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The evaluation of complex radiation impedance for a square piston source on an infinite circular-
cylindrical baffle is associated to the Greenspon-Sherman formulation for which novel evaluation methods
are proposed. Unlike existing methods results are produced in a very wide range of frequencies and source
semi-angles with controllable precision. For this reason closed-form expressions are used to describe the
truncation errors of all integrals and infinite sums involved. Impedance values of increased accuracy are
also provided in tabulated form for engineering use and a new radiation mass-load model is derived for
low-frequencies.
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1. Introduction

The notion of the piston source is fundamental
in theoretical Acoustics both in free- and enclosed-
space wave propagation. Pressure field and self- or mu-
tual acoustic impedance for piston sources mounted
on planar, spherical, cylindrical and spheroidal baffles,
play a key-role in textbooks although the realisation
of a source vibrating with a uniform velocity profile is
not feasible at high frequencies. For rectangular piston
sources mounted on infinite planar baffles, several re-
search papers have addressed the evaluation of acoustic
impedance with quite different results in terms of preci-
sion and (frequency) range of applicability (Swenson,
Johnson, 1952; Arase, 1964; Stepanishen, 1977;
Levine, 1983; Bank, Wright, 1990; Lee, Seo, 1996;
Mellow, Kärkkäinen, 2016). In addition, tabulated
impedance values provided by Burnett and Soroka
(1972) have become available.

For a cylindrical baffle of radius a (in m), with
geometry similar to that of Fig. 1, self- and mutual-
radiation impedances have been investigated and their
mathematical framework has been established by
Greenspon and Sherman (1964). In this framework
the evaluation of radiation load is based on a set of
three integrals for which no analytic solutions have
yet been given. However for this formulation only
one numerical evaluation scheme has been proposed

Fig. 1. A rigid square source is mounted on the surface
of an infinite cylindrical baffle. It has an angular span 2ϕo,
a vertical side 2zo (zo = aϕo) and is located at z = 0, ϕo = 0,
r = a. ϕo is usually called the source’s semi-angle. It is

vibrating with a uniform normal vibration velocity.

by Kim et al. (2004), with limited frequency range,
source dimensions and accuracy. There has not been
any other contribution of extended frequency range
and/or source dimensions.

In the next sections, the original Greenspon-
Sherman integrals are briefly presented and novel nu-
merical evaluation methods are described in detail for
a wide range of conventional (dimensionless) frequency
values ka (where k stands for the usual wavenum-
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ber, in m−1) and source semi-angles ϕo (in rad). For
practical reasons normalised frequency variable k

√
S

(where S stands for the source’s emitting area) is
adopted. However when the use of frequency ka sim-
plifies expressions it is preferred. Frequency variables
and source semi-angle are related as follows:

k
√
S = 2kaϕo. (1)

For the first time to our knowledge, results of signif-
icant precision are derived for frequencies in the range
k
√
Sε [0.001, 100] and source semi-angles ϕoε [1, 30] de-

grees. For the lowest value of source semi-angle ϕo = 1○,
this range leads to conventional normalised frequency
values as high as ka = 2865. For convenience these re-
sults have been tabulated (see Supplement at the end
of article). They are also compared to the radiation
impedance values of square piston sources on infinite
planar baffles so that further verification and useful
conclusions be obtained. In addition the low frequency
behaviour of radiation reactance values is associated to
the widely used mass-load equivalent for which a new
approximation model is produced for practical use.

2. The Greenspon-Sherman formulation

Radiation load Zmr is a mechanical impedance
quantity expressed in mechanical ohms (N ⋅ s ⋅m−1).
For convenience it is normalised against the medium’s
characteristic impedance ρcS, where ρ is the me-
dium’s density and c the propagation speed:

nZmr (k
√
S,ϕo) =

Zmr
ρcS

= nRmr−inXmr, (2)

where nRmr stands for the normalised radiation re-
sistance and nXmr for reactance. Imaginary unit i is
defined as i2 = −1.

In their original paper, Greenspon and Sherman
presented a formulation for mutual impedance be-
tween rectangular pistons on the cylinder’s surface
that simplifies further in the case of self-radiation
impedance. In this framework the equation of (nor-
malised) impedance was broken down to a set of three
infinite series of integrals; the first one of them de-
termining the radiation resistance and the other two
combining to give reactance. Kim et al. (2004) elabo-
rated on this set of equations and added the necessary
notation which is adopted in this work as much as pos-
sible. After some arrangements of parameters k

√
S, ka

and ϕo and narrowing the analysis to square sources
(zo = aϕo) the normalised resistance is written as an in-
finite sum whose terms contain definite integrals Imsre:

nRmr (k
√
S,ϕo) =

32ϕ2
0

π3
Isre (k

√
S,ϕo) ,

Isre =
∞

∑
m=0

sinc2 (mϕo)
εm

Imsre (m,k
√
S,ϕo) ,

(3)

where sinc(x) stands for the usual sin(x)/x function
and εm is 2 for m = 0 and 1 for any other m. Integrals
Imsre are defined as follows:

Imsre =
1

∫
0

sinc2 ( 1
2
k
√
S

√
1 − t2)

t
√

1 − t2Dm(ka t)
dt, (4)

where Dm(z) is an expression of Bessel functions of
the first (Jm) and the second kind (Ym):

Dm(z)=(Jm−1(z) − Jm+1(z))2+(Ym−1(z) − Ym+1(z))2
.

(5)
In a similar sense reactance is also written as an infinite
sum with terms which, this time, are proportional to
the difference of two distinct integrals:

nXmr (k
√
S,ϕo) = 8kaϕ2

0

π2
[Isiy (k

√
S,ϕo)

−Isix (k
√
S,ϕo)], (6)

Isiy =
∞

∑
m=0

sinc2 (mϕ0)
εm

Imsiy (m,k
√
S,ϕo),

Isix =
∞

∑
m=0

sinc2 (mϕo)
εm

Imsix (m,k
√
S,ϕo).

