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In this work we analyse basic characteristics of Love wave sensors implemented in waveguide structures
composed of a lossy viscoelastic surface layer deposited on a lossless elastic substrate. It has to be noted
that Love wave sensors working at ultrasonic frequencies have the highest mass density sensitivity Svpσ
among all known ultrasonic sensors, such as QCM, Lamb wave or Rayleigh wave sensors. In this paper we
have established an exact analytical formula for the mass density sensitivity Svpσ of the Love wave sensors
in the form of an explicit algebraic expression. Subsequently, using this developed analytical formula, we
compared theoretically the mass density sensitivity Svpσ for various Love wave waveguide structures, such
as: (1) lossy PMMA surface layer on lossless Quartz substrate and (2) lossy PMMA on lossless Diamond
substrate. The performed analysis shows that the mass density sensitivity Svpσ (real and imaginary part)
for a sensor with a structure PMMA on Diamond is five times higher than that of a PMMA on Quartz
structure. It was found that the mass density sensitivity Svpσ for Love wave sensors increases with the
increase of the ratio: bulk shear wave velocity in the substrate to bulk shear wave velocity in the surface
layer.
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1. Introduction

Ultrasonic waves (bulk and surface), widely used
in sensing applications, have been successfully em-
ployed in a variety of sensors, such as biosensors,
chemosensors, and other sensors measuring large num-
ber of physical quantities, e.g. humidity, viscosity, etc.
(Ballantine et al., 1997; Pajewski et al., 1998;
Kiełczyński et al., 1998; 2014a; 2014b; 2015a; Rocha
Gaso et al., 2013; Vikström, Voinova, 2016). Sen-
sors which utilise surface waves of the Love type
offer many advantages over the sensors employing
other types of ultrasonic waves (Chen, Liu, 2010;
Kiełczyński, Szalewski, 2011; Kiełczyński et al.,
2014b; 2014c; Wu et al., 2017; Kiełczyński, 2018;
Takayanagi, Kondoh, 2018; El Baroudi, Pom-
mellec, 2019). Of all types of ultrasonic waves, Love
waves are the most predestined to be used for con-
structing sensors of physical quantities, chemosensors,
and biosensors.

Shear horizontal surface Love waves have only one
component of the mechanical displacement, which at-

tains the highest value at the waveguide surface and
diminishes with the increase of the distance from the
surface into the bulk of the waveguide.

Energy of ultrasonic Love waves is concentrated in
the vicinity of the waveguide surface. From this reason,
Love waves are very sensitive to the changes of physical
properties that occur at the surface layer.

The mass density sensitivity Svpσ is one of the most
important parameters characterising operation and ap-
plicability of the ultrasonic sensor, for measurements
in liquid environment. In design of Love wave sensors
we seek to find a sensor’s configuration for which the
output of the sensor is significantly altered by presence
of an extra mass layer loading the upper surface of the
sensor’s waveguide. In fact, large changes in ultrasonic
velocity ∆vp and/or attenuation ∆α of the Love wave
will lead to higher accuracy of measurements with Love
wave sensors. In Love wave biosensors, working in a liq-
uid environment, a thin mass layer can be built on the
sensor surface due to interactions of the initially de-
posited recognition layer with an investigated analyte,
extracted directly from the surrounding liquid.



18 Archives of Acoustics – Volume 46, Number 1, 2021

In this work, we have performed theoretical ana-
lysis and numerical calculations for the mass density
sensitivity Svpσ of Love wave sensors, operating at ul-
trasonic frequencies. In this paper, on the upper propa-
gation surface of the Love wave waveguide an infinitesi-
mally thin film with surface mass density σ is attached.
The presence of this layer alters the propagation cha-
racteristics (i.e., phase velocity) of the Love wave. Love
wave sensors show the highest sensitivity to mass load,
compared to sensors using other acoustic (surface and
bulk) waves, e.g., Lamb waves or Rayleigh waves.

Mass sensitivity is a fundamental parameter that
determines the quality of the ultrasonic Love wave sen-
sors. Up to date, the mass density sensitivity S

vp
σ of

Love wave sensors has been determined only approx-
imately employing a number of simplifying assump-
tions.

In this work, we derive for the first time the mass
density sensitivity Svpσ of Love wave sensors in the form
of an exact analytical formula, without referring to any
simplifications and limitations.

