learning for fitting a line
to the input features and measuring the error. LiR
tends to work well on high dimensional data sets that
lack complexity (Kutner et al., 2004). Boosted De-
cision Tree (BDT) is classed as an ensemble learn-
ing technique, in which consecutive tree corrects for
the errors of the previous tree thereby minimizing
classification error. Class and value predictions are
based on the entire ensemble of trees (Bühlmann,
Yu, 2003). Decision Forest (DF) is another ensem-
ble learning technique, in which each generated tree
votes for the most popular class (Criminisi et al.,
2011).

Neural Networks (NN’s) are a set of interconnected
layers. A typical NN, comprises of neurons in the
three layers. The input feature set forms the first layer
and is linked to the output layer via several intercon-
nected hidden layers in the middle of the network. Each
neuron is responsible for processing the input variables
and passes the computed values to the neuron in the
subsequent layer (Zhang et al., 1998). Logistic Regres-
sion (LoR) is another statistical technique for analyz-
ing data in which there are one or more independent
variables that determine an outcome. The outcome
is normally measured with a dichotomous variable
(i.e. having only two possible outcomes) (Dreiseitl,
Ohno-Machado, 2002).

Support Vector Machines (SVM) work on the basic
principle of recognizing patterns in a multi-dimensional
hyper-plane and estimating a maximum margin be-
tween samples of the binary classes in a multi-dimen-
sional input feature space (Nasrabadi, 2007). All
of the algorithms mentioned above, have been suc-
cessfully used in various application domains due to
their relatively fast training, excellent performance
and their robustness to over fitting. The performance
of the various proposed regression and binary classifi-
cation models are evaluated based on the metrics listed
in Table 1. Depending on the task, the listed evaluation
metrics (Roychowdhury, Bihis, 2016) for regression
or binary classification are used.
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Table 1. List of performance evaluation metrics.

Evaluation metric Definition
Regression analysis

Mean absolute error MAE =
1

nT

nT

∑
i=1

∣pi − ai∣

Root mean square error RMSE =

√
1

nT

nT

∑
i=1

(pi − ai)
2

Relative absolute error RAE =

nT

∑
i=1

∣pi − ai∣

nT

∑
i=1

∣ai − ai∣

Relative square error RSE =

nT

∑
i=1

(pi − ai)
2

nT

∑
i=1

(ai − ai)
2

Co-efficient of determination CoD(R2
) = 1 −

nT

∑
i=1

(ai − pi)
2

(ai − ai)
2

Binary classification

Precision (PRE) PRE =
tp

tp + fp

Recall (REC) REC =
tp

tp + fn

Accuracy (ACC) ACC =
tp + tn

tp + tn + fp + fn

F1-score F1 = 2 ⋅
PRE ⋅REC
PRE +REC

Area under RoC curve (AUC) AUC =

1

∫
0

RoC

Notations: n – total number of samples in the dataset, nt – number of samples in the training dataset,
nt – number of samples in the test dataset, nk – number of classes for binary classification, tp – total
number of true positive samples, tn – total number of true negative samples, fp – total number of false
positive samples, fn – total number of false negative samples, a –actual value, a – mean of actual values,
p – predicted value, RoC – receiver operating characteristic curve.

4. Results and discussion

4.1. Data preprocessing

The raw dataset comprised of measured HR of 42
individuals and their corresponding MFCC frames. For
each individual, we have a matrix of size 20 rows (coef-
ficients in each frame) × 385 columns (frames) resulting
in n = 323, 400 coefficients for all the 42 individuals. It
is understood that the HR of the individual remains
unchanged during short time intervals, such as the du-
ration of the speech segments in our dataset. Here,
we have utilized the measured HR–MFCC dataset
to develop a numeric HR prediction (regression) and
a binary-classification model using machine learning
statistical techniques.