(7)

Imsiy are definite integrals while Imsix are improper:

Imsiy =
1

∫
0

Bm(ka t)
Dm(ka t)

sinc2 ( 1
2
k
√
S
√

1 − t2)
√

1 − t2
dt, (8)

Imsix =
∞

∫
0

sinc2 ( 1
2
k
√
S
√

1 + x2)
√

1 + x2

⋅ Km (kax)
Km−1 (kax) +Km+1 (kax)

dx, (9)

where Km stands for the modified Bessel function of
the second kind and Bm is defined as another expres-
sion of Bessel functions of the first and second kind:

Bm(z) = Jm(z) [Jm−1(z) − Jm+1(z)]

+Ym(z) [Ym−1(z) − Ym+1(z)] . (10)

In their integration method, Kim et al. (2004) pre-
sented results in the frequency range ka < 51 and for
source semi-angles ϕo < π/18. They regarded orders up
to m = 50 as sufficient for the sums of Eqs (3) and (7)
to converge. They also stopped integration of variable
x in Imsix at x = 15 for an acceptable truncation er-
ror to be introduced. In all three integrals they used
a variable integration step in order to handle integrand
variations in the ranges tε [0, 1) and xε [0, 15]. As a re-
sult the computation error was estimated to be 0.5%
for nRmr and 0.1% for nXmr. The contribution of the
singularity point t = 1 to definite integrals Imsre and
Imsiy was not considered. In both cases integration was
carried up to a t value of 0.9999.
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3. The case of Imsiy integrals

As already mentioned these are definite integrals in
the finite integration range tε [0, 1]. Their integrand
has an obvious singularity at t = 1 as per Eq. (8).
A change of integration variable (x =

√
1 − t2) leads

to a more convenient definition:

Imsiyb (m,ka,ϕo) = ka
1

∫
0

Fm (ka
√

1 − x2)

⋅ sinc2 (kaϕo x) dx, (11)

where
Fm(y) = Bm(y)

yDm(y)
. (12)

Using ordinary properties of Bessel functions like
Eq. (10.6.1) and their series expansions around y = 0,
like Eqs (10.7.3), (10.8.1) and (10.8.2) in NIST hand-
book of mathematical functions (Olver et al., 2010),
it can be shown that for all orders m above zero Fm(y)
tends to −1/(2m) as y tends to 0 (or x tends to 1) and
therefore is not singular. In the case of zero-eth order
Fo(y), for y tending to zero, we have a logarithmic
singularity:

lim
y→0

Fo(y) = lim
y→0

1

2
(ln(y

2
) + γ) = −∞, (13)

where γ = 0.57721566 stands for the Euler constant.
However, the major problem is that typical math

software fails to compute Bessel functions of the second
kind inside Fm, whenever the argument becomes much
smaller than the order. To overcome this we note that
for small argument values Fm(y) simplifies to:

Fig. 2. Plot of a family of Fm curves (absolute values) as a function of integration variable x. Frequency is
relatively high (ka = 100). Curves exhibit a peak which is close to x = 1 for low orders and moves towards x = 0
for higher orders m. When either frequency ka is below one or order m exceeds ka value, no peak is present.

At x = 1 all curves reach the −1/(2m) value.

lim
y→0

Fm(y) = lim
y→0

Ym(y)
2yY ′

m(y)
. (14)

Ratio Ym/Y ′
m can be evaluated with a controllable

precision for y <m and m ≠ 0, by Debye expansions as
per Eqs (10.19.3) and (10.19.4) in the NIST handbook.
Using the polynomials Uk and Vk mentioned in the
same reference, a computationally stable estimate for
Fm(y) can be obtained (m ≠ 0):

{Fm(y)}est = −
1

2m
u

3

∑
k=0

(−1)k Uk(u)
mk

3

∑
k=0

(−1)k Vk(u)
mk

,

u = 1
√

1 − ( y
m
)2
.

(15)

The error of this estimate-function drops as ar-
gument y decreases towards zero. For every order m
and desired error level a critical argument value ycr
can be found, below which the estimate-function can
safely be used for error-free computation. In this work
the maximum acceptable error level was set to 10−7

and critical argument values were computed for or-
ders m = 1 to m = 3155. With frequency k

√
S no big-

ger than 100 and ϕonot less than one degree, ka and
thence argument y, is not expected to exceed a value
of 3000. Debye expansion proved capable of providing
the required precision of 10−7 for y-argument values
up to 3000 (ycr = 3000) for all orders higher than 3155.
Figure 2 illustrates a family of several Fm curves as
a function of integration variable x.
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4. Imsiy integration schemes

4.1. Non-singular integrand orders (m ≠ 0)

The presence of sinc squared factor within the in-
tegrand function introduces a number of null points
(at k

√
S x/2 equal to integer multiples of π) depend-

ing on frequency k
√
S. This number will not exceed 15

and may well be zero at low frequencies (see Fig. 3).
To ensure a successful evaluation of Imsiy integrals, in-
tegration range is segmented around these null-points
(if any) and Romberg’s method is applied to each seg-
ment.

4.2. Singular integrand for m = 0

To overcome the singularity of the first factor of
integrand function, Fo(y), at x = 1 (y = 0), integration
is split into two parts:

Iosiy (ka,ϕo) =
1−∂x

∫
0

+
1

∫
1−∂x

= Iosiya + Iosiyb, (16)

where the first part can be numerically evaluated while
the second one can be addressed analytically. ∂x is
a small value which must roughly meet three condi-
tions:

• Simple investigation proves that argument y of
Fo will go down to a small value ∂y close to zero
for which we have ∂y = ka

√
2∂x. The value of ∂y

must allow for a successful evaluation of Fo by
typical math software:

Fo(y) =
− (Jo(y)J1(y) + Yo(y)Y1(y))

2y(J1(y)2 + Y1(y)2)
. (17)

It was found that for this purpose ∂y should not
be smaller than 10−20.