An analytical formula for the mass density sensiti-
vity Svpσ has a huge advantage due to its capability to
reveal explicitly functional dependencies of the sensi-
tivity Svpσ as a function of all material and geometrical
parameters of the Love wave waveguide, such as moduli
of elasticity and density of the surface layer and sub-
strate, thickness of the surface layer, as well as wave
frequency. Such an insight cannot be easily achieved
with pure numerical methods. Therefore, the necessity
for labourious and extensive numerical calculations has
been greatly reduced.

2. Physical model

2.1. Geometry of the Love wave waveguide

In this paper we analyse Love waves that propagate
in the following layered waveguides: (1) PMMA sur-
face layer deposited on the semi-infinite ST-cut Quartz
substrate and (2) PMMA surface layer deposited on
the semi-infinite diamond substrate, see Fig. 1. Ma-
terial and geometrical parameters of these two layered
waveguides are given in Table 1.

The layered Love wave waveguide structure, ana-
lysed in this paper (see Fig.1) represents a physical
model of the Love wave sensor.

Table 1. Material and geometrical parameters of Love wave waveguides (Rasmusson, Gizeli, 2001;
Kushibiki et al., 2002; Raum, Brandt, 2003; Chu et al., 2003; Mortet et al., 2008).

Material Thickness
[µm]

Density
[kg/m3]

Storage
shear modulus

[GPa]

SH wave velocity
[m/s]

Compressional
wave velocity

[m/s]

Viscosity
[Pa ⋅ s]

PMMA surface layer h1 = 1 − 10 ρ1 = 1180 c1 = 1.43 v01 = 1100 vL1 = 2667 η44 = 0.37

ST-cut quartz substrate semi-infinite ρ2 = 2650 c
(2)
44 = 67.85 v2 = 5060 vL2 = 7032 0

Diamond substrate semi-infinite ρ2 = 3515 c
(2)
44 = 578 v2 = 12 823 vL2 = 17 520 0

Fig. 1. Cross-section of the analysed Love wave waveguide
loaded with a surface mass density σ. Love surface waves
propagate along the x1 axis. Shear horizontal (SH) mechan-
ical displacement u3 of the Love wave is directed along the

x3 axis.

The waveguide is designed to support shear hori-
zontal (SH) surface waves of the Love type when the
phase velocity of shear ultrasonic waves in the surface
layer is lower than that in the substrate. The composite
waveguide consists of a lossy viscoelastic surface layer
(h1 > x2 ≥ 0) which is rigidly bonded to a lossless in-
finite elastic substrate occupying the lower half-space
(x1 > h2).

The lossy surface layer being a viscoelastic mate-
rial, such as PMMA (PolyMethyl Methacrylate), is
characterised by a complex shear modulus of elasti-
city c

(1)
44 = c1 − jωη44 (Kelvin-Voigt model). By con-

trast, the lossless substrate is a semi-infinite elastic
medium, such as ST-cut Quartz and/or Diamond, with
real shear modulus of elasticity equal to c(2)44 . It is well
known from previous research that the above materi-
als can support pure SH bulk waves (Liu et al., 2015;
Xu, Juan, 2018) with no spurious components of vi-
brations along x1 and x2 axes.

A unique vibration pattern of Love surface waves
is an important property. In fact, Love surface waves
have only one non-zero shear-horizontal (SH) compo-
nent of the mechanical displacement u3, which is di-
rected along the x3 axis, parallel to the free surface
(x2 = 0) of the waveguide and perpendicular to the
direction of the Love wave propagation along the x1
axis.



P. Kiełczyński et al. – New Theoretical Model for Mass Sensitivity of Love Wave Sensors 19

The x2 axis is directed into the bulk of the sub-
strate. All material parameters of the composite wa-
veguide may change only along the x2 axis but are
homogeneous and isotropic along the x1 and x3 axes.

A Love wave that propagates in a lossy layered
waveguide from Fig.1 undergoes attenuation. Conse-
quently, the wave number k of the Love wave is a com-
plex quantity:

k = k0 + jα, (1)

where j =
√
−1 is the imaginary unit, k0 is the real

part of the complex wavenumber which determines the
phase velocity of the Love wave propagation, α is the
attenuation of the Love wave, and ω is the angular
frequency.

