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Cylindrical shells made of composite material form one of the major structural parts in aerospace structures.
Many of them are acoustically thick, in which the ring frequencies are much higher than their critical frequencies.
In this work, sound radiation behaviour of acoustically thick composite cylinders is presented. Based on the
structural and acoustic wave number diagrams, the modal average radiation resistances in the frequency band of
interest are theoretically determined. The structural wavenumbers are determined considering transverse shear
deformation. The results show lesser sound radiation between the critical and ring frequencies, and significant
sound radiation near the ring frequency and beyond. In the absence of the present results the radiation efficiency
is considered to be unity at all frequencies beyond the critical frequency, including near the ring frequency. The
radiation resistances of the same cylinder are determined experimentally and they are in very good agreement
with the theoretical estimates. As part of this investigation, an expression for determining the ring frequency
of composite cylinder is also presented.
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Nomenclature

Symbols not listed here are used only at specific places and are
explained wherever they occur.

pi – acoustic pressure in subsystem i,
A – area of the cylindrical shell,

Dij – bending stiffness terms,
fc – critical frequency in Hz,
me – coefficient that depends on temperature and humidity,
mπ
L

– function of axial half wavenumber,
n
a

– function of circumferential full wavenumber,
cl – longitudinal wave speed,
L – length of the cylindrical shell,

ρm – mass per unit area,
ρ – material density,
d – mean free path of the chamber,
n2 – modal density of the cylinder,
n1 – modal density of the reverberation chamber,

fmn – natural frequency in Hz,

N(ω) – number of modes below the radian frequency ω,
n(f) – number of modes per Hz,
σrad – radiation efficiency,
Rrad – radiation resistance,

a – radius of the cylindrical shell,
T60 – reverberation time in seconds,
fr – ring frequency in Hz,
ωr – ring frequency in rad/s,
N – shear rigidity of the shell,
αw – sound power absorption coefficient of the walls,

SPL – sound pressure level,
⟨a⟩x – spatial average acceleration response ,
⟨v⟩x – spatial average velocity response,
ρoco – specific acoustic impedance,

S – surface area of the reverberation chamber,
α – total sound power absorption coefficient,
V – volume of the reverberation chamber,
ky – axial wave number,
k – wave number.
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1. Introduction

Composite shells are extensively used in aerospace
structures as they possess low mass with high strength
and stiffness and hence information on their sound ra-
diation characteristics is important. One of the criti-
cal loading conditions for aerospace structures is the
acoustic excitation. The fluctuating pressures associa-
ted with the acoustic energy cause severe dynamic
loading which are broadband in nature ranging from
20–8000 Hz. Responses induced as a result of acous-
tic loads are directly related to acoustic radiation re-
sistances of the structure. In both contexts, informa-
tion on the sound radiation characteristics of compos-
ite cylindrical shells is desired. Sound radiation charac-
teristics of a cylinder are dependent on two important
parameters, viz., the ring frequency and the critical fre-
quency. Cylinders are termed as acoustically thin when
the ring frequency is less than that of the critical fre-
quency and acoustically thick when the ring frequency
is higher than that of critical frequency.

One of the earliest works on the sound radiation of
cylinder is by Bordoni and Gross (1948) and a de-
tailed analytical treatment is presented by Runkle
and Hart (1969). If the modal densities of the struc-
ture under consideration are quite high, deterministic
approaches are very cumbersome in computing the ra-
diation resistance. They are suitable only when the
radiation resistance at a particular mode is desired.
When the modal overlap is high, statistical approaches
are commonly used in defining the radiation charac-
teristics. Statistical Energy Analysis (SEA) is a frame-
work by which the responses of higher order modes are
generally determined. Here the radiation resistances
are obtained based on the physical argument of the na-
ture of modes, whether it is acoustically fast or slow,
and the number of modes present in the frequency
band (Manning, Maidanik, 1964). In an acoustically
fast mode, the structural wavenumber is lesser than
the acoustic wave number and vice versa. The sound
radiated by acoustically fast mode is significantly high
compared to the sound radiated by an acoustically slow
mode.

Sound radiation characteristics of isotropic cylin-
drical shells was extensively investigated by Manning
and Maidanik (1964). They presented a classic expla-
nation for the radiation characteristics of cylindrical
shells. Radiation efficiency shows two distinct peaks
one at the ring frequency and the other at the critical
frequency. Szechenyi (1971) obtained the radiation
characteristics of isotropic cylinder for various ratios
of ring and critical frequency by considering the num-
ber of acoustically fast modes present in the frequency
band of interest. Addressing both acoustically fast and
acoustically slow modes, researchers proposed formu-
lae for radiation ratios of acoustically thin isotropic
cylinder (Miller, Faulkner, 1983). In all the above

works, the radiation properties are determined for
modal distribution of surface velocities. To determine
the radiated sound power for a given velocity distri-
bution, expressions in the form of integrals are pre-
sented (Stepanishen, 1978). There are several other
works on the sound radiation from isotropic cylinders
(Burroughs, 1984; Laulagnet, Guyader, 1989;
Ramachandran, Narayanan, 2007; Sun et al.,
2018). All these studies are applicable for lower or-
der modes of acoustically thin cylinders. Few works
reported pertains to the sound field in a cavity formed
by the cylinder, again in the lower order modes (Fahy,
1969; 1970; Qiao et al., 2013). It is important to note
that the cylinders considered in all the above works are
acoustically thin and made of isotropic material.