Fig. 3. Plot of absolute value of Imsiy Integrand of order m = 1 at a frequency of k
√

S = 100 and source
semi-angle ϕo = 1 degree, as a function of integration variable x. Null points due to sinc squared factor lead to

segmentation of the integration range for a successful application of Romberg’s method.

• On the other hand, ∂y must be small enough to
allow Fo(y) to be approximated by the expression
in Eq. (13), in the range 0 to ∂y with a high level
of precision. In order to have a worst-case relative
error of 10−6 at y = ∂y, the value of ∂y must not
exceed 5 ⋅ 10−4.

• Finally ∂x, being the span of the integration
range in Iosiyb, must be small enough to allow for
the swing of sinc squared factor to be modelled
by a simple first-order Taylor expansion or, even
better, be considered constant.

All conditions can be met by selecting ∂x to have
a fixed value of 10−14, leading to a variable value for
∂y: 1.41 ⋅ 10−10 at ka = 0.001 and 4.23 ⋅ 10−4 at ka =
3000. Sinc squared factor proves to remain practically
unchanged throughout this narrow integration range.
The analytic expression for Iosiyb becomes:

Iosiyb (ka,ϕo) = ka

2

1

∫
1−∂x

(ln(ka
√

1 − x2

2
) + γ)

⋅sinc2 (kaϕox) dx = ka
2

sinc2 (kaϕo)

⋅
1

∫
1−∂x

(ln(ka
√

1 − x2

2
) + γ) dx

= ka

2
sinc2 (kaϕo)

⎡⎢⎢⎢⎢⎣
(ln(ka

2
) + γ)∂x

+ 1

2
(2 ln(2) − (2 − ∂x) ln(2 − ∂x)

+∂x ln(∂x) − 2∂x)
⎤⎥⎥⎥⎥⎦
. (18)
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For the numerical evaluation of Iosiya, the segmen-
tation based on sinc squared null-points which was sug-
gested in Subsec. 4.1, is also adopted here along with
Romberg’s rule. However it must be taken into account
that convergence is significantly accelerated by the in-
troduction of additional break-points (and therefore
segments) very close to one. Three such points were
added close to the right-hand side of the integration
range: 1–10−3, 1–10−6, 1–10−10.

At all frequencies and source semi-angles Iosiyb va-
lues were found several orders of magnitude smaller
than the respective Iosiya values.

5. Isiy summation process

Before addressing the summation process in Isiy’s
definition in Eq. (7) useful conclusions can be pro-

a)

b)

Fig. 4. Graphs of absolute value of ∣Imsiy ∣ integrals as a function of orderm for source semi-angles ϕo = 30, 15, 5, and
1 degrees. Above their peak value the decay slope tends asymptotically to −10 dB/decade: a) frequency k

√

S = 20,
b) k
√

S = 0.001.

duced by close inspection of Imsiy (negative) values’ se-
quences. Figure 4 depicts the decaying nature of these
sequences both at low and high frequencies.

At high frequencies a peak is formed at an order
mp approximately equal to frequency parameter ka:

mp ≈ ⌈ka⌉ , (19)

where ⌈x⌉ is the usual function returning the smallest
integer greater than or equal to x. At frequencies close
to zero the ∣Imsiy ∣ sequences start to decay just above
their first order, i.e. mp = 1 (Fig. 4b).

A second aspect of ∣Imsiy ∣ values is that when plot-
ted with log-log axes, they form, above mp, a log-log
convex sequence. The slope of this sequence is more
negative than −10 dB/decade but tends to this value
asymptotically. As it is discussed in Appendix A,
∣Imsiy(m)∣ values will decay faster than a sequence
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proportional to 1/m passing through the point (mo,
∣Imsiy(mo)∣):

∀mo >mp, ∣Imsiy(m ≥mo)∣ ≤ ∣Imsiy(mo)∣ ⋅
mo

m
. (20)

Having the upper bound described in Eq. (20) al-
lows for the evaluation of the truncation error which
will be introduced whenever Isiy summation stops at
a specific order mo − 1:

∣
∞

∑
m=mo

Imsiy(m)sinc2(mϕo)∣

<
∞

∑
m=mo

∣Imsiy (mo)∣
mo

m

sin2(mϕo)
(mϕo)2

= ∣Imsiy (mo)∣
mo

ϕ2
o

∞

∑
m=mo

sin2 (mϕo)
m3

= ∣Imsiy (mo)∣
mo

ϕ2
o

[1

2
Li3 (1) − 1

4
Li3 (e2iϕo)

−1

4
Li3 (e−2iϕo) −

mo−1

∑
m=1

sin2 (mϕo)
m3

] , (21)

where Li3(z) stands for the trilogarithm function,
a special case of polylogarithm function:

Lik (z) =
∞

∑
m=1

zm

mk
.

To put everything together, Isiy may proceed un-
conditionally to sum all orders at least up to mp and
then exit whenever the ratio of the truncation error,
per Eq. (21), over the accumulated sum’s value, drops
below a preselected precision level. In this work this
first part of summation was set to include orders up to
70 ⋅mp.

6. Investigation of Imsix integrals

Integrand function of Imsix integrals, given in
Eq. (9), can be separated in two factors for further
analysis:

Ax (ka,ϕo,x) =
sinc2 ( 1

2
k
√
S
√

1 + x2)
√

1 + x2
,

Krm(y) = Km(y)
Km−1(y) +Km+1(y)

= − Km(y)
2K ′

m(y)
,

(22)

where y stands for k
√
Sx/(2ϕo) or ka x and K ′

m de-
notes first-order derivative with respect to argument y.