3. Mathematical model

The Love wave propagating in the waveguide struc-
ture from Fig. 1 is governed by the appropriate equa-
tions of motion (Achenbach, 1973; Rose, 2014) in
the constituent regions and the appropriate boundary
conditions (Auld, 1990) on the upper and lower sur-
faces of the surface layer.

3.1. Governing equations of motion

3.1.1. Lossy viscoelastic surface layer (h1 > x2 > 0)

The mechanical displacement u(1)3 of the Love wave
in the viscoelastic surface layer fulfills the following
equation of motion:

1

v21

∂2u
(1)
3

∂t2
= ∂

2u
(1)
3

∂x21
+ ∂

2u
(1)
3

∂x22
, (2)

where

v1 = (c1 − jωη44
ρ1

)
1/2

= v01 (1 − jωη44
c1

)
1/2

is the complex bulk SH wave velocity in the first vis-
coelastic surface layer, c1 is its storage modulus, ρ1 is
the density of the viscoelastic surface layer, η44 is its
viscosity, v01 = (c1/ρ1)1/2 is the velocity of the bulk SH
wave in the lossless elastic surface layer (for η44 = 0).

3.1.2. Semi-infinitive elastic substrate (x2 > h1)

The mechanical displacement u(2)3 of the Love wave
in the elastic substrate satisfies the following partial
differential equation (equation of motion):

1

v22

∂2u
(2)
3

∂t2
= ∂

2u
(2)
3

∂x21
+ ∂

2u
(2)
3

∂x22
, (3)

where v2 = (c(2)44 /ρ2)
1/2

is the velocity of the bulk SH

wave in the elastic substrate, c(2)44 its storage modulus
of elasticity, and ρ2 is the density in the elastic sub-
strate.

3.2. Thomson-Haskell Transfer Matrix method

Complex dispersion equation of Love surface waves
propagating in the lossy waveguide presented in Fig. 1
has been derived in this paper using Thomson-Haskell
Transfer Matrix method (Thomson, 1950; Haskell,
1953; Ke et al., 2011).

The key element in the Thomson-Haskell method
is to relate mechanical displacement and shear stress
of the Love wave on the upper surface of each layer
with mechanical displacement and shear stress on the
lower surface of the considered layer. Below we show
briefly the derivation of this relationship.

A general form of the time-harmonic solution for
the equations of motion (Eqs (2) and (3)) in the sub-
sequent layers corresponding to a time-harmonic Love
surface wave is sought in the following form:

u3(x1, x2, t) = V (x2) ⋅ exp [j (kx1 − ωt)], (4)

where V (x2) is the transverse distribution of the me-
chanical displacement u3 of the Love surface wave as
a function of depth x2, k is the complex wave number
of the Love wave.

The shear stress associated with the mechanical
displacement u3 of the Love wave is given by the fol-
lowing formula:

τ23 (x1, x2, t) = T (x2) ⋅ exp [j (kx1 − ωt)], (5)

where

T (x2) = c44(x2)
∂V (x2)
∂x2

.

Here c44(x2) is the shear modulus of elasticity of the
material in the constituent parts of the waveguide.

Taking into account Eq. (4), the equation of mo-
tion (see Eqs (2) and (3)) for the subsequent layer is
reduced to an ordinary differential equation of the sec-
ond order. Considering two new dependent variables
(V and T ), each of the second order differential equa-
tions resulting from Eqs (2) and (3) can be represented
as a system of two differential equations of the first or-
der, namely:

d

dx
[
V

T
] =

⎡⎢⎢⎢⎢⎢⎣

0,
1

c44(x)
β2c44(x) − ω2ρ(x), 0

⎤⎥⎥⎥⎥⎥⎦
[
V

T
]. (6)

Solving this matrix differential equation (6), for
example for the PMMA surface layer, we arrive at
the following formula (Eq. (7)) linking mechanical dis-
placement and shear stress on the upper surface of the
PMMA layer for (x2 = 0) with mechanical displace-
ment and shear stress on the lower surface of this layer
for (x2 = h1). Details of this derivation are given in
(Kiełczyński et al., 2016)
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[
V

T
]∣
x=h1

= cos (q1 ⋅ h1)

⋅
⎡⎢⎢⎢⎢⎢⎣

1,
1

c
(1)
44 ⋅ q1

tan (q1 ⋅ h1)

−c(1)44 ⋅ q1 ⋅ tan (q1 ⋅ h1) , 1

⎤⎥⎥⎥⎥⎥⎦

⋅ [
V

T
]∣
x=0

= [
A11 A12

A21 A22

] ⋅ [
V

T
]∣
x=0

, (7)

where q1 =
√
k21 − k2 is the transverse wavenumber of

the Love wave in the first PMMA surface layer, k1 = ω
v1
,

v1 is the complex phase velocity of bulk SH waves in
the PMMA surface layer, k = k0 + jα is the complex
wave number of the Love wave, and [A] is the transfer
matrix.