On the other hand, the works that are reported on
the radiation characteristics of composite cylinders are
very few. Yin et al. (2009) presented numerical results
for the far-field acoustic pressure of fluid loaded com-
posite laminated shells stiffened with rings. Authors
studied the effect of ply-angles and damping factors
on the far-field acoustic radiation characteristics and
concluded that the lamination scheme has little effect
on the acoustic radiation. Other works related to sound
radiation from composite cylinders deal with acousti-
cally thin cylinders (Cao et al., 2012; Zhao et al.,
2015).

It is seen that most of the works reported are on
acoustically thin cylinders and the results for acous-
tically thick cylinders are rarely reported. Few re-
searchers studied the radiation characteristics of an
acoustically thick cylinder. Wang and Lai (2000) pre-
sented an approximate method to compute modal av-
eraged radiation resistance of finite length isotropic
cylindrical shells. They compared the modal radiation
efficiency computed using approximate expression with
that obtained using boundary element method. It was
concluded that for acoustically thick shells, both sub-
sonic and supersonic modes exist below the critical
frequency. They considered the radiation efficiency of
the acoustically thick cylinder to be unity at frequen-
cies above its critical frequency, even near the ring
frequency. Also, they considered isotropic cylindrical
shells in their work.

Several cylinders used in spacecraft structure are
made of composite material and they are acoustically
thick. It is seen that though there are several works
reported on the radiation characteristics of cylindrical
shells, the cylinders considered are made of isotropic
materials. Works related to composite cylinders are
seldom reported. Also, the studies carried out are on
acoustically thin cylinders and works on acoustically
thick cylinders are not frequently reported. In the case
of acoustically thick isotropic cylinder, the radiation ef-
ficiency beyond the critical frequency is taken as unity
(Szechenyi, 1971; Wang, Lai, 2000). Also, all these
works do not consider transverse shear deformation
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while determining the wave numbers, which is influ-
ential in the higher order modes. Further, the studies
reported on acoustically thick cylinders are based on
numerical simulation and no experimental results are
presented which can be used to verify the radiation ef-
ficiencies at frequencies above the critical frequencies.

In this work, sound radiation characteristics of
a typical acoustically thick composite cylinder are ob-
tained theoretically. They are determined based on the
nature of the modes, as done for structures having high
modal overlap. Transverse shear deformation is also
considered while determining the wave numbers. It is
seen that the radiation efficiencies of acoustically thick
cylinders need not be unity at frequencies above crit-
ical frequencies and they can be much higher. These
results are then verified through experiments. An ex-
pression for determining the ring frequencies of com-
posite cylinders is also derived.

2. Details of the cylinder

An acoustically thick composite cylinder is consid-
ered for the investigations. Since the experiments are
carried out on a particular cylinder, the theoretical es-
timation is also carried out for the same cylinder. The
cylinder is of honeycomb sandwich construction with
face-sheets made up of composite material. The struc-
tural properties of the cylinder are presented below.
In earlier works, the modal density (Josephine et al.,
2018) and critical frequency of the same cylinder were
obtained experimentally (Renji, Josephine, 2020).

2.1. Geometric and elastic properties of the cylinder

The properties of the cylinder are as follows
length 1.485 m,
radius 0.597 m,
area 5.578 m2,
mass per unit area 1.72 kg/m2,
face sheet thickness 0.290 mm,
face sheet material 4 layers of CFRP:

(0/90)/35○/0○/−35○,
core material aluminium honey comb,
core height 12 mm,
core density 32 kg/m3,
core shear modulus 1.4 ⋅ 108 N/m2,
shear rigidity n 17.6 ⋅ 105 N/m,

A11 = 8.22 × 107 N/m, A22 = 3.30 × 107 N/m,

A12 = 1.39 × 107 N/m, A66 = 1.48 × 107 N ⋅m,

D11 = 3.11 × 103 N ⋅m, D22 = 1.27 × 103 N ⋅m,

D12 = 52.2 N ⋅m, D66 = 55.5 N ⋅m.

Suffix 1 represents the longitudinal direction and
suffix 2 refers to the tangential direction.