6.1. The K-function ratio Krm

Although Km is singular at y = 0, the respec-
tive ratio Krm is not. Using the limiting forms of

Eqs (10.30.2) and (10.31.2) in NIST handbook (Olver
et al., 2010) for very small argument, and typical prop-
erties of the modified Bessel functions per Watson
(1966, p. 79), it can be shown that as y tends to zero
Krm tends to y/(2m) for m > 0 and to −(y/2) ln(y/2)
for m = 0. That is, Krm tends to zero without being
singular. On the other hand, when the argument is
very large Krm tends to 1/2. In general, Km(y) has
a fast decay so usual mathematical software rounds
it to zero when its argument goes beyond a value of
700 approximately and thus reports an error for the
ratio Krm. At a frequency of ka = 100 this would hap-
pen even for relatively small values of integration vari-
able x. Hopefully Krm ratio can be evaluated under
some well-stated conditions by other means. For m = 0
Yang and Chu (2017, left-hand side of Corollary 3.3
with p = 1/4) have provided an upper bound function
which can also approximate it as follows:

{Kr0(y)}est =
Ko(y)
2K1(y)

≈ 1

2

y + 1
4

y + 3
4

. (23)

A direct comparison of values obtained by typical
math software to those given by Eq. (23) proves that
for the relative error to be always less than 10−5 we
must have y ≥ 21. For all other orders m the Debye
expansions per Eqs (10.41.4) and (10.41.6) described
in NIST handbook can be used, based on the same
polynomials Uk and Vk as in Eq. (15):

{Krm(y)}est =
1

2

( y
m
)

√
1 − ( y

m
)2

3

∑
k=0

(−1)k Uk(u)
mk

3

∑
k=0

(−1)k Vk(u)
mk

,

u = 1
√

1 − ( y
m
)2
.

(24)

Relative error of Eq. (24) is less than 10−7 for all
orders m ≥ 25. Table 1 provides the necessary details.

Table 1. Evaluation rules for Krm ratio.

Order Range and computation means

m = 0
y < 21, math software
y ≥ 21, Eq. (23)

1 ≤m < 9

y < 10−4, Eq. (24)
10−4 ≤ y < 40, math software

y ≥ 40, Eq. (24)

9 ≤m < 25

y < 0.10, Eq. (24)
0.10 ≤ y < 40, math software

y ≥ 40, Eq. (24)
m ≥ 25 all y, Eq. (24)

In short, for m = 0, Krm starts at y = 0 as −(y/2)
log(y/2) and then tends asymptotically to 1/2. For all
other orders m it starts as y/(2m) and then tends to
1/2 too.
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6.2. The Ax factor

This factor introduces oscillations to Imsix inte-
grand with null points nonlinearly spread in integra-
tion variable x. It will prove quite useful to know
the exact location of either the first fnp or the n-th
null point nnp of this factor and the integrand as
a whole:

fnp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
√
S< 2π ∶

¿
ÁÁÀ( 2π

k
√
S
)

2

−1,

k
√
S≥ 2π ∶

¿
ÁÁÁÁÁÁÁÀ

⎛
⎜⎜⎜⎜
⎝

⌈ 2π

k
√
S
⌉

2π

k
√
S

⎞
⎟⎟⎟⎟
⎠

2

−1,

(25)

nnp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
√
S< 2π ∶

¿
ÁÁÀ( 2nπ

k
√
S
)

2

−1,

k
√
S≥ 2π ∶

¿
ÁÁÁÁÁÁÁÀ

⎛
⎜⎜⎜⎜
⎝

⌈ 2π

k
√
S
⌉ + n−1

2π

k
√
S

⎞
⎟⎟⎟⎟
⎠

2

−1,

(26)

where n stands for the integer index of the required
n-th null point and ⌈z⌉ is the usual routine that
rounds its argument z to the least integer greater than
or equal to it.

Fig. 5. Graph of Imsix integrand function (solid line) for a frequency of k
√

S = 6, source semi-angle ϕo = 1 degree
and order m = 10. Dotted lines depict Kr ratio and Ax functions. First null point fnp of the latter is also shown for

reference.

7. Imsix integration scheme

Depending on the relative positions of the ‘corner’
point after which Krm ratio approaches its asymptotic
value and the first null point of Ax, integrand function
can take quite different shapes. An example is given
in Fig. 5. As in the case of Imsiy integrals Romberg’s
integration rule is adopted. Integration is adjusted to
pass through consecutive null points. In this way inte-
gration segments adapt to integrand characteristics as
frequency and order change.

A loop is used to process initially the first segment
up to the first null point [0, fnp] and then all seg-
ments at higher null points. For each loop instance the
remaining integral’s value i.e. the truncation error, is
compared to the accumulated Imsix value and when
the relative error drops below a pre-selected value the
loop stops and integration is concluded. At a point xo
of integration variable x, this remaining value of Imsix
integral is defined as follows:

{Imsix}remxo
=

∞

∫
xo

Ax (ka,ϕo, x) Krm (kax) dx. (27)

In order to have a safe estimate of this value, upper
bound functions are sought for integrand factors Ax
and Krm. For Ax the simple property

sin2(kaϕo
√

1 + x2) ≤ 1

is sufficient. For Krm any upper bound that has been
proposed in the literature can be used, provided it can
lead the integral defined in Eq. (9) to an analytical
expression. Such an upper bound for Krm, for m = 0,
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is Eq. (23) while for m ≠ 0 the work of Baricz et al.
(2011, Eq. (5)) can be utilized:

Krm(y) < 1

2

y√
m2 + y2

. (28)

As a result, the remaining Imsix value can be upper
bounded by the following integrals:

{Imsix}remxo
<

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m= 0 ∶ 1
2

∞

∫
xo

1

a∗
x + 1

4ka

x + 3
4ka

dx,

m≠ 0 ∶ 1
2

∞

∫
xo

xdx

a∗
√

(m
ka

)2 + x2

,

(29)

where
a∗ = ka2ϕ2

o (1 + x2)3/2
.

Analytical expressions are obtained and used
within the integration process whenever the latter
reaches the end of an integration segment:

{Imsix}remxo,m=0 <
1

(2ka2 ϕ2
o)

⎡⎢⎢⎢⎢⎢⎣

(3q2 + 1) (
√

1 + x2
o − xo)+2q

(9q2+1)
√

1 + x2
o

+ 2q

(9q2+1)3/2
log

⎛
⎜
⎝

(
√

9q2 + 1−3q) (xo+3q)
√

9q2 + 1
√

1 + x2
o−3qxo + 1

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, (30)

where q = 1/(4ka) and

{Imsix}remxo,m≠0 < 1

(2ka2 ϕ2
o)

⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m = ka ∶ 1

2 (1 + x2
o)
,

m≠ka ∶ 1

1 − p2

⎛
⎜
⎝

1 −

¿
ÁÁÀp2+x2

o

1+x2
o

⎞
⎟
⎠
,

(31)

where p =m/ka.