Initially, feature ranking was performed to de-
termine which MFCC frames are statistically signif-
icant for regression-classification study. We utilized

the Filter Based Feature Selection (FBFS) module in
MAMLS to score all the 385 MFCC frames in our
dataset using Pearson’s correlation coefficient score
(Lin, 1989). Based on this score, it is found that more
than 95% of the MFCC frames are statistically signifi-
cant. Hence for our regression and classification study,
we utilized all the 385 MFCC frames.

The dataset was also checked for any missing values
in the extracted MFCC coefficients and was then nor-
malized using MinMax normalizer to scale the MFCC
coefficients in the range of [0,1] interval. Rows which
had missing MFCC coefficients were discarded and not
used in the analysis. Of the 42 × 20 = 840 rows of
MFCC coefficients, 60 rows were discarded due to miss-
ing MFCC coefficients. This results in a total of 780
rows of MFCC coefficients with their corresponding
HR values. A histogram of HR values corresponding
to each of these MFCC coefficients is shown in Fig. 1.
Normalization is achieved by shifting the values of each
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Fig. 1. Histogram of Heart Rate (HR) variable.

MFCC coefficient (denoted as x) so that the minimal
value is 0, and dividing by the new maximal coefficient
value, as follows:

Normalized value = x −min(x)
[max(x) −min(x)] . (6)

Fig. 2. Schematic representation of HR prediction.

Fig. 3. HR regression using BDT algorithm.

Since the dataset has more MFCC frames than in-
dividuals samples, in this study, we have subjected the
data to (nT = 80%/nt = 20%) split to ensure more
samples are available for training and learning.

4.2. Regression analysis

The goal of this study is to apply regression ma-
chine learning algorithms mentioned in Subsec. 3.5,
on the aforementioned dataset for predicting the HR
of the individual from the MFCC coefficients extracted
from speech signals. The schematic for the processing
done post feature extraction is depicted in Fig. 2.

We trained two models using the optimally param-
eterized four regression algorithms, one without the
predefined class data and the second with the prede-
fined class data. It was observed that the HR prediction
accuracy of the trained model with the inclusion of
predefined class data is significantly higher for all the
ML regression algorithms. The estimated heart rate
obtained with and without HR class information along
with the actual measured HR is shown in Figs 3–6 for
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Fig. 4. HR regression using NN.

Fig. 5. HR regression using LiR algorithm.

Fig. 6. HR regression using DF algorithm.

BDT, NN, LiR and DF algorithms respectively. The
measured HR of the 42 individuals was divided into 5
classes as shown in Table 2.

All of the regression algorithms were optimally pa-
rameterized to achieve the best performance (the one
with the lowest RMSE and highest R2 values). For

each of the aforementioned regression algorithms, the
mean of the five evaluation metrics were computed af-
ter 10-fold cross validation, which are shown in Ta-
ble 3, in which the standard deviation between folds
for each of the performance metrics are listed inside
round brackets. However, the coefficient of determina-
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Table 2. Heart rate classes for regression analysis.

Pre-defined class HR [bpm]
C0 50–60
C1 60–70
C2 70–80
C3 80–90
C4 90–100
C5 > 100

Table 3. Performance metrics after 10-fold cross validation.

Regression
algorithms

Optimal parameterization
Performance metrics Mean (standard deviation)

MAE RMSE RAE RSE CoD (R2)

LiR Solver – ordinary least square
L2 regularization weight – 0.001

4.412
(0.452)

6.661
(1.283)

0.463
(0.049)

0.311
(0.141)

0.688
(0.141)

BDT
Number of leaves – 20
Learning rate – 0.09
No. of trees – 100

2.224
(0.064)

2.952
(0.123)

0.235
(0.030)

0.060
(0.013)

0.939
(0.013)

DF
Random split count – 128
Maximum depth – 32
No. of decision trees – 8

4.572
(0.399)

6.443
(0.761)

0.480
(0.038)

0.281
(0.046)

0.718
(0.046)

NN Learning rate – 0.001
No. of hidden nodes – 257

3.542
(0.438)

4.661
(1.029)

0.373
(0.059)

0.159
(0.101)

0.840
(0.101)

tion (R2) metric is widely used for exemplifying the
predictive power of the regression model as a value be-
tween 0 and 1, with 1 being a perfect fit.

