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Microphone array with minimum variance (MVDR) beamformer is a commonly used method for ambient
noise suppression. Unfortunately, the performance of the MVDR beamformer is poor in a real reverberant
room due to multipath wave propagation. To overcome this problem, we propose three improvements. Firstly,
we propose end-fire microphone array that has been shown to have a better directivity index than the corre-
sponding broadside microphone array. Secondly, we propose the use of unidirectional microphones instead of
omnidirectional ones. Thirdly, we propose an adaptation of its adaptive algorithm during the pause of speech,
which improves its robustness against the room reverberation and deviation from the optimal receiving di-
rection. The performance of the proposed microphone array was theoretically analyzed using a diffuse noise
model. Simulation analysis was performed for combined diffuse and coherent noise using the image model of
the reverberant room. Real room tests were conducted using a four-microphone array placed in a small office
room. The theoretical analysis and the real room tests showed that the proposed solution considerably improves
speech quality.
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1. Introduction

In real speech communication, ambient noise sig-
nificantly degrades the quality of speech. An effec-
tive method for ambient noise suppression is to use
a microphone array in combination with proper multi-
channel signal processing. A commonly used method
for processing microphone array signals is adaptive
beamforming, which typical representative is mini-
mum variance distortionless response (MVDR) beam-
former (Capon, 1969). Parameters of the MVDR
beamformer are estimated to minimize the power of the

ambient noise with unit gain constraint for the desired
speech signal. A more general linearly constrained min-
imum variance (LCMV) beamformer (Frost, 1972),
uses multiple constraints to enhance some desirable
features of the beamformer.

The performance of the MVDR beamformer is poor
in a reverberant room environment. In addition, the
presence of the calibration and the steering errors cause
unwanted suppression and degradation of the desired
speech signal. This problem can be overcome by diago-
nal loading (Van Trees, 2004), using some robust es-
timation method, or by adaptation in the pause of



612 Archives of Acoustics – Volume 46, Number 4, 2021

speech, (Hoshuyama et al., 1999; Saric, Jovicic,
2004; Jovicic et al., 2005; Wölfel, McDonough,
2009). Analysis of the MVDR beamformer and its im-
provements are presented in (Pan et al., 2014; 2015;
Benesty et al., 2008; Wang et al., 2019).

Some other noise suppression methods use a super-
directive beamformer with a fixed beam pattern opti-
mized for a particular noise type (Elko, 2004; Bitzer,
Simmer, 2001). The advantage of the superdirective
beamformers is their low sensitivity to moderate steer-
ing errors. Their drawback is their sensitivity to the
white noise. Moreover, they are optimized for a par-
ticular noise type which makes them less efficient for
suppression of the other noise types1.

Another method for multichannel noise reduction
uses generalized singular value decomposition (GSVD)
that minimizes the mean squares error between desired
speech signal and the filtered received microphone sig-
nals (Spriet et al., 2002). This method is suitable for
the small microphone array used in hearing aid de-
vices. A similar method (Papp et al., 2007), provides
robust adaptive beamforming by using signal covarian-
ce matrix, noise covariance matrix and the principal
eigenvector of an auxiliary matrix calculated from the
signal and the noise matrices.

A microphone-array based system for full-duplex
hands-free voice communication integrated with TV
technology was proposed in (Papp et al., 2011). The
system provides a comfortable conversation and in-
cludes superdirective beamformer steered by direction-
finding module, postprocessing module, acoustic echo
canceller, stationary noise reduction module and auto-
matic gain control.

In the solution (Šarić et al., 2019), the authors
considered a teleconference scenario where two speak-
ers share the same microphone array. Speakers’ activi-
ty is detected by a control module using signals from
four superdirective beamformers with different beam
patterns. In accordance with the speakers’ activity,
the control module switches on one of the two MVDR
beamformers directed toward each of the speakers.

Post-processing by the time-varying Wiener filter
estimated from the coherence matrix is widely used
method in teleconference applications (Zelinski, 1988;
Marro et al., 1998; Simmer et al., 2001; McCowan,
Bourlard, 2003; Saric et al., 2011). Post-processing
efficiently reduces diffuse noise and reverberation of the
room, but it also changes power spectral density (PSD)
of the speech which is unacceptable for the applications
that demand high-quality speech recordings.

Blind source separation (BSS) methods separate
the desired speech from ambient noise in order to en-
hance the speech signal. The most of the BSS methods
are based on second-order statistics in which nonsta-

1Superdirective beamformer is usually optimized for spherical
or cylindrical diffuse noise field.

tionarity of the speech signal is used to optimize pa-
rameters of the spatial filter (Parra, Spence, 2000;
Parra, Alvino, 2002; Wang et al., 2010). The se-
rious problem in the application of the BSS method
is source permutation which may cause degradation of
speech PSD.

One class of BSS methods, called degenerate
unmixing estimation technique (DUET) (Yilmaz,
Rickard, 2004), uses the assumption that competi-
tive signals are nonoverlapping in time and frequency
domain. The advantage of DUET is that it can even
handle cases when there are more signals than mi-
crophones. It uses instantaneous time delay estimates
and the estimates of signal attenuation in each fre-
quency bin to calculate the binary mask used to sepa-
rate the desired signal from other interference signals.
DUET can efficiently enhance