Fig. 6. Plot of Imsix sequences for source semi-angles ϕo = 1, 10, and 30 degrees at a frequency k
√

S = 0.1 (solid line).
Their asymptotes (dashed) are all lines (powers of m) with slope (exponent) equal to −1.

8. Upper bounds of Imsix sequences

When the values of Imsix integrals are plotted as
a function of order m in a log-log plot, it can be ob-
served that at all frequencies and source semi-angles
under consideration, they form decreasing sequences
which apart from being log-log concave they also have
asymptotes with a slope of −10 dB per decade, i.e. of
the form: constant/m. Figure 6 illustrates an example
which is quite representative of all frequencies.

Using the property of log-log concavity discussed
in Appendix B, provides an upper bound for Imsix se-
quences above an order ko:

Imsix (m ≥ ko)≤ Imsix(ko) ⋅ (
ko
m

)
∣D∣

, (32)

where D is the log-log slope of Imsix sequence at ko
(per Eq. (50))

D =
⎛
⎜
⎝

log10 ( Imsix(ko+1)
Imsix(ko)

)

log10 (ko+1
ko

)

⎞
⎟
⎠
. (33)

9. The Isix sum

Generally speaking, the terms of Isix sum, defined
in Eq. (7), oscillate according to the sinc squared
factor and decay at the same time. Their decay is due
to the inherent 1/m2 decay of the sinc squared factor
and the corresponding decay of Imsix sequences. The
latter was found to tend asymptotically to 1/m. As
a result Isix terms are expected to decay as 1/m3 at
very high orders. As summation advances an effective
way to conclude it at a specific order with a control-
lable truncation error, is to have an estimate of the
sum of the remaining infinite terms above that order
and thence of the associated relative truncation error.
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When the latter drops below a pre-selected value, the
whole process can be successfully stopped. In order
to apply this idea and after considering several ap-
proaches it was decided to work as follows:

• Isix sum is carried initially up to an order ko − 1

where ko = ⌈ 450
2ϕo

⌉ and an upper bound of the sum
of the remaining terms is estimated in the follow-
ing manner:

∞

∑
m=ko

Imsix(m) ⋅ sinc2(mϕo)

<
∞

∑
m=ko

Imsix(ko) ⋅ (
ko
m

)
∣D∣

⋅ 1

(mϕo)2

= Imsix(ko) ⋅
k
∣D∣
o

ϕ2
o

∞

∑
m=ko

1

m2+∣D∣
, (34)

where the infinite sum in the right-hand side can
be obtained in several ways by means of Zeta,
Hurwitz-Zeta or Lerch special functions. For sim-
plicity the use of Zeta function, ζ(s), was selected
(Olver et al., 2010, p. 602):

∞

∑
m=ko

1

m2+∣D∣
= ζ (2 + ∣D∣) −

m=ko−1

∑
m=1

1

m2+∣D∣
, (35)

where the finite sum
m=ko−1

∑
m=1

1
m2+∣D∣ is separately

computed during the integration process.
• If the ratio of this upper bound (per Eq. (34)) to

the current value of Isix sum is better (lower) than
a target value, the process is concluded, otherwise

Fig. 7. Comparative graph of the radiation reactance of a square piston on an infinite cylinder (solid lines) and
a square piston on an infinite plane as per Burnett and Soroka (1972) (circular marks). Results are given

for four source semi-angles.

summation carries on until the relative truncation
error drops below the desired value.

10. Radiation reactance

The results of the previous sections on integrals
Imsiy and Imsix along with the associated sums in
Eq. (7) produce the radiation reactance nXmr which is
a function of frequency k

√
S and source semi-angle ϕo.

Two major conclusions can be drawn:

• In the case of the square piston on an infinite
cylinder with a source semi-angle going down to
zero (Figs 7 and 8) the values of normalised re-
actance tend to the respective values of a square
(rectangular) piston on an infinite plane.

• Since low-frequency reactance exhibits a linear
dependence on frequency, a mass-load equivalent
that the medium presents to the source can be de-
fined as per Beranek (1996, Chap. 5). This mass
decreases with increasing semi-angle.

11. Radiation reactance as a mass load

In the field of transducer technology whenever
a mechanical reactance is linearly dependent on
frequency an equivalent mass load can be defined and
used. For piston sources mounted on baffles of infinite
extent the quotient of radiation reactance Xmr to
cyclic frequency ω in the low frequency range where
linearity is dominant, defines a mass load Mmr in kgr,
acting on that side of the vibrating source diaphragm
where the medium of propagation is located. A nor-
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Fig. 8. Graph of nXmr in the high frequency range for source semi-angles ϕo = 1, 10, 20, and 30 degrees (solid
lines). Circle marks indicate the respective reactance for a square piston source mounted on an infinite planar

baffle as per Burnett and Soroka (1972).

malised version of mechanical mass load can be related
to normalised reactance as follows:

nMmr =
Mmr

ρS3/2
= Xmr

ωρS3/2
= nXmr ρcS

ωρS3/2
= nXmr

k
√
S
, (36)

nXmr results in the very low frequency range were
tested for linearity and found to satisfy a model of the
form (k

√
S)q with exponent q ranging from 1.000013

at ϕo = 1 degree to 1.0000000006 for ϕo = 30 degrees
at lowest frequency k

√
S = 0.001.