2.2. Ring frequency of the cylinder

Ring frequency is the frequency at which the cylin-
der undergoes uniform expansion and contraction; in
other words, the cylinder does not undergo bending de-
formation. It is the frequency at which the wave length
of the in plane wave equals the circumference of the
cylinder. If cl is the speed of the in plane wave, the ring
frequency of a cylinder having radius a is ωr = cl/a.
The speed of the in plane wave in a cylinder made
of isotropic material having Young’s modulus E, Pois-
son’s ratio µ and density ρ is c2l = E

ρ(1−µ2)
. Hence, the

ring frequency of the cylinder is given by

ω2
r =

E

ρ(1 − µ2)a2 . (1)

There is no expression reported for estimating the
ring frequency of a composite cylinder. In the absence
of any expression for estimating the ring frequency of
a composite shell, an approximation could be to use
the expression for isotropic shells with the properties
replaced by the properties of the composite shell. De-
noting Aij as the extensional stiffness term in the stan-
dard ABD matrix of composite plates, the ring fre-
quency can be determined approximately using the re-
lation

ω2
r =

A22

ρma2
. (2)

Here, suffix 1 stands for the longitudinal direction
of the cylinder and suffix 2 stands for the tangential
(circumferential) direction. At the ring frequency, only
tangential strains are generated and therefore it is lo-
gical to use the extensional stiffness A22 for determin-
ing the ring frequency.

Further, the cylinder undergoes uniform radial mo-
tion at the ring frequency. This implies that the deri-
vatives of the displacement along two in-plane direc-
tions vanish (Ghinet et al., 2006). Authors used this
property and derived the expression for the ring fre-
quency as

ω2
r =

A22 − B22

a

ρma2
. (3)

For a symmetric laminate Bij = 0 and hence the
expression for the ring frequency becomes the same
as given by Eq. (2). Therefore, the existing literature
suggests the expression for ring frequency as given by
Eq. (2).

A close examination of Eq. (2), which is for an
isotropic material, reveals that the ring frequency de-
pends on Young’s modulus and Poisson’s ratio. It is to
be noted that the isotropic material has two indepen-
dent elastic constants and the ring frequency depends
on both. In a similar fashion it is expected that the
ring frequency of a composite shell shall depend on
all the four elastic constants. But the expression for
ring frequency for composite shells given by Eq. (2)
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shows that the ring frequency depends on A22, which
means that the ring frequency depends on two elastic
properties, namely Ett and µlt where l stands for fi-
bre direction and t stands for transverse direction in
a lamina. Hence, obtaining ring frequencies through
other considerations is investigated.

Characteristic of in plane waves in composite plates
was investigated by Renji and he suggested an ex-
pression to determine the speed of the in plane waves
(Renji et al., 2020). It was shown that there exist two
in-plane waves in a composite plate, one dominated in
longitudinal motion and the other dominated in in-pla-
ne shear motion. The speed of the longitudinal motion
dominant in plane wave is

c2l =
A22

ρm
[1 + 0.25β − {1 − α2 − 2αβ

8
}]. (4)

Accordingly, the ring frequency of the composite
cylinder is given by

ω2
r =

A22

ρma2
[1 + 0.25β − {1 − α2 − 2αβ

8
}], (5)

where α = A12

A22
, β = A66

A22
. The factor over the exist-

ing approximate expression is [1 + 0.25β − { 1−α2
−2αβ
8

}]
and it depends on the values of the parameters α and β.
In this specific case the influence is small.

The ring frequency depends on the elastic proper-
ties A11, α and β and it assumes A11 = A22. Thus,
it can be seen that the ring frequency depends on
all the elastic properties. Even for the isotropic ma-
terial, the ring frequency depends on these properties
but these properties are related to each other.

In a practical situation A11 ≠ A22. Therefore, one
way of using the above expression is to consider the
elastic property along the tangential direction. This is
justifiable as the cylinder undergoes tangential strains
at the ring frequency and the longitudinal strains are
negligible. It is possible that in cases where A11 ≠ A22,
another frequency of interest can be present which is
characterized by A11 but this frequency may not have
influence as significant as the ring frequency character-
ized by A22.

The ring frequency of this cylinder is estimated as
1200 Hz.

2.3. Critical frequency of the cylinder

Yet another parameter of interest in sound radia-
tion is the critical frequency of the cylinder which is
related to the speed of flexural waves. It is well known
that the curvature increases the flexural wave speed in
cylinders and as a result it matches the acoustic wave
speed at an earlier frequency as compared to that flat
of plates. An expression for critical frequency of com-
posite cylinders derived earlier (Renji, Josephine,
2020) is given below

ω2
c = ω2

c,p [1 − (ωr
ωc

)
2

(ky
k

)
4

], (6)

where ωc is the critical frequency of the cylinder and
ωc,p is the critical frequency if it were a plate. Using the
above expression, the critical frequency of the cylinder
is computed as 495 Hz.

It should be noted that the ring frequency of this
cylinder is greater than that of the critical frequency
and the cylinder belongs to acoustically thick category.

2.4. Modal density of the cylinder

The modal densities of the cylinder are theoreti-
cally obtained using the expression (Josephine et al.,
2018) and the results in one-third octave bands are pre-
sented in Table 1. It is to be noted that the theoretical
expression incorporates transverse shear effects and it
gives modal densities very close to the experimentally
obtained values (Renji, Josephine, 2020).

Table 1. Modal density of the cylinder.

Sl. No. Frequency [Hz] Modal density [Hz−1]
1 400 0.056
2 500 0.066
3 630 0.077
4 800 0.096
5 1000 0.124
6 1250 0.148
7 1600 0.127
8 2000 0.132
9 2500 0.142

10 3150 0.156
11 4000 0.181
12 5000 0.211
13 6300 0.250
14 8000 0.300

3. Theoretical estimation of radiation resistance

Acoustic radiation characteristics of a structure can
be described by the parameter radiation resistance.
Radiation resistance of a structure, denoted by Rrad,
is a measure of the sound power radiated by the struc-
ture W . They are related by

W = Rrad⟨v2⟩x, (7)

where ⟨v2⟩x is the spatial average value of the ve-
locity of the structure. Another related parameter is
the radiation efficiency denoted by σrad, which is the
ratio of the sound power radiated by the structure
to the sound power radiated by a piston having the
same area and mean square value of velocity. The ra-
diation efficiency is related to radiation resistance by
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σrad = Rrad/(ρocoA) where A is the radiating area and
ρoco is the characteristic impedance of the acoustic
medium. The objective is to determine the modal ave-
rage radiation characteristics in the frequency band of
interest.

Vibration modes can be classified into acoustically
fast or supersonic modes and acoustically slow or sub-
sonic modes. This classification depends on the mag-
nitude of the structural wave number in comparison
with acoustic wave numbers. Acoustically fast modes
are characterised by lower structural wavenumber com-
pared to the acoustic wave number and they radiate
sound well. The acoustically slow modes radiate very
less. Modal averaged radiation resistance can be as-
certained by knowing the number of acoustically fast
modes and the total number of vibration modes in
a particular band of interest.

The number of acoustically fast modes in the
given frequency band can be determined from their
wavenumber diagrams. Closed form expression availa-
ble for determining the modal density of composite
cylinders (Josephine et al., 2018) is used to compute
the total number of modes in the given band. Radia-
tion ratio, denoted by σrad, is then obtained as the ratio
of the number of acoustically fast modes to the total
number of modes in that frequency band times the ra-
diation efficiency of the acoustically fast mode.

3.1. Mode count of acoustically fast modes

The number of acoustically fast modes in the given
band is obtained from the structural and acoustic wave
number diagrams. The expression for the natural fre-
quency of a composite cylinder is given by (Josephine
et al., 2018)

f2mn = 1

4π2ρm [1 + (D11

N
m2 + D22

N
n2)]

⋅
⎧⎪⎪⎨⎪⎪⎩
D11m

4 + 2 (D12 + 2D66)m2n2 +D22n
4

+
A11A22−A

2
12

a2
m4 [1+D11

N
m2+D22

N
n2]

A11m
4+A22n

4+A11A22−A2
12−2A12A66

A66
m2n2

⎫⎪⎪⎬⎪⎪⎭
, (8)

where ρm is the mass per unit area of the cylinder,
N is the shear rigidity, Aij is the extensional stiffness,
and Dij is the bending stiffness of the section of the
cylinder. The cylinder has a length of L and radius
of a. The above expression considers transverse shear
deformation which influences the frequencies of higher
order modes.

At a particular frequency, the bending wave in the
cylinder has both axial wave number and circumferen-
tial wave number. These are represented by the terms
m = mπ

L
and n = n

a
in the expression for natural fre-

quency.

Equation (8) represents the relationship between
the wavenumbers in a composite cylinder at a particu-
lar frequency. The above relation takes into account the
transverse shear deformation. At a particular one-third
octave band centre frequency, values of m can be cal-
culated for various values of n. Loci of these values rep-
resent the structural wave number diagram at that fre-
quency. This procedure is repeated for the upper and
lower limit of the particular frequency band. Figure 1
shows the structural wavenumber diagrams for 315 Hz,
400 Hz, 500 Hz and 630 Hz 1/3 octave bands. In case
of thin plates, the structural wavenumber diagram is
a quarter of a circle. Due to curvature the points shift
towards circumferential wave number axis.

Fig. 1. Structural and acoustic wavenumber diagrams.

Acoustic wavenumber diagrams are drawn using
the relation between frequency, wavenumber and speed
of sound in air which is 343 m/s. Acoustic wave num-
ber diagrams are quarter circle at any frequency. They
are also shown in Fig. 1. Continuous line represents
the structural wave number diagram and the dotted
line represents the acoustic wave number diagram.

Area of closed loop polygon where the structural
wave numbers are less than that of the acoustic wave
number represents the number of acoustically fast
modes in a particular frequency band. Thus, the area
given by the closed loop polygon ACBA represents
the number of acoustically fast modes. The structural
wave number and the acoustic wave number diagrams
always intersect at frequencies up to 500 Hz 1/3 octave
band. In 630 Hz band, the structural wave number and
the acoustic wave number diagrams do not intersect at
its upper limit. This implies that above this frequency
band, all the modes are acoustically fast.
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3.2. Total mode count

Total number of modes N(ω) in the frequency
band of interest ∆ω can be found using the expres-
sion (Josephine et al., 2018)

N(ω) = aL

π

π/2

∫
0

[ρmω
2 − f3

2f1
{f2
N

+

¿
ÁÁÀ(f2

N
)
2

+ 4f1
ρmω2 − f3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
dθ, (9)

where

f1 =D11c
4 + 2 (D12 + 2D66) c2s2 +D22s

4,

f2 =D11c
2 +D22s

2,

f3 =
(A11A22−A

2
12)c

4

a2

A11c4 +A22s4 + A11A22−A2
12−2A12A66

A66
c2s2

,

and f1, f2 and f3 are the functions representing the or-
thotropic parameters. Structural mode count in a par-
ticular frequency band is evaluated numerically inte-
grating Eq. (9). The expression for the mode count con-
siders transverse shear deformation which influences
the mode count of the higher order modes.

3.3. Radiation efficiency

Radiation efficiency or radiation ratio denoted by
σrad is calculated based on the total number of acousti-
cally fast modes relative to the total number of modes
in the frequency band under consideration. This can
be mathematically written as

σrad = [ total no. of acoustically fast modes

total no. of modes
] ⋅ σfast.

(10)
Equation (10) is used to determine the radiation

efficiency of the structure in the frequency band of in-
terest. The term inside the braces of Eq. (10) is de-
termined from the wave number diagrams and it is
always less than unity. If all the modes are acousti-
cally fast, this term is unity. The second term of the
above equation σfast represents the radiation efficiency
of acoustically fast modes. Radiation efficiency of these
acoustically fast modes can be considered as unity.
Above the critical frequency some of the modes will
be acoustically slow and some of the modes will be
acoustically fast. Therefore, effectively the radiation
efficiency will be less than unity. If all the modes are
acoustically fast, the radiation efficiency will be unity.

Beyond the ring frequency, curvature effects are
negligible and therefore radiation efficiency can be
computed using the expression for plates

σrad = {1 − fc
f

}
−(1/2)

for f > fr. (11)

Based on the above arguments and using Eq. (10),
the radiation efficiencies of the cylinder are computed.
They are presented in Table 2. Radiation resistance is
determined from the radiation efficiency.

Table 2. Estimated radiation efficiency and radiation
resistance of the cylinder.

Sl. No. Frequency [Hz] σrad Rrad [W/(m/s)2]
1 315 0.165 381.46
2 400 0.228 527.10
3 500 0.300 693.56
4 630 1.000 2311.85
5 800 1.000 2311.85
6 1000 1.580 3655.36
7 1250 1.390 3205.96
8 1600 1.260 2924.29
9 2000 1.200 2763.19
10 2500 1.150 2651.88
11 3150 1.110 2569.48
12 4000 1.080 2507.56
13 5000 1.070 2464.44
14 6300 1.050 2430.49
15 8000 1.040 2403.75
16 10000 1.030 2384.49

The results show a peak in the radiation efficiency
near the ring frequency. The results reported earlier
on the radiation characteristics of acoustically thick
cylinders (Szechenyi, 1971; Wang, Lai, 2000) do not
present any peak near the ring frequency. That is be-
cause in those studies at frequencies above the critical
frequency, the radiation efficiency is considered to be
unity. It needs to be noted that the wavenumbers in
the present work are calculated considering transverse
shear deformation along with the orthotropic nature
of composite cylinder, which were not considered in
earlier works.

While deriving these characteristics it is assumed
that the cylinder is infinitely long, meaning that the
boundary conditions at the end of the cylinder do
not affect the characteristics. Works reported on finite
length cylindrical shells reveals that the modal radia-
tion efficiencies of finite length cylindrical shells ap-
proach to those of infinite cylindrical shells at higher
frequencies (Wang, Lai, 2001; Fyfe, Ismail, 1989;
Lin et al., 2011). These results justify the assumption
of the cylinder being infinitely long while determining
the radiation characteristics in the higher order modes.