We plot in Fig. 7 the four regression models as
a function of CoD (plotted as %) to predict the HR
from the speech MFCC coefficient dataset. It is ob-
served from Fig. 8 that the best performance (RMSE
= 2.95, CoD = 0.94) is achieved for BDT algorithm.
The 4 trained models were also compared on a test
dataset consisting of 20 measured heart rate samples
to predict the HR from the test data MFCC frames.
A comparison of estimated HR values obtained used
BDT, NN, LiR, and DF algorithms with actual mea-
sured HR values is shown in Fig. 8.

Fig. 8. Comparison of the measured (actual) and the predicted HR from the 4 trained models using BDT, NN,
and DF regression algorithms on 20 test samples.

Fig. 7. Comparison of CoD [%] of different regression algo-
rithms on HR estimation.
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Fig. 9. Schematic representation of HR prediction.

4.3. Binary classification analysis

As shown in Fig. 9, for binary classification study,
the measured resting HR of the 42 individuals in the
dataset was divided into two binary classes namely:
Class 1 for Normal (i.e. 60–100 bpm) and anything be-
low 60 bpm and higher than 100 bpm was classed as
Class 0 for Abnormal (Laskowski, 2018). The pre-
processed HR-MFCC dataset utilized for regression
was also applied to each of the aforementioned binary
classification algorithms, we then compute the perfor-
mance evaluation metrics i.e. PRE , REC , ACC , F1-
score and the computed area under the curve (AUC)
from the receiver operating characteristic curve (RoC)
plot after 10-fold cross validation.

Optimal parameterization of each algorithm was
performed to achieve the best classification perfor-
mance (i.e. highest ACC , F1-score) on the test dataset.
The best accuracy (ACC = 100%) and F1-score = 1
was again achieved using the BDT binary classification
algorithm as observed in Table 4. Finally, we tested

Table 4. Performance metrics computed for binary classification.

Classification
algorithms

Optimal parameterization
Performance metrics Mean value (standard deviation)
ACC PRE REC F1-score AUC

DF
Random split count – 128
Maximum depth – 32
Number of decision trees – 8

0.891
(0.033)

0.898
(0.038)

0.973
(0.021)

0.934
(0.021)

0.92
(0.082)

NN Learning rate – 0.001
Number of hidden nodes – 257

0.837
(0.057)

0.895
(0.049)

0.959
(0.025)

0.926
(0.02)

0.916
(0.079)

SVM Lambda – 0.001
0.789
(0.072)

0.8091
(0.068)

0.962
(0.026)

0.877
(0.047)

0.812
(0.102)

LoR
Optimization tolerance – 1e–07
L1 regularization weight – 1
Memory size for L-BFGS – 20

0.839
(0.057)

0.831
(0.061)

1
(0)

0.907
(0.037)

0.881
(0.087)

BDT
Number of leaves – 20
Learning rate – 0.09
Number of trees – 100

1
(0)

1
(0)

1
(0)

1
(0)

1
(0)

the models trained using the binary classification al-
gorithms on a test dataset of 20 samples. It can be
observed from Table 5 that the BDT trained model is
able to accurately classify all the 20 test samples.

5. Conclusions

Speech signals contain intrinsic information
regarding physiological, psychological as well as
emotional conditions of the speaker. Accurate mea-
surement of physiological parameters using speech
signals can facilitate remote monitoring of patients
and early diagnosis of medical conditions. The focus
of this work is on estimating heart rate, which is
a vital sign of individuals, from speech signals of
the individuals. Heart rate estimation with high
accuracy is achieved using speech spectral domain
features (MFCC) as input to machine learning
algorithms such as LiR, BDT, DF, and NN. HR
estimation accuracy is highest for BDT algorithm. In
addition to estimating the heart rate, a binary clas-
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Table 5. Performance OF binary classification algorithms.