Resulting mass load values are presented in Fig. 9.
For convenience a simple polynomial model has also

Fig. 9. Values of mass-load nMmr for source semi-angles ϕo = 1, 2, 5, 10, 15, 20, 25, and 30 degrees
(circle marks) at k

√

S = 0.001. Solid line describes estimate model based on Eq. (37).

been used to fit these data values and provide an es-
timate of mass load as a function of source semi-angle
ϕo (at k

√
S = 0.001):

nMmr = 0.471−0.34ϕo+0.72ϕ2
o−1.20ϕ3

o+0.82ϕ4
o. (37)

Obviously this model must not be used for source
semi-angles outside the range 1 to 30 degrees. For com-
parison it is noted that after rearranging the mechani-
cal mass equivalentMm1 reported by Beranek (1996,
Eq. (5.10)), nMmr for a circular piston on an infinite
planar baffle has a value of 8/(3π3/2) = 0.4789.
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12. Evaluation of Imsre integrals

12.1. Integrand’s behaviour

To overcome the singularity of the integrand out-
lined in Eq. (4) at the rightmost point of the integra-
tion range (t = 1), a change of integration variable is
adopted. Setting y =

√
1 − t2, Imsre integral becomes:

Imsre =
1

∫
0

sinc2 ( 1
2
k
√
S y)

(1 − y2)
1

Dm (ka
√

1 − y2)
dy

=
1

∫
0

sinc2 (1

2
k
√
S y) Cm(ka, y)dy, (38)

where Cm function is defined as follows:

Cm(ka, y) = 1

(1−y2) Dm (ka
√

1 − y2)
. (39)

Using typical power series for the leading terms of
J ′m(z) and Y ′

m(z) (Olver et al., 2010, Eqs (10.2.2)
and (10.8.1), respectively), it becomes apparent that it
is the latter that dominates Dm, as argument z tends
to zero (y tends to one). The limiting behaviour of Cm
for non-zero order m, can therefore be estimated as
follows:

lim
z→0

Y ′
m(z) = −m!

2π
(z

2
)
−m−1

⇒ lim
z→0

1

Dm(z)

= ( π

m!
)

2

(z
2
)

2m+2

⇒ lim
y→1

Cm = 0. (40)

Fig. 10. Graphs of Cm factor for three orders, as a function of integration variable y. Frequency is
k
√

S = 100 and source semi-angle ϕo = 30○. Cm decays just after point y = yp which generally shifts
towards lower values as order m increases.

The case of m = 0 is simpler:

lim
z→0

Y ′
0(z) = lim

z→0
−Y1(z)⇒ lim

z→0

1

D0(z)

= (π
2
)

2

(z
2
)

2

⇒ lim
y→1

Cm = (π
4
ka)

2

. (41)

Conclusively for m ≠ 0 Cm decays rapidly as the
integration variable approaches unity while for m = 0
it gets a finite non-zero value. Other interesting prop-
erties of factor Cm for non-zero orders m are the fol-
lowing:

• When frequency ka = k
√
S/(2ϕo) is below unity

the decay of Cm starts right after y = 0.
• When ka exceeds unity this decay is rapid and

starts approximately just after a certain value of
integration variable, yp, which depends on order
m and frequency ka:

yp =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m ≤ ⌊ka⌋ ∶

¿
ÁÁÀ1 − ( m

⌊ka⌋
)

2

,

m > ⌊ka⌋ ∶ 0.

(42)

• At high frequency values ka and for ordersm lower
than the integer part of ka, Cm forms a peak
around yp.

• For orders m higher than the integer part of ka,
Eq. (42) reports yp = 0 and Cm decays just after
y = 0.

Figure 10 outlines a typical case of Cm factor for
several orders m.
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On the other hand, sinc squared function in
Eq. (38) is independent of order m and has the fol-
lowing features:

• It exhibits oscillations only for frequencies k
√
S ≥

2π.
• Its first null-point within integration range is lo-

cated at yfnp = 2π/k
√
S.

• Integration range includes nmax null points:
nmax = ⌊k

√
S/2π⌋.

• Its n-th null-point is at ynnp = nyfnp provided
n ≤ nmax.

• Integration variable can not have a null-point at
zero but can definitely have one at unity.

12.2. Integration scheme

It is almost impossible to provide a generalised de-
scription of the form that Imsre integrand function
takes within its finite integration range due to the di-
versity of its dependencies on frequency k

√
S (or ka),

semi-angle ϕo and order m. For this reason it is more
efficient to divide integration range into segments de-
fined by critical points. Such points are the null points
of the sinc-squared oscillations (if any) and yp; the lat-
ter possibly being zero form > ⌊ka⌋ or one whenm = 0.
It is very practical to use a vector holding these points
prior to the numerical integration process.

Thorough investigation proved that for m = 0 this
vector is optimum if it takes the generalised form
[0, LHSynp, 0.99, RHSynp, 1 − ∂, 1] where:

• LHSynp is the set of all the null points below 0.99
and RHSynp the remaining null points above this
value and below 1 − ∂).

• The injection of point y = 0.99 resolves the steep
increase of integrand (only form = 0) close to y = 1
and is closely related to the required frequency
and semi-angle range of values, in this work.

• A very narrow integration segment is defined at
the end through the use of a very small quantity ∂.
Its purpose is to prevent the computation of in-
tegrand (and especially of Eq. (39)) very close to
or at y = 1 where math software will report errors
related to Bessel function of the second kind.

Romberg’s integration rule is then applied to all
segments except for the last one. Fast convergence and
high precision is achieved. Numerical evaluation of the
integrand remains successful for a value of ∂ as low
as 10−15.

The remaining part of integral (i.e. of the last seg-
ment) is evaluated as the area of the trapezoid between
points y = 1 − ∂ and y = 1. Integrand value at y = 1 is
analytically obtained by Eqs (38) and (41).

For m ≠ 0 the only general rule is that integrand
exhibits a very steep decay close to y = 1. This would
normally allow for the integration to be ended before

reaching the right-hand side integration limit. Unfortu-
nately the location of such a point can not be a-priori
determined for a given level of truncation error to be
maintained. Taking into account that Romberg’s rule
can not be used for a segment with undetermined lim-
its, a different approach is adopted:

Vector holding the necessary critical points for
Romberg’s rule to apply, is defined as [0, LHSynp, yp,
RHSynp, yd], where:

• The newly introduced yd denotes a point at which
a preselected level of decay of Cm factor has oc-
curred. The introduction of this point extends
Romberg’s integration close to the end of the over-
all integration range leaving a relatively narrow
range to be separately (and rather slowly) han-
dled.

