
ARCHIVES OF ACOUSTICS
Vol. 45, No. 4, pp. 633–645 (2020)
DOI: 10.24425/aoa.2020.135251

Research Paper

Finite Element Modelling of a Flow-Acoustic Coupling
in Unbounded Domains

Paweł ŁOJEK∗, Ireneusz CZAJKA, Andrzej GOŁAŚ

AGH – University of Science and Technology
Department of Power Systems and Environmental Protection Facilities

Kraków, Poland
∗Corresponding Author e-mail: lojek@agh.edu.pl

(received June 29, 2020; accepted August 17, 2020 )

One of the main issues of design process of HVAC systems and ventilation ducts in particular is correct
modelling of coupling of the flow field and acoustic field of the air flowing in such systems. Such a coupling
can be modelled in many ways, one of them is using linearised Euler equations (LEE). In this paper,
the method of solving these equations using finite element method and open source tools is decribed.
Equations were transformed into functional and solved using Python language and FEniCS software. The
non-reflective boundary condition called buffer layer was also implemented into equations, which allowed
modelling of unbounded domains. The issue, influence of flow on wave propagation, could be adressed
using LEE equations, as they take non-uniform mean flow into account. The developed tool was verified
and results of simulations were compared with analytical solutions, both in one- and two-dimensional
cases. The obtained numerical results are very consistent with analytical ones. Furthermore, this paper
describes the use of the developed tool for analysing a more complex model. Acoustic wave propagation
for the backward-facing step in the presence of flow calculated using Navier-Stokes equations was studied.

Keywords: linearised Euler equations (LEE); FEniCS; finite element method; non-reflective boundary
conditions; open source.

1. Introduction

When using HVAC systems in buildings, acoustic
comfort is one of the crucial features from the user’s
point of view. One of the main factors affecting acous-
tic comfort is ambient noise caused in modern build-
ings by components of HVAC systems, such as fans,
ventilation units, and air conditioning systems. The
noise that is produced by these devices could be further
enhanced by air ducts. Understanding the behaviour
of acoustic wave in the presence of the flow in ducts
is important in the design and operation of such sys-
tems. It requires experimental or numerical analysis,
of which the latter is more often used, because of eco-
nomical reasons.

The most widely used model for the behaviour
of the fluid and the acoustic wave are Navier-Stokes
equations. However, using them involves many prob-
lems resulting from the lack of their exact solution for
the general case (Wagner et al., 2006). The most ac-
curate method is direct numerical simulation (DNS)
of the equations, which provides a full picture of the

phenomena, associated with both the flow of fluid
and the propagation of the wave. However, according
to (Colonius, 1997), the computational complexity
of the DNS method is too large to be used in engineer-
ing applications. Computational aeroacoustic (CAA)
methods are often used for this purpose. The classi-
cal approach is to use large eddy simulation (LES)
method, which is less accurate (and computationally
complex) than DNS, to compute the fluid flow. Then,
acoustic analogies are used to calculate the sound pres-
sure level in the far field (Wagner et al., 2006). Most
of the acoustic analogies are based on the acoustic
analogy derived by Lighthill (1952). The disadvan-
tage of this method is the lack of information about
phenomena occurring in the near field. This classi-
cal, hybrid approach is implemented in state-of-the-
art numerical software, such as Actran, ANSYS Flu-
ent, Comsol, or OpenFOAM (Epikhin et al., 2015).
An alternative method used for computational aeroa-
coustics is called Kirchoff’s integral method. It con-
sists of calculating the nonlinear near (flow) field using
Navier-Stokes equations and then using Kirchhoff sur-
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face integral to find the acoustic pressures at far field
(Lyrintzis, George, 1989).