The transfer matrix [A] in Eq. (7) can be expres-
sed as:

[A] =
⎡⎢⎢⎢⎢⎣

A11 A12

A21 A22

⎤⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

cos(q1 ⋅ h1)
1

c
(1)
44 ⋅ q1

sin(q1 ⋅ h1)

−c(1)44 ⋅ q1 ⋅ sin(q1 ⋅ h1) cos(q1 ⋅ h1)

⎤⎥⎥⎥⎥⎥⎦
. (8)

The unknown components of the mechanical dis-
placement and the corresponding shear stress of the
Love wave at the interface x2 = 0 and x2 = h1 will be
further denoted by V0, T0 and VD, TD, respectively,

[
VD

TD
] = [

A11 A12

A21 A22

] [
V0

T0
]. (9)

3.3. Shear stresses on top and bottom of the first
surface layer No. 1

The top surface of the first PMMA layer No. 1
(x2 = 0) is loaded with an infinitesimally thin layer with
the surface mass density σ.

The shear stress of the SH Love wave in this in-
finitesimally thin layer at the interface with the PMMA
surface layer No. 1 is given by:

T0 = −σ ⋅ ω2V0. (10)

This dependence results from the Newton’s second
principle of motion.

The bottom of the viscoelastic surface layer No. 1
(PMMA) (x2 = h1) is rigidly bonded to the semi-
infinite elastic substrate (material No. 2). The depen-
dence of the mechanical displacement on the depth
V (x2) in an elastic substrate is given by V (x2) =
VD ⋅ exp (−b ⋅ x2). Therefore, the shear stress in the
elastic substrate at the interface with the viscoelastic
surface layer No. 1 (PMMA) is given by:

TD = c(2)44

∂V

∂x2
∣
(x2=h1)

= −c(2)44 ⋅ b ⋅ VD, (11)

where b = (k2 − k22)
1/2, k2 = ω

v2
, v2 = ( c

(2)
44

ρ2
)
1/2

.

The parameters b and k2 correspond, respectively,
to the transverse wavenumber of the Love surface wave
in the substrate and the wavenumber of bulk SH wa-
ves in the substrate.

Substituting values of the shear stresses T0 and TD
given by Eqs (10) and (11) into Eq. (9) leads to:

⎡⎢⎢⎢⎢⎣

VD

−c(2)44 ⋅ b ⋅ V D

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRx=h1

=
⎡⎢⎢⎢⎢⎣

A11 A12

A21 A22

⎤⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎣

V0

−σ ⋅ ω2 ⋅ V 0

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRx=0
.

(12)
In fact, Eq. (12) contains only two unknowns: V0

and VD. By a simple rearrangement of the terms,
Eq. (12) can be written as:

⎡⎢⎢⎢⎢⎣

1, − (A11 −A12 ⋅ σ ⋅ ω2)
c
(2)
44 ⋅ b, (A21 −A22 ⋅ σ ⋅ ω2)

⎤⎥⎥⎥⎥⎦
⋅ [
VD

V0
] = [

0

0
]. (13)

3.4. Complex dispersion equation

A necessary condition for the existence of a non-
zero solution of Eq. (13) requires zeroing of the deter-
minant of the 2× 2 matrix in Eq. (13). This condition
leads to the following complex dispersion equation for
Love waves:

(A21 −A22 ⋅ σ ⋅ ω2) + (c(2)44 ⋅ b) ⋅ (A11 −A12 ⋅ σ ⋅ ω2) = 0.