• Apparently LHSynp is the set of all possible null
points below yp and RHSynp the rest of these
points above yp and below yd.

• Since it is already known that point yd is definitely
in the range (yp, 1) its evaluation can easily be
achieved via an ordinary bisection method target-
ing a Cm value roughly two orders of magnitude
less than the respective value at yp. Experimen-
tation proved that there is no need for a bigger
value of Cm decay.

To ensure both low computation time and high
accuracy the remaining integral’s part, above yd, is
treated in two phases. In the first one integration ad-
vances from yd towards y = 1 in groups of three points
via the 1/3 Simpson’s rule and at each step an upper
bound of the remaining (truncated) integral’s value is
evaluated and a relative error is associated with it. As
soon as the latter drops below a pre-selected value in-
tegration is finished and the end-point yf is marked. In
this way points very close to y = 1 causing evaluation
errors in math software, are avoided. The contribution
of this phase to the overall integral is very approxi-
mate and therefore should not be stored. In the second
phase Romberg’s method is applied to segment [yd,yf ]
and the respective contribution is re-evaluated fast and
with controllable precision.

To ensure that the end-point yf always provides
the pre-selected level of truncation error without se-
riously affecting the overall integration time, the first
phase employs a very simple, yet overestimated, upper
bound of the integral’s area to be truncated: the prod-
uct of the fast-decaying integrand’s value (at the point
at which the truncation error is sought) and the width
of the integration range to be omitted.

13. Sequences of Imsre values

Plotting the resulting Imsre values for a fixed fre-
quency k

√
S as a function of order m allows for three

major conclusions to be derived (see Fig. 11):
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a)

b)

Fig. 11. Plots of Imsre values’ sequences as a function of order m, for different values of source semi-angle ϕo,
at a low and a high frequency value: a) at a frequency of k

√

S = 0.01 decay occurs just after zero-th order
(mp = 0 for all semi-angles presented), b) k

√

S = 10.

• Imsre values decay faster for larger values of semi-
angle ϕo. As a result Isre sum will require much
more terms if semi-angle ϕo is lower.

• Roughly speaking Imsre values start to decay
above order mp:

mp = ⌊ka⌋ . (43)

• As frequency k
√
S (or ka) increases a local peak

is formed around mp. As a rule of thumb Isre sum
should definitely include more than the first mp

terms.
• Imsre values above mp form a decreasing log-

concave sequence.

14. Summation process for Isre

Isre summation is done per Eq. (3) starting with
the first mp terms (orders) per Eq. (43). As it ad-
vances above this order, Isre value is accumulated and
the sum of the remaining (infinite) terms (or an upper
bound of it) has to be evaluated. The latter represents
the truncation error. Summation stops when this er-
ror with respect to the accumulated value drops below
a pre-selected level.

To derive an expression for the sum of the remain-
ing Isre terms when summation reaches its ko −1 term
we can use Eq. (53) to define an upper bound for Imsre
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integrals and several quite typical properties of sinc
function. A very practical two-fold upper bound for
the latter can be expressed according to the value of
its argument:

sinc2(kϕo) <

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k < kϕ ∶ 1,

k ≥ kϕ ∶
1

(mϕo)2
,

(44)

where
kϕ = ⌈ 1

ϕo
⌉.

As a result we get an expression for the upper
bound of the remaining sum which has to break sum-
mation depending on the value of orderm with respect
to kϕ:

∞

∑
m=ko

Imsre(m) ⋅ sinc2(mϕo)

<

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ko < kϕ ∶
kϕ−1

∑
m=ko

Imsre (ko) eD(m−ko)

+
∞

∑
m=kϕ

Imsre (ko) eD(m−ko) 1

(mϕo)2
,

ko ≥ kϕ ∶
∞

∑
m=ko

Imsre (ko) eD(m−ko) 1

(mϕo)2
.

(45)
Using the Lerch transcendent special function Φ to

hold the required infinite sums for the evaluation of
Eq. (45) we end up with the following practical ex-
pression:

∞

∑
m=ko

Imsre(m) ⋅ sinc2(mϕo)

<

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ko < kϕ ∶ Imsre(ko)
eD(kϕ−ko) − 1

eD − 1

+Imsre (ko) e
D(kϕ−ko)

ϕ2
o

Φ (eD,2, kϕ)

ko ≥ kϕ ∶
Imsre(ko)

ϕ2
o

Φ (eD,2, ko)

(46)
Lerch function is generally defined as the infinite

sum:

Φ(z, n, q) =
∞

∑
k=0

zk

(k + q)n
. (47)

15. Radiation resistance

Values for the normalised radiation resistance
nRmr were obtained for eight source semi-angles (ϕo =
1, 2, 5, 10, 15, 20, 25, and 30○) at a frequency range
k
√
S = 0.001 to 100. In Fig. 12, for convenience, the

respective graphs for only four of them are presented

along with the radiation resistance of a square piston
source mounted on an infinite planar baffle (Burnett,
Soroka, 1972).

As frequency increases and radiation condition
switches from 4π – to 2π sr, resistance for the case
of a tiny source (ϕo = 1○) on a cylinder, tends to al-
most perfectly match that of a square source on an
infinite plane (2π sr radiation).

At very low frequencies (below k
√
S = 0.015) radi-

ation resistance curves for various source semi-angles
become almost identical. As theory predicts all of them
are expected to have, at very low frequencies, half
the value of the resistance of a (square or equiva-
lent circular) piston source on an infinite planar baf-
fle. For verification purposes, the value of radiation re-
sistance for a circular source on a plane (2π space)
was evaluated analytically at k

√
S = 0.001 (nRmr =

1.591549348⋅10−7) after Eq. (7.4.31) (Morse, Ingard,
1968). It was found to be twice the value of radia-
tion resistance evaluated by the numerical methods
presented in this work for source semi-angle ϕo = 30○

(nRmr = 7.957718476 ⋅ 10−7) for which a 4π space is to
be considered since the source dimensions are relatively
large compared to cylinder perimeter. Division proves
to be correct down to 5 decimal places (2.0000071).