Another hybrid method is to use Navier-Stokes
equations to simulate the fluid flow, and then cou-
ple the fluid velocity field described by them with
acoustic field described by one of the propagation
models. The most used acoustic propagation mod-
els are well known linearised Euler equations (LEE)
described for example in (Bailly, Juvé, 2000) and
acoustic perturbation equations proposed by (Ewert,
Schröder, 2003). In this paper, this modelling ap-
proach was used. Acoustic propagation model given
by linearised Euler equations was used in combina-
tion with Navier-Stokes equations. From the mathe-
matical point of view, linearised Euler equations are
a system of partial differential equations. The ex-
act solution of the equations are known only for ba-
sic, one or two-dimensional cases. For more complex
cases and geometries, approximate methods, such as
finite element (FEM), difference (FDM), and volume
(FVM) methods are commonly used. The paper pro-
poses the implementation of solver for linearised Euler
equations in Python using the finite element software
FEniCS (Alnaes et al., 2015). Linearised Euler equa-
tions in the form which takes the non-uniform veloc-
ity field into account were implemented, which ulti-
mately allowed describing the coupling of flow and
acoustic fields. This represents the suitability of the
tool for modelling the behaviour of HVAC systems
and air in ducts. In order for created tool to be used
more widely, for modelling unbounded domains, it was
necessary to propose and implement a non-reflecting
boundary condition. A buffer zone condition has been
selected for this purpose.

The created tool has been tested and verified in two
test cases for which analytical solution is known. It
was then used to calculate the behaviour of a sinu-
soidal acoustic wave in the presence of a non-uniform
flow, calculated using the Navier-Stokes equations. The
chosen geometric model for these simulations is a well
known and researched backward-facing step. This ge-
ometry can be used to model, for example, channel
discontinuity.

FEniCS software was chosen due to the fact that
it is open source software, easy to use from a pro-
gramming point of view, and allowing connection with
pre- and post-processing tools. Due to its structure
and workflow, FEniCS allows to focus on the parts
of mathematical and physical modelling, it is not ne-
cessary to go into the details of the implementation
of FEM. For pre-processing, i.e. geometry and mesh
generation, the Salome software was used (Ribes,
Caremoli, 2007). The post-processing of the results
was performed using self-developed Python scripts and
Paraview tool (Ahrens et al., 2005). Paraview was
also used for visualisation of results.

2. Mathematical model

Continuity (1) and Navier-Stokes (2) equations are
mainly used to describe the behaviour of the fluid
(Rienstra, Hirschberg, 2004):

∂ρ

∂t
+ ∂ρvi
∂xi

= 0, (1)

ρ
∂vi
∂t

+
∂Pji

∂xj
+ ρvj

∂vi
∂xj

= fi, (2)

where p is the pressure, vi is the velocity, t is the time,
ρ is the density, fi is the external force density, Pij =
pδij − τij is the fluid stress tensor, τij is the viscous
stress tensor, i, j = 1,2,3 are dimensions.

Euler equations can be derived from Navier-Stokes
equations by the assumption of inviscid and homoen-
tropic flow (Åbom, 2006; Mechel, 2008):

∂ρ

∂t
+ ∂ρvi
∂x

= 0, (3)

∂ρvi
∂t

+ ∂

∂xj
(ρvivj + pδij) = 0. (4)

Equations can be linearised around the mean value
of the parameters describing the flow, such as pressure,
density, or velocity. This allows to obtain linearised Eu-
ler equations which allow determining acoustic wave
propagation (Rienstra, Hirschberg, 2004).

Assuming that each variable describing the flow
can be divided into a mean and acoustic component,
it can be written (Dykas et al., 2010):

p = p + p′, vi = vi + v′i, ρ = ρ + ρ′, (5)

where p, v, ρ are mean variables, p′, v′i, ρ
′ are acoustic

variables (pressure, velocity in i-th direction, density).
Inserting the above into the equations (3) and (4),

assuming the mean values p, vi = 0, ρ = const and using
ideal gas equation of state given by:

p′ = c2ρ′ (6)

allows to derive linearised Euler equations which de-
scribes acoustic wave propagation without a mean
flow. The equations are written below:

∂p′

∂t
+ c2ρ

∂v′j

∂xj
= 0, (7)

ρ
∂v′i
∂t

+ ∂p′

∂xi
= 0, (8)

Linearised Euler equations can be reduced to the
classic wave equation by taking the time derivative of
Eq. (7), divergence of Eq. (8), and combining them
(Rienstra, Hirschberg, 2004):

∂2p′

∂t2
− 1

c2
∂2p′

∂x2
i

= 0. (9)
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2.1. Non-uniform mean flow

Equations (7) and (8) allow for description of wave
propagation without a mean flow. If the derivation as-
sumes the presence of mean velocity distribution vi,
equations take on a more complex form.

In one-dimensional case equations take the form
(v′1 = u, v1 = U , p′ = p, p = 0, x1 = x):

∂p′

∂t
= −ρc2 ∂u

∂x
−U ∂p

∂x
− p∂U

∂x
, (10)

∂u

∂t
= −1

ρ

∂p

∂x
−U ∂u

∂x
− u∂U

∂x
− pU

c2ρ

∂U

∂x
, (11)

while in two-dimensional case (v′1 = u, v′2 = v, v1 = U ,
v2 = V , p′ = p, p = 0, x1 = x, x2 = y) (Povitsky, 2000):

∂p

∂t
= −ρc2 (∂u

∂x
+ ∂v
∂y

) −U ∂p
∂x

− V ∂p
∂y

−p(∂U
∂x

+ ∂V
∂y

) , (12)

∂u

∂t
= −1

ρ

∂p

∂x
−U ∂u

∂x
− u∂U

∂x
− V ∂u
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− v ∂U

∂y

− p

ρc2
(U ∂U

∂x
+ V ∂U

∂y
) , (13)

∂v

∂t
= −1

ρ

∂p

∂y
− V ∂v

∂y
− v ∂V

∂y
−U ∂v

∂x
− u∂V

∂x

− p

ρc2
(U ∂V

∂x
+ V ∂V

∂y
) . (14)

For the purpose of solving these equations with the
FEniCS software, they had to be discretised in time
and written in the variational form.

2.2. Boundary conditions

System of linearised Euler equations is an exam-
ple of an initial-boundary value problem. Initial and
boundary conditions have to be provided in the case
to solve the equations. Initial conditions describe pres-
sure and velocity distribution in computational domain
at the beginning of simulations, and boundary con-
ditions describe pressure and velocity on boundaries.
While initial conditions differ depending on the case
being solved, in a general case several types of bound-
ary conditions can be distinguished, such as Dirichlet,
Neumann, and Robin boundary conditions.

In the case of acoustical simulations, the following
boundary conditions can be defined (Kaltenbacher,
2017):

• acoustically hard boundary – this assumes that
acoustic impedance of wall approaches infinity, the
wave is fully reflected from the boundary, Neu-
mann boundary condition can be derived from the
linearised Euler Eq. (8):

n ⋅ ∇p′ = ∂p
′

∂n
= 0; (15)

• non-reflective boundary – the wave is damped/
absorbed, the definition of non-reflective bound-
ary condition is more complicated and cannot be
reduced to simple Dirichlet or Neumann condi-
tions.

The main purpose of non-reflective boundary con-
dition (NRBC) is to mimic unlimited physical domain
in bounded numerical domain. It can be done in many
ways, including characteristic NRBC (Giles, 1990;
Atkins, Casper, 1994; Koloszár et al., 2019), ra-
diation boundary condition (Hagstrom, Goodrich,
2003), absorbing boundary conditions (Givoli, 2008;
Kosloff, Kosloff, 1986), not to mention Perfectly
Matched Layer (Berenger, 1994; Bermudez et al.,
2008).

In this work, absorbing boundary condition called
buffer layer (zone), which was described in e.g. (Ri-
chards et al., 2004; Gill et al., 2017). The method
was chosen for its simplicity, efficiency, and ease of im-
plementation in FEniCS, contrary to the Perfectly
Matched Layer.