Test sample Measured HR [bpm] Actual class
Predicted class

BDT DF NN LoR SVM
1 82.9 1 1 1 1 1 1
2 93.8 1 1 1 1 1 1
3 78.8 1 1 1 1 1 1
4 91 1 1 1 1 1 1
5 76.6 1 1 1 1 1 1
6 108.1 0 0 1 1 1 1
7 78.8 1 1 1 1 1 1
8 115.4 0 0 0 1 0 1
9 115.4 0 0 0 1 0 1
10 88.9 1 1 1 1 1 1
11 82.1 1 1 1 1 1 1
12 91 1 1 1 1 1 1
13 89.9 1 1 1 1 1 1
14 76 1 1 1 1 1 1
15 103.8 0 0 0 1 1 1
16 89.6 1 1 1 1 1 1
17 78.8 1 1 1 1 1 1
18 94.8 1 1 1 1 1 1
19 91 1 1 1 1 1 1
20 76 1 1 1 1 1 1

sification scheme is also implemented to classify an in-
dividual’s heart rate as ‘normal’ or ‘abnormal’. Five
techniques, BDT, DF, NN, LoR, and SVM, have been
evaluated to address the classification problem. High
accuracy is achieved for all the five techniques with DF
having an accuracy close to 90% and BDT achieving
100% classification accuracy. Due to the unbalanced
nature of the dataset used in this work, F1 score is
a more indicative performance metric. Based on F1-
score as well, BDT algorithm has the best classifica-
tion performance followed by DF algorithm. Such high
accuracies have been obtained by labeling the samples
with predefined class information.

The proposed method has the following advan-
tages over other methods available in the literature.
In (Schuller et al., 2013), classification accuracy of
82.7% and minimum MAE for HR estimation equal to
8.1 is reported. In comparison, the classification accu-
racy in this work is 100% using BDT algorithm and
MAE is less than 5 for all the four algorithms used.
While an accuracy greater than 95% is reported in
(Mesleh et al., 2012), it is restricted to only vowel
sounds having a duration of at least 6 seconds and in-
volves a lengthy procedure for each measurement. In
contrast, the results in this work are not restricted to
vowel sounds and once the AI algorithms are trained,
the testing phase is relatively simple in terms of imple-
mentation complexity. It is indicated in (Kaur, Kaur,

2014), that accuracy of HR estimation from speech
depends on various factors without actually quanti-
fying it. Furthermore, voice recordings of 60 s dura-
tion are used as compared to less than 5 s segments
in this work. The work in (Sakai, 2015b) is based on
speech signals from only two individuals and the ac-
curacy achieved is not specified. The classification of
emotions based on speech MFCC features, reported
in (James, 2015) exhibits large variation in accuracy
across individuals. Compared to results available in lit-
erature, our results indicate better accuracy with fewer
constraints. A limitation of this work is the small sam-
ple size (42) and lack of female speech samples which
will be addressed going forward. It is intended to col-
lect data from more individuals representing a much
broader segment of the population which would fur-
ther generalize the findings reported in this article.

Future work aims to achieve high accuracy without
predefined class labeling and to detect atrial fibrillation
for early detection of stroke. Measuring other physio-
logical parameters such as blood pressure as well as
monitoring of psychological and emotional conditions
based on speech signals shall also be investigated in
future. It is also intended to investigate the feasibil-
ity of using novel speech features, instead of MFCC’s
to measure physiological parameters from speech. The
use of deep learning on raw speech signals rather than
features extracted from speech signals shall also be in-
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vestigated in future. The effect of varying the acoustic
devices used for recording as well as varying the param-
eters of the recording devices is also a part of future
work. Developing and training algorithms which are
agnostic to the recording device will make the appli-
cation of this work more useful and involves collecting
data from individuals using multiple acoustic devices.
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