A close investigation of Fig. 12a also shows that
radiation resistance switches gradually from the 4π ra-
diation condition to that of 2π-space; the ‘transition’
occurring at higher frequencies for larger source dimen-
sions (semi-angle).

16. Conclusions

In almost all cases integrands involved in the
Greenspon-Sherman formulation were successfully ren-
dered nonsingular except for the zero-eth order of Imsiy
integral. The latter was addressed analytically by sep-
arate integration around its singularity point. However
an additional problem related to the required expres-
sions of Bessel functions, was raised. Their computa-
tion by typical math software may easily fail either
close to integration limits or at very large orders. To
overcome this issue Debye expansions were adopted.

On the other hand and in order to control the trun-
cation error and produce results of increased accuracy
during integration process, analytical expressions were
derived for an upper bound of this error. In a simi-
lar way all three (infinite) summation procedures were
truncated using analytical upper bounds for the asso-
ciated error. These bounds were all based on convexity
or concavity properties of the respective sequences.

For Isiy and Isre sums a lower bound of the number
of significant terms was found to be roughly equal to
ka. This bound for Isix is approximately 225/ϕo. These
requirements explain the increased computation error
reported by Kim at al. (2004). Even for the largest
reported semi-angle value of π/18, Isix would require
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a)

b)

c)

Fig. 12. Normalised radiation resistance nRmr of a square piston on an infinite cylindrical baffle for various source semi-
angles ϕo as a function of frequency variable k

√

S. Circle marks correspond to a square piston source mounted on an
infinite planar baffle as per Burnett and Soroka (1972): a) very low frequency range; radiation condition changes from
4π to 2π sr at lower frequencies for smaller source semi-angles; b) mid-frequency range; resistance values for a square
piston on a planar baffle (circle marks) behaves as an asymptote for sources on a cylinder with semi-angles tending to

zero; c) high-frequency range.
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more than 1000 terms. The use of orders up to m = 50
even for the relatively low frequency range, ka < 51,
was not sufficient.

Resulting reactance values in the low frequency
range were used to derive a model of a radiation mass-
load as a function of source semi-angle (Fig. 9). For the
first time a clear picture of the decaying oscillations of
normalised reactance at high frequencies was also ob-
tained (Fig. 8). As expected when source semi-angle
(and thence the source size) tends to zero these values
tend to coincide with the respective values of a square
piston on a planar baffle as they share a common half-
space radiation condition and shape as well.

In the case of radiation resistance results showed
that each source semi-angle features its own transition
frequency above which the 2π condition is gradually es-
tablished by the surface of the cylindrical baffle around
the source (Fig. 12). As in the case of reactance when
source semi-angle approaches zero, resistance values
coincide with those of the square piston on a planar
baffle.

Impedance values as a function of normalised fre-
quency and source semi-angle were tabulated for con-
venience (Valacas, 2020). In order for the relative
precision of radiation resistance to be always better
than 10−5, maximum truncation errors for Imsre inte-
gral and Isre sum were set to 10−7 and 10−6 respec-
tively. Romberg’s integration routine was adjusted to
exit when a relative change of 10−7 is achieved. Due
to extremely high computation time the target rela-
tive error for radiation reactance values was reduced to
10−4. For this purpose the maximum truncation error
for Imsix integrals was set to 10−6 and for the associ-
ated Isix, Isiy sums to 10−5.

In their tabulated form the derived impedance val-
ues can be easily related to the design of acoustic emis-
sion systems where sources of square (and with a rather
good degree of accuracy, of circular) shape are mounted
on acoustically-hard cylindrical surfaces as in the case
of sonar transducers.

Appendix A

A decreasing log-log convex sequence b(n) of posi-
tive terms that above an index no has an asymptote of
known (log-log) negative slope D, is expected to decay
faster than the line g(n) that intersects b(n) at no and
is parallel to the asymptote:

g (n ≥ no) = b(no) (
no
n

)
∣D∣

. (48)

As a result all terms of b(n) have values less than
the respective terms of g(n) above no:

∀n ≥ no, b(n) ≤ b(no) (
no
n

)
∣D∣

. (49)

Appendix B

Decreasing log-log concave sequences b(n) (of pos-
itive terms) above an index no are known to decay
faster than the tangent line g(n) that ‘touches’ b(n)
at no and has the same slope with b(n) at no. In order
for sequence g(n) to maintain the linear form in a log-
log plot, it has to be proportional to an inverse power
of n as per Eq. (48) with D as the negative slope of
sequence b(n) at no:

D =
⎛
⎜
⎝

log10 ( b(no+1
b(no)

)

log10 (no+1
no

)

⎞
⎟
⎠
. (50)

It can therefore be stated that g(n) serves as an
upper bound of b(n) above no as per Eq. (49).

Appendix C

In the case of a decreasing sequence b(n) (of pos-
itive terms) which above an index no exhibits log-
concavity we can define its tangent line g(n), at no and
use it as an upper bound for sequence b(n) above no.
For sequence g(n) to exhibit the linear form in a log
plot and at the same time be tangent to b(n) at no, it
must be of an exponential type:

g(n ≥ no) = b(no)eD(n−no), (51)

where D stands for the logarithmic slope of g(n) (and
b(n)) at no:

D = ln(b(no + 1)
b(no)

) . (52)

Although log-concave sequences and their tangent
lines can be described with logarithms of any base, the
natural logarithm and its associated base were selected
in this work for convenience.

As before it can be asserted that values of b(n)
sequence, above no, are bounded as follows:

b(n ≥ no) ≤ b(no) eD(n−no). (53)
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