The buffer layer is introduced into the governing
equations by adding a damping term as follows:

∂φ

∂t
= L(φ) + σ(xi)φ, (16)

where φ is the flow variable, L(φ) is the spatial opera-
tor, σ(xi) is the damping term.

The boundary condition, described in greater de-
tail in (Richards et al., 2004; Gill et al., 2017), was
transformed to the form that could be implemented
in FEniCS software and was written as a piecewise
function:

σ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−α(1 − x

L
)
β

x > L,

0, x < L,
(17)

where α is the strength of damping, L is the start of the
buffer zone, β is the shape of the damping curve.

The working principle of the implemented bound-
ary condition is shown in Fig. 1.

Fig. 1. Example of one-dimensional buffer zone with a cor-
responding σ function (Łojek, Czajka, 2019).
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2.3. Numerical methods

2.3.1. Temporal discretisation

The solved equations had to be discretised in time
due to the fact that the wave propagation phenomenon
is transient.

The Adams-Moulton method of the fist order was
used for this purpose. Described in more detail in
(Butcher, 2016; Czajka, Gołaś, 2017), the method
allows for approximation of differential equation in the
form:

∂x

∂t
= f(x, t), x(t = 0) = x0, (18)

in the next timesteps by:

x[n+1] = x[n] +∆tf (x[n+1], tn+1) , (19)

where x(tn) = x[n], x(tn+1) = x[n+1], ∆t = tn+1 − tn.
Despite the simplicity of the method, it can be

shown that it is L-stable and sufficient for the purposes
of this study (Czajka, Gołaś, 2017).

2.3.2. Finite element method in FEniCS software

FEniCS software uses the finite element method for
solving the equations. It is based on Galerkin method
and Lax-Milgram theorem, assuming the existence of
a unique solution to the variational problem (Logg
et al., 2012).

The algorhitm of solving equation in FEniCS con-
sists of:

• writing the equation in variational formulation:

a(u, v) = L(v) for all v ∈ V̂ , (20)

where v is the test function, u is the trial function,
V̂ , V are test and trial function spaces, a(u, v) is
the bilinear form, L(v) is the linear form,

• spatial discretisation of the equations:

a(uh, v) = L(v) for all v ∈ V̂h, (21)

where V̂h ⊂ V̂ , Vh ⊂ V are discrete test and trial
function spaces,

• solving the system of linear equations:

AU = b, (22)

where Aij = a(φiφ̂j), bi = L(φ̂i), and φ, φ̂ are basis
functions for discrete trial and test spaces V , V̂ .

Linearised Euler equations discretised in time and
space had to be derived to solve them using FEniCS,
which is shown below:

∫
Ω

p′[n+1]q dx−∫
Ω

p′[n]q dx+∆tc2ρ∫
Ω

∇⋅u′[n+1]
i q dx

+ σ(x)∫
Ω

p′[n+1]q dx = 0 in Ω, (23)

∫
Ω

v
′[n+1]
i w dx − ∫

Ω

v
′[n]
i w dx + ∆t

ρ
∫
Ω

∇p′[n+1]w dx

+ σ(x)∫
Ω

u′[n+1]iw dx = 0 in Ω. (24)

Only Eqs (7) and (8) (without the mean flow) are
shown in variational form, because of their simplicity,
compared to Eqs (10) and (11) (one-dimensional case)
or Eqs (12)–(14) (two-dimensional case), which de-
scribes propagation with the mean flow velocity. All
of these equations were implemented in FEniCS soft-
ware.

3. Validation of the model

To verify the adopted model, a series of calculations
were performed:

• modelling of wave propagation in one-dimension
with and without the presence of the mean flow;

• modelling of pulse propagation in a two-
dimensional rectangular domain without the mean
flow and with uniform and non-uniform mean ve-
locity fields;

• model of wave propagation from oscillating cylin-
der, without the presence of the mean flow;

• model of backward-facing step without and with
the mean velocity field calculated using Navier-
Stokes equations.