(14)
Substituting into Eq. (14) the elements of the ma-

trix [A] given by Eq. (8), we arrive finally at the follow-
ing complex dispersion equation for the Love surface
waves propagating in the lossy composite waveguide,
shown in Fig. 1:

tan (q1 ⋅ h1) ⋅ {(c(1)44 ⋅ q1)
2
+ (σ ⋅ ω2) ⋅ (c(2)44 ⋅ b)}

+ (c(1)44 ⋅ q1) ⋅ {(σ ⋅ ω
2) − (c(2)44 ⋅ b)} = 0, (15)

where k1 = ω
v1
, k2 = ω

v2
, q1 =

√
k21 − k2, b =

√
k2 − k22,

σ is the surface mass density loading the surface of
the waveguide, and k is the complex wavenumber of the
Love wave.

Equation (15) constitutes the mathematical model
of the propagation of Love waves in the waveguide
structure from Fig. 1. Equation (15) relates the phase
velocity and attenuation of the Love wave propagating
in the waveguide with material and geometrical pa-
rameters of the layered waveguide, depicted in Fig. 1.
It should be stressed upon that an extra mass loading
does not introduce any extra losses but only changes
in the phase velocity of the Love wave.

The complex dispersion equation (Eq. (15)) can be
written in a more abstract form as

F (c(1)44 , ρ1, c
(2)
44 , ρ2, η44, σ, h1, ω; k0, α) = 0, (16)
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where the bolded symbol F denotes that the equation
is defined in the complex domain.

The complex dispersion equation (Eq. (16)) was
subsequently split into its real and imaginary parts
ReF and ImF, which were further equated to zero,
namely:

ReF (c(1)44 , ρ1, c
(2)
44 , ρ2, η44, σ, h1, ω; k0, α) = 0, (17)

ImF (c(1)44 , ρ1, c
(2)
44 , ρ2, η44, σ, h1, ω; k0, α) = 0. (18)

Equations (17) and (18) constitute a system
of two nonlinear transcendental algebraic equations for
two unknowns k0 and α. The parameters in Eqs (17)
and (18) are the following: c(1)44 , ρ1, c

(2)
44 , ρ2, η44, σ,

h1, and ω. It is rather unrealistic to expect that any
closed form solution for the system of two algebraic
Eqs (17) and (18) would emerge. Therefore, the non-
linear system of two algebraic Eqs (17) and (18) has
to be solved numerically.

The system of two nonlinear algebraic Eqs (17)
and (18) was solved numerically using specialised pro-
cedures from the computer package Scilab.

The solution of this set of nonlinear algebraic equa-
tions (Eqs (17) and (18)) provides the complex wave
number k = k0 + jα of the Love wave.

4. Sensitivity to mass loading S vp
σ

The sensitivity Svpσ of the Love wave sensor to the
surface density mass loading can be defined as follows
(Ballantine et al., 1997):

Svpσ = 1

vp
( dvp
dσ

). (19)

For lossy waveguide structures, the phase velocity
of the Love wave can be defined as a complex quan-
tity: vp = ω/k. As a result, the mass density sensitivity
defined by Eq. (19) becomes also a complex quantity.

4.1. Exact analytical solution for mass sensitivity

Dispersion Eq. (15) can be regarded as an implicit
function F (vp, σ) = 0 of the phase velocity vp and sur-
face mass density σ which loads the waveguide surface.
The derivative dvp

dσ in formula (19) can be calculated
by applying the theorem of differentiation of implicit
function, namely:

dvp
dσ

= − ∂F /∂σ
∂F /∂vp

. (20)

As a consequence of employing Eqs (19) and (20)
we have derived for the first time the following explicit
formula for the mass density sensitivity Svpσ :

Svpσ =
ω2 1

k
{(c(1)44 q1) + (c(2)44 b) ⋅ tan (q1h1)}

a∗
, (21)

where

a∗ = h1
cos2 (q1h1)

∂q1
∂k

{(c(1)44 q1)
2
+ (c(2)44 b) (σω2)}

+ tan (q1h1){2q1 (c(1)44 )
2 ∂q1
∂k

+ c(2)44

∂b

∂k
(σω2)}

+ c(1)44

∂q1
∂k

⋅ {(σω2) − (c(2)44 b)} − c
(2)
44

∂b

∂k
(c(1)44 q1),

∂q1
∂k

= − k√
k21−k2

,
∂b

∂k
= k√

k2−k22
and k is the complex wave number of the Love wave.