4. Experimental radiation resistance

As the theoretical estimates show significant sound
radiation at frequencies above critical frequencies, it is
thought that it would be good to see how the experi-
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mental radiation efficiencies are. The radiation efficien-
cies of the same cylinder are obtained experimentally
and these results are presented here.

4.1. Experimental methodology

The cylinder is suspended freely in a reverberation
chamber. It is excited using an electro-dynamic shaker.
The radiation resistance of the cylindrical shell can
be determined from the measured vibration response
of the structure and the Sound Pressure Level (SPL)
in the reverberation chamber. The methodology is de-
veloped by applying SEA to the cylinder-reverberation
chamber system. Few researchers used reciprocity tech-
nique to measure the radiation efficiency where the re-
sponses are measured for a known acoustic excitation
and the radiation resistance is obtained (Squicciarini
et al., 2015). This is an indirect method of deriving the
radiation resistance and it involves several uncertain-
ties. Therefore, the direct method where the structure
is excited using shaker is used in the present work.

In the SEA model the acoustic field is taken as sub-
system 1 and the structure is taken as subsystem 2.
Both the acoustic and the vibration fields are assumed
to be diffused. Considering the power balance of sub-
system 1,

π1 = ω (η1 + η12)E1 − ωη21E2. (12)

Here π1 is input power in subsystem 1; ηi is dissipa-
tion loss factor of the respective subsystem; ηij is cou-
pling loss factor when the power flow is from subsys-
tem i to j and Ei is energy of the respective subsystem.

Since the power input to subsystem 1 is zero, the
energies of the two subsystems are related by

E1 =
η21

η1 + η12
E2. (13)

The energy of the acoustic field E1 in terms of the
pressure p is (Reynolds, 1981)

E1 =
⟨p2⟩x
ρoc2o

V, (14)

where V is the volume of the chamber. The energy of
the structure E2 can be obtained from the measured
velocity as

E2 = ρmA⟨v2⟩x. (15)

The coupling loss factor denoted by η21 is related
to Rrad as (Norton, 1989)

η21 = Rrad/(ρmωA). (16)

Combining Eqs (13)–(16) we get

Rrad = ω {η1 + η12}
V

ρoc2o

⟨p2⟩x
⟨v2⟩x

. (17)

The coupling loss factor η12 is computed from the
reciprocal relationship (Lyon, 1975)

η12 = η21(n2/n1), (18)

and then the expression for the radiation resistance
becomes

Rrad =
ωV

ρoc2o
η1

⟨p2⟩x
⟨v2⟩x

{1 − ωV

ρoc2o

n2
n1

1

ρmωA

⟨p2⟩x
⟨v2⟩x

}
−1

. (19)

The dissipation loss factor of the acoustic field is
a measure of the sound absorbed by the reverberation
chamber. The dissipation loss factor of the chamber
having surface area S and sound absorption coefficient
of α is (Lyon, 1975)

η1 =
Scα

8πfV
. (20)

The radiation resistance of the structure is now
given by

Rrad =
⟨p2⟩xSα

4ρoco⟨v2⟩x − {n2c2/πf2ρmA} ⟨p2⟩x
. (21)

Knowing the sound absorption by the reverberation
chamber, the radiation resistance of the structure can
be determined using Eq. (22) by measuring the acous-
tic field in the room and the corresponding vibration
field of the structure.

4.2. Sound power absorption coefficient
of the chamber

The sound absorption coefficient of α of a room
is related to the sound absorption coefficient of the
walls and that of the air αw through the relation
(Reynolds, 1981)

α =
αw +med − (m2

ed
2/2)

1 − [αw +med − (m2
ed

2/2)]
, (22)

where d is the mean free path of the acoustic cavity
given by 4V /S and me is a energy attenuation coef-
ficient that varies with temperature and humidity of
the medium. The parameter me is computed using the
formula (Cox, D’Antonio, 2004) for this range of
humidity (20–70%)

me = 5.5 ⋅ 10−4 ⋅ 50

h
⋅ ( f

1000
)
1.7

. (23)

Here h represents the humidity and f is the frequency
in Hz. The total sound absorption coefficient denoted
by α can be determined from the known values of the
properties of the medium and the sound absorption
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coefficient of the walls. The sound power absorption co-
efficient of the walls can be determined from the mea-
sured reverberation time using the relation (Renji
et al., 1998)

T60 = 55.26
V /cS

ln (1 − αw)−1 +md
. (24)

Reverberation time is the time taken to decay the
SPL by 60 dB after the sound source is switched-off
and this parameter is experimentally determined. The
chamber is excited through a loud speaker. The sound
field inside the chamber is measured using microphones
and the data is recorded. The excitation is abruptly
stopped and the sound field now decays. The time
taken for the sound level to fall by 60 dB after the ex-
citation is stopped and determined. This is specified in
1/3-rd octave bands over the selected frequency range.
The measured reverberation time of the chamber is
given in Fig. 2.