The description and results of each case are pre-
sented below. If possible, the results of the computa-
tions were compared to analytical ones.

3.1. One-dimensional propagation

In the first case, propagation of an acoustic wave
with a sinusoidal excitation (pressure Dirichlet bound-
ary condition) at one of the boundaries was tested. The
purpose of one-dimensional modelling was to check
if the correct mathematical model was adopted and
whether the implemented boundary condition could be
used for acoustic simulations.

The values of pressure at the boundary (x = 0) were
described by Eq. (25):

p′(t) = A sin (2πft). (25)

The modelling results with no mean flow velocity
taken into account were compared to the analytical
solution, given by:

p′(x, t) = sin (kx + 2πftt). (26)

The effect of mean velocity on the acoustic wave
was checked using a simple Doppler model, given by
Eq. (27) (Kuttruff, 2007). It was checked whether



P. Łojek et al. – Finite Element Modelling of a Flow-Acoustic Coupling in Unbounded Domains 637

there was a change of frequency caused by mean ve-
locity

f ′ = (1 + V
c
) f, (27)

where V is the relative velocity between the listener
and the source.

In addition, the behaviour of the damping zone
described by Eq. (17) was checked. The coefficients
α = 5 and β = 3 were assumed as damping function
parameters. In the calculations, 20 elements were as-
sumed per one wavelength. The amplitude of pressure
at boundary was equal to 5 Pa. Timestep ∆t for all
one-dimensional simulations was equal to 10−5 s, and
simulation time T = 0.02 s was assumed. Speed of
sound c equal to 340 m/s and air density ρ equal to
1.2 kg/m3 were adopted.

Firstly, compliance of results with analytical formu-
las was checked. The model showed great agreement
with them. In addition, according to the assumptions,
the wave was completely damped in the buffer zone.
For each given excitation frequency, the propagation
of acoustic wave was well mapped compared to the
analytical formula.

The root mean square error was also computed. It
is given by an equation (Bendat, Piersol, 2010):

RMSE (φ̂ ) =
√
E [(φ̂ − φ)2], (28)

where φ̂ is the estimator of φ (simulation results), φ are
the analytical results. The results for range of pressure
excitation frequencies at the left boundary were shown
in the Fig. 2. The results of the analysis for given fre-
quencies were shown in Table 1.

Fig. 2. Comparison of analytical and simulation results for
one-dimensional propagation of sine wave.

Table 1. Root mean square error
for data shown in Fig. 2.

Frequency [Hz] RMSE
50 0.1472

150 0.1103
250 0.0939
500 0.0747

1000 0.0682
2000 0.0754

In the same way, mesh independency was analysed
for given excitation frequency, 340 Hz, for which wave-
length λ is equal to 1 m. It was examined how the ac-
curacy of the solution changes depending on the num-
ber of elements per wavelength. The results are shown
in Fig. 3 and in Table 2. For 6.25 elements per wave-
length, the results are starting to lose accuracy. How-
ever, they do not differ significantly from the analyti-
cal results. For 2.5 and fewer elements per wavelength
the results are inaccurate and poorly reproduce the
behaviour of the wave.

Fig. 3. Mesh independence study for one-dimensional case.

Table 2. Root mean square error for mesh independence
study (Fig. 3).

Elements Elements per wavelenght RMSE
20 2.50 3.3089
50 6.25 0.8456

100 12.50 0.1351
250 31.25 0.0226
500 62.60 0.0057
1000 125.00 0.0017
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It was also checked how constant mean velocity
affects the wave frequency. Again, the selected wave
frequency was equal to f = 340 Hz. In these simula-
tions, the time step has to be reduced to ∆t = 10−6 s.
The error metric was Doppler effect Eq. (27); frequency
change caused by velocity was compared with the an-
alytical Doppler effect equation frequency. Relative er-
ror was computed using Eq. (29):

δf =
RRRRRRRRRRR

fD − f1+f2
2

fD

RRRRRRRRRRR
. (29)

The changed frequency was calculated on the basis
of wavelength measured at two points in the manner
such as shown in Fig. 4. The mean velocity used in the
calculations was assumed as the relative velocity of the
source and the listener in Eq. (27). The results are pre-

Fig. 5. Results of the simulations with a uniform mean flow velocity.

Table 3. Results of the simulations with a uniform mean velocity (Fig. 5).

U

[m/s]
λ1

[m]
λ2

[m]
f1
[Hz]

f2
[Hz]

fD
[Hz]

Rel. error
[%]

20 1.052 1.055 323.2 322.3 320 0.85
−20 0.925 0.927 367.6 366.8 360 2.00
50 1.152 1.184 295.1 287.2 290 −0.38
−50 0.830 0.832 409.6 408.2 390 −4.90

sented in Fig. 5 and in Table 3. In Fig. 5, it can be seen
that the mean velocity affects the acoustic wave. De-
pending on the direction of velocity, the wavelength
is reduced or extended as intended.

Fig. 4. Measured wavelengths.
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3.2. Two-dimensional pulse

In the two-dimensional case, propagation of pulse
given by Eq. (30) in rectangular domain was analysed.
Initial distribution of pressure and dimensions of the
domain were shown in Fig. 6. The computational do-
main was a grid made of 400× 400 nodes. Thickness
of the buffer zone introduced to attenuate the acoustic
wave on boundaries was equal to 4 m

p′(x, y, t)t=0 = exp(− ln(2)x
2 + y2

2
). (30)

Fig. 6. Initial values of pressure in the two-dimensional
case.

Fig. 7. Distribution of pressure along x axis for y = 0 for simulations of two-dimensional impulse (without the mean flow).

For the initial pulse given by Eq. (30), analytical
solution is known and given by the equation (Dykas,
Wroblewski, 2006):

p′(x, t)= ε

2α

∞

∫
0

(ξ exp( −ξ2

(4α)
) cos(atξ)J0(ξη))dξ, (31)

where η =
√

(x −Mt)2 + y2, α = ln(2)/b2, ε = 0.03, b = 5
are constants, J0 is the Bessel function of the first kind.

At first, the behaviour of the buffer zone without
the mean flow was checked. The values of pressure
along x axis for y = 0 for various times were shown
in Fig. 7.

It can be seen that the results mostly coincide
with the analytical distribution described by Eq. (31),
which proves the correctness of the implementation
of the adopted model. The main differences between
the numerical and analytical results appear for times
greater than t = 0.08 s, when the reflection occurs. In
the case without the buffer zone, the wave is reflected
from the boundary. When the buffer zone is used,
the wave is fully attenuated. The difference between
numerical results for the buffer zone case and ana-
lytical results is due to the way boundary condition
is defined. In simulations, the values of pressure at
the edges of computational domain were equal to 0,
and in Eq. (31), the boundary is assumed at infinity.
However, it should be noted that near the centre of the
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domain the results do not differ from one another, and
with increasing of simulation time, they would con-
verge. Increasing the number of elements and reducing
the time step could also affect the accuracy of the so-
lution.

Next, the simulation and solver behaviour was
checked in the presence of a non-uniform mean flow.
Two cases were investigated for the same computa-
tional domain as before. In the first one, the veloc-
ity field had a uniform distribution and was equal to
50 m/s. In the second one, the influence of the shear
flow was investigated. The velocity was given by equa-
tion:

U(x, y) = 40 sin( xπ
4

) (32)

and was shown in Fig. 8.
The distribution of pressure compared to cases

without a flow was shown in Fig. 9. The results for
the damped case only were shown. In Figs 9, it can
be seen that when the mean flow is constant, the wave
is shifted in the direction of the flow. For the mean
flow given by Eq. (32) the pressure distribution is com-
parable to the analytical one, as expected (the mean
velocity for y = 0 is equal to 0 m/s).