Equation (21) is an exact analytical formula for
the mass density sensitivity Svpσ of Love wave sensors
presented in Fig. 1.

Equation (21) will be further used in the subse-
quent numerical calculations of the mass density sen-
sitivity Svpσ of the Love wave sensors.

5. Results

Using the derived analytical formula (Eq. (21)) we
have calculated numerically the real part of the mass
density sensitivity S

vp
σ of the Love wave sensor, for

various combinations of the surface layer and substrate
materials. As a substrate material, ST-cut Quartz and
Diamond were chosen.

Firstly, the real part of the mass density sensitiv-
ity Svpσ = 1

vp
(dvp
dσ

), as a function of frequency f of the
Love surface wave and thickness h1 of PMMA guid-
ing surface layer is given, respectively, in Figs 2 and 3.
Here, as a substrate we chose an ST-cut Quartz mate-
rial. The following surface mass density at the sensor
operating point has been chosen: σ = 1 ⋅ 10−6 kg/m2.

Fig. 2. Real part of the mass density sensitivity Svpσ [m2/kg]
for Love surface waves propagating in PMMA-ST – Quartz
waveguides loaded with a thin lossless film with the surface
mass density σ, as a function of Love wave frequency f ,
for different values of thickness h1 of the guiding PMMA

surface layer (h1 = 0.5, 1, and 2 µm).
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Fig. 3. Real part of the mass density sensitivity Svpσ [m2/kg]
for Love surface waves propagating in PMMA-ST – Quartz
waveguides, loaded with a thin lossless film with the mass
density σ, as a function of thickness h1 of the PMMA
guiding surface layer, for different values of wave frequency

f = 50, 100, and 200 MHz.

It is apparent that the real part of the mass density
sensitivity Svpσ displays resonant like peaks, as a func-
tion of both f and h1 and it drops gradually to zero
for higher frequencies if f → +∞.

Next, we also analysed a Love wave sensor employ-
ing a waveguide with a diamond substrate. Figures 4
and 5 show dependencies of the real part of the mass
density sensitivity Svpσ as a function of frequency f and
thickness h1 for the PMMA surface layer deposited this
time on a diamond substrate.

We used a diamond substrate because the velocity
of the bulk shear wave in it is very high (12 823 m/s).
In the waveguide, the PMMA surface layer deposited

Fig. 4. Real part of the mass density sensitivity Svpσ [m2/kg]
for Love surface waves propagating in PMMA – Diamond
waveguides loaded with a thin lossless film with the mass
surface density σ, as a function of Love wave frequency f ,
for different values of thickness h1 of the guiding PMMA

surface layer (h1 = 0.5, 1, and 2 µm).

Fig. 5. Real part of the mass density sensitivity Svpσ [m2/kg]
for Love surface waves propagating in PMMA – Diamond
waveguides, loaded with a thin lossless film with the surface
mass density σ, as a function of thickness h1 of the PMMA
guiding surface layer, for different values of wave frequency

f = 50, 100, and 200 MHz.

on a diamond substrate, we can observe a very large
contrast of the SH bulk wave velocities (1100 m/s in
PMMA and 12 823 m/s in diamond), which should re-
sult in a very high sensitivity.

Indeed, Love wave sensors based on PMMA on Dia-
mond structures have a significantly larger mass sensi-
tivity (five times) than sensors using PMMA on Quartz
structures.

6. Conclusions

From the theoretical analysis and numerical calcu-
lations performed in this work, we can draw the fol-
lowing conclusions:

1) the real part of the mass density sensitivity Svpσ of
Love wave sensors can be optimised (maximised)
by proper selection of material and geometric pa-
rameters of the layered waveguide structure;

2) for a constant frequency f , the real part of the
mass density sensitivity Svpσ reaches a maximum
as a function of thickness h1 of the surface layer;

3) for a constant thickness h1 of the surface layer, the
real part of the mass density sensitivity attains
a maximum as a function of frequency f ;

4) the real part of the mass density sensitivity S
vp
σ

of the Love wave sensors increases with growing
velocity ratio v2/v01 , where v01 is the bulk shear
wave velocity in the surface layer, and v2 is the
bulk shear wave velocity in the substrate;

5) a more complete optimisation process of the mass
density sensitivity S

vp
σ of Love wave sensors re-

quires further theoretical and numerical investi-
gations.
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