Fig. 2. Reverberation time of the chamber.

The experiment is conducted in air with a relative
humidity of 50% and temperature of 22○C. The values
of med corresponding to the above conditions of the
medium are shown in Fig. 3. The dimensions of
the chamber are 9.0× 11.3× 14.3 m, having a volume
of 1454 m3 and surface area of 784 m2. The sound
power absorption coefficients of the walls are presented
in Fig. 4. The sound power absorption coefficients of
the chamber (which includes the effect of absorption
due to walls and air) computed using Eq. (22) are
shown in Fig. 5.

Fig. 3. Values of the parameter med.

Fig. 4. Sound power absorption coefficients of the walls.

Fig. 5. Sound power absorption coefficient of the chamber.

4.3. Details of radiation resistance test

The cylinder is hung in the reverberation chamber,
shown in Fig. 6. The cylinder is excited at two loca-
tions (shown in Fig. 7) using electro-dynamic shaker
system, one location at a time. When excited at one

 

 

 

 

 

 

 

Fig. 6 Cylinder being excited by shaker 

 

Fig. 6. The cylinder being excited by a shaker.

Fig. 7. Drive point locations ⊗ and accelerometer
locations ◯.
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location the accelerations are measured at 9 locations
and the sound field is measured at 3 locations far away
from the cylinder as well as the walls. The locations
of accelerometers and microphones are given in Ta-
bles 3 and 4, respectively. It should be noted that min-
imum circumferential distance between accelerometer
is 0.30 m and no two accelerometers are positioned in
the same height as is evident from the following table.
For the microphone locations the coordinates are given
with the centre of the floor of the chamber as origin.

Table 3. Accelerometer locations in cylinder.

Accelerometer No.
Location

Circumference
[○]

Axial distance
[mm]

A1 30 200
A2 90 400
A3 150 600
A4 210 800
A5 270 1000
A6 310 1200
A7 250 700
A8 120 500
A9 180 300

Table 4. Microphone locations.

Microphone No.
Location

Coordinate
[m]

Height above ground
[m]

M1 (−2.5, −1) 2.5
M2 (1.6, −1) 1.5
M3 (−2, 1) 1.82

Table 5. Spatial average of measured SPL and accelerations for various drive points.

Sl. No. Frequency [Hz]
Location 1 Location 2

SPL [dB] ⟨a⟩x [g] SPL [dB] ⟨a⟩x [g]
1 315 78.12 0.27 81.34 0.39
2 400 85.88 0.39 83.83 0.46
3 500 90.34 0.56 84.50 0.39
4 630 87.51 0.50 86.67 0.43
5 800 87.00 0.52 87.67 0.51
6 1000 83.67 0.38 84.00 0.40
7 1250 85.13 0.70 85.07 0.83
8 1600 86.00 0.95 85.57 1.03
9 2000 85.40 1.26 85.20 1.48

10 2500 76.83 0.60 78.13 0.94
11 3150 69.33 0.45 70.67 0.67
12 4000 65.17 0.45 67.50 0.70
13 5000 65.33 0.67 68.83 1.32

The spatial average of the acceleration and SPL
give the vibration and the corresponding acoustic field
and the results are given in Table 5. The spatial ave-
rage of the acceleration is the spatial average of the
mean square value of acceleration. Similarly, spatial av-
erage SPL is from the spatial average of means square
value of pressure. The experiment is performed for two
driving points.

The sound field is measured using 1/2′′ condenser
type microphone. The sensitivity of the microphone
is about 12.7 mV/Pa. As it is of 1/2′′ size, correction
factors are to be applied when a random incidence field
is measured. At 3000 Hz it is 0.5 dB, at 4000 Hz it is
1.0 dB and at 5000 Hz it is 1.5 dB. To arrive at the
correct SPL, these values are added to the measured
values.

4.4. Measured radiation resistance

Based on the results given in Table 5, the radiation
resistance of the cylinder is determined using Eq. (21).
The results are presented in Table 6.

The sound field and the vibration field are con-
sidered to be diffused. To ensure diffuse vibrational
field, the structure under consideration should possess
large number of modes in the frequency band of in-
terest (Le Bot, Cotoni, 2010). In the 1/3 octave
band centred at 500 Hz, the cylinder under considera-
tion has 7.6 modes and it is still higher at higher fre-
quencies. Similarly, the modes available in the acoustic
field are quite high. 500 Hz 1/3 octave band has more
than 12 000 modes as the volume of the chamber is
quite high. Thus, we see that the acoustic and vibra-
tion fields can be very well assumed to be diffusive. The
measured results also show that no significant variation
of responses (both acceleration and SPL) with location
is seen.
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Table 6. Measured radiation resistance and radiation
efficiency of the cylinder.

Sl. No. Frequency [Hz] Rrad [W/(m/s)2] σrad

1 315 107.56 0.047
2 400 440.79 0.191
3 500 1132.98 0.490
4 630 1625.87 0.703
5 800 2465.40 1.060
6 1000 3158.16 1.360
7 1250 1983.80 0.858
8 1600 2683.76 1.160
9 2000 2132.00 0.922
10 2500 2336.59 1.010

Compared to radiation resistance, the radiation ef-
ficiency can give clearer understanding on the radiation
characteristics. Therefore, the radiation efficiencies are
determined subsequently and the results are given in
Table 6 and Fig. 8.

Fig. 8. Measured radiation efficiency of the cylinder.

To attach the stringer of the shaker to the cylinder,
a small threaded metal piece (15× 15 mm) is bonded
on the outer face sheet. At high frequencies this type
of excitation can cause the outer face sheet alone
to vibrate significantly resulting in different vibration
modes. Hence, the measured accelerations will not cor-
respond to the panel bending mode but it will include
the face sheet bending modes and therefore the ra-
diation resistance deduced will not be correct. There-
fore, the results are given only up to 2500 Hz band in
Table 6 and Fig. 8. At frequencies beyond 2500 Hz
band the radiation efficiency can be taken as unity
based on the fact that well above the ring frequency
the radiation efficiency of a cylinder approaches that of
a plate and the radiation efficiency of a plate is unity
at frequencies well above its critical frequency.

5. Results and discussion

Radiation efficiency obtained though experimental
investigations are compared with the analytically de-
termined results in Table 7 and Fig. 9.

Table 7. Estimated and measured radiation efficiency
of the cylinder.

Sl. No. Frequency [Hz]
σrad

Theory Experiment
1 315 0.165 0.047
2 400 0.228 0.191
3 500 0.300 0.490
4 630 1.000 0.703
5 800 1.000 1.060
6 1000 1.580 1.360
7 1250 1.390 0.858
8 1600 1.260 1.160
9 2000 1.200 0.922
10 2500 1.150 1.010

Fig. 9. Radiation efficiency of the cylinder.

From Table 7 and Fig. 9 one can infer the following:
• Theoretically estimated radiation efficiency shows

a peak near ring frequency. This converges to
unity at higher frequencies.

• The theoretically estimated radiation ratios are in
good agreement with the experimental results ex-
cept at 1250 Hz and 315 Hz. At low frequencies,
the radiation resistance depends on the boundary
conditions. Analytical formulation assumes simply
supported boundary conditions while the experi-
ment is conducted on a freely hung condition. This
is probably the reason for the large difference seen
at 315 Hz.

• Literature reported for acoustically thick shells
(Szechenyi, 1971; Wang, Lai, 2000) indicates
that the radiation efficiency is unity beyond the
critical frequency i.e. from 495 Hz in this case.
This implies that there is no peak in the radiation
efficiency at the ring frequency for acoustically
thick category of cylinders. However, the ana-
lytical estimates as well the experimental results
clearly indicate that there is significant sound ra-
diation above critical frequency and it has a peak
near its ring frequency.

• In the works reported so far (Szechenyi, 1971;
Wang, Lai, 2000), the radiation efficiency is
considered to be unity at frequencies below the
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ring frequency but above the critical frequency.
Present results show that in this frequency range
the radiation efficiencies can be less than unity.
This is because in the above frequency range all
the modes are not acoustically fast but only some
of the modes are acoustically fast. The experimen-
tal results also show that the radiation efficiency
in the above frequency range is less than unity.

• An expression for estimating the ring frequency of
a composite cylinder is derived based on the speed
of the in plane waves in composite plates. The
ring frequency estimated using this expression is
found to be close to experimentally observed ring
frequency.

6. Conclusions

Sound radiation characteristics of an acoustically
thick composite cylinder are determined through
a numerical method and compared with the exper-
imental results. While determining the structural
wavenumbers the transverse shear deformation is also
considered which is otherwise not considered before. In
the absence of these results what is being practiced is
that the radiation efficiency is considered as unity from
critical frequency and beyond. It is shown that the
radiation efficiency is lower than unity at frequencies
between the critical and ring frequency and the sound
radiation is quite significant near the ring frequency
and beyond. Sound radiation characteristics of the
cylinder are also determined through experiments.
They are obtained from the measured sound pressure
levels in a reverberation chamber for known veloc-
ities generated through mechanical excitation. The
measured radiation characteristics are in very good
agreement with the theoretically estimated results.
From the speed of the in plane waves in composites,
an expression for determining the ring frequency of
composite cylinder is also derived. The experimental
results are in agreement with the frequency obtained
using the expression derived. The present investigation
gives a very good insight in to the radiation charac-
teristics of acoustically thick composite cylinders.
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