For all cases without absorbing the boundary con-
dition, the wave bounces off the hard walls and further

Fig. 9. Distribution of pressure along x axis for y = 0 for simulations of two-dimensional impulse
(with presence of the mean flow).

Fig. 8. Distribution of the shear flow mean velocity given
by Eq. (32).

propagates in the computational domain. For cases
with the buffer zone, the wave is attenuated. In Fig. 10,
a shift associated with the uniform mean flow veloc-
ity in the computational domain is clearly visible. For
the mean flow velocity given by a sine function and
Eq. (32), the shift is non-uniform, as can be seen
in Figs 11 and 12.



P. Łojek et al. – Finite Element Modelling of a Flow-Acoustic Coupling in Unbounded Domains 641

Fig. 10. Distribution of pressure for two-dimensional model
with a uniform mean flow in x direction and the buffer zone

for time t = 0.08 s.

Fig. 11. Distribution of pressure for two-dimensional model
with a mean flow given by Eq. (32) and the buffer zone for

time t = 0.08 s.

Fig. 12. Distribution of pressure for two-dimensional model
with a mean flow given by Eq. (32) and the buffer zone for

time t = 0.2 s.

3.3. Oscillating cylinder

Another two-dimensional case tested and verified
in this paper was propagation of the acoustic wave gen-
erated by a radially oscillating cylinder. Oscillations
of pressure at the surface of the cylinder are described
by the equation:

p′(t) = p0 sin(2πft), (33)

where p0 is the amplitude of pressure, f is the fre-
quency.

A round surface around the cylinder was adopted
as a computational domain. Because the whole sur-
face oscillates with the same frequency, it was assumed
that the model is symmetrical and only half of the
surface was modelled. This was shown in the Fig. 13.
Computational domain dimensions equal to a = 4 m,
r = 30 m were adopted. The time step was equal to
∆t = 1 ⋅ 10−5. The coefficients in Eq. (33) were equal
to p0 = 0.05 MPa, f = 500 Hz.

Fig. 13. Model of the computational domain for oscillating
cylinder simulations.

Analytical solution of this problem is given by
(Suder-Dębska et al., 2018):

p′(r, t) = −jωρ v0

kH ′
0(ka)

H0(kr)ejωt, (34)

where j is the imaginary unit, ω = 2πf is the angular
frequency, v0 is the velocity of oscillations, k = ω/c
is the wavenumber, H0 is the Hankel function of the
first kind, H ′

0 is the derivative of Hankel function with
respect to r.

The results of the simulations are shown in Figs 14
and 15. Figure 14 shows the pressure field after time
of simulation t = 0.085 s. It can be seen that for given

Fig. 14. Pressure field for two-dimensional oscillating cylin-
der simulations.
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Fig. 15. Distribution of pressure along y axis for x = 0 at t = 0.085 s.

distance from source r, the value of pressure is uniform
regardless of the angle θ.

In Fig. 15 distribution of pressure along y axis for
x = 0 at t = 0.085 s, for both simulation results and
analytical calculations given by Eq. (34) is shown. The
behaviour of the acoustic wave is very similar in both
cases.

3.4. Backward-facing step

The last analysed case was backward-facing step,
a well known benchmark case for CFD simulations.
This model was chosen because of its universality and
the possibility of its use in modelling of many phe-
nomena (Armaly et al., 1983; Le et al., 1997; Biswas
et al., 2004). Two versions of this case were ana-
lysed and compared, with and without the mean flow.
Firstly, the velocity and pressure distributions of the
flow over the backward-facing step were computed us-
ing Navier-Stokes equations implemented in FEniCS
library (Langtangen, Logg, 2017). The result, the
velocity field, was imported into acoustic simulations
as variables (U,V ), which describe the mean velocity
field. Then, the developed tool was used to calculate
the wave propagation. The geometric model is shown
in the Fig. 16, which also shows the boundaries used in
modelling.

The boundary conditions for each of the models
(Navier-Stokes, linearised Euler equations) are shown
in Table 4. If the variable is not specified in the ta-

Table 4. Boundary conditions for flow (NS) and acoustic wave propagation (LEE) simulations
(p, v are the flow variables, p′, v′ are the acoustic variables).

Boundary NS model LEE model
Inlet v = (160; 444.445)(y − 0.1)(0.4 − y) m/s v′ = 0.01 sin(500 ⋅ 2πt) m/s
Wall v = 0 m/s v′ = 0 m/s
Outlet p = 0 Pa p′ = 0 Pa

Fig. 16. Geometric model of backward-facing step
(dimensions in mm).

ble, its boundary condition was equal to zero gradi-
ent of the variable on that boundary – ∂v/∂n = 0 or
∂p/∂n = 0. In the flow simulations, two different ve-
locity profiles were given at the inlet, described by the
equations in the table. The maximum velocity values
were 3.6 and 10 m/s.

The results of the flow simulations using Navier-
Stokes equations, for inlet velocity profiles given in
Table 4 were shown in Figs 17 and 18. For these sim-
ulations, the time step size was changed depending on
the velocity at inlet.

Then, the calculated velocity profiles were used
in LEE simulations as the mean flow velocity. This
required the development of a read/write tool that
FEniCS does not have by default. As mentioned in Ta-
ble 4, in the wave propagation simulation, the velocity
was given by a time-dependent sine function for the
frequency equal to f = 500 Hz. The buffer zone bound-
ary condition was added at the outlet. It was placed
on the entire height of the domain (y = 0–0.4) and for
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Fig. 17. Velocity distribution of flow over backward-facing step for maximum velocity at inlet equal to umax = 3.6 m/s.

Fig. 18. Velocity distribution of flow over backward-facing step for maximum velocity at inlet equal to umax = 10 m/s.

Fig. 19. Pressure values for linearised Euler simulations of wave propagation over backward-facing step,
with and without mean flow.

x = 1.5–1.6. In these simulations, the time step size
was equal to ∆t = 5 ⋅ 10−7. The results were shown in
Fig. 19.

In the figure, the values of pressure for different
mean flow velocities are shown. The data sampled
along x axis and for y = 0.25 are shown. It can be seen
that the distributions computed with the mean flow
presence are shifted relative to the distribution calcu-
lated without the flow. This agrees with the assump-
tions and confirms the correctness of the developed
model and tool. In addition, the effect of the damp-
ing zone can be seen in the graph. The wave was fully
absorbed and no reflection occurred.

4. Conclusions

This paper presents implementation and verifica-
tion of a finite element numerical model of linearised
Euler equations which describe the acoustic wave prop-
agation. The developed solver can be used to model
the propagation in the unbounded domains due to im-
plemented non-reflective boundary conditions called
buffer zone. The proposed solver is able to take the
mean flow velocity into account and can be used to
model a one-way flow-acoustic coupling.

The solver was used to solve one and two-dimen-
sional cases, to verify and validate the performance
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of the model. The performance of the non-reflective
boundary condition was also examined. The numerical
results were compared to the analytical solutions, they
were simiar, which indicates that the model has been
correctly implemented.

The proposed model was used to solve the case of
the acoustic wave propagation over a backward-facing
step in the presence of the flow.

The FEniCS software used for solving the equations
is proven to be a versatile tool. The developed code is
easily scalable and can be used both on a personal
computer and HPC cluster.

The developed tool suffers from problems similar to
other finite element solvers and mesh methods in gen-
eral – the need to use a properly dense computational
grid and a small time step to solve the equations with
the least possible error.

Despite this, both the tool and the results obtained
using it are promising. The tool could be used to model
the wave propagation in waveguides and mufflers, but
as for today it requires further development and test-
ing, especially for 3D cases and parallel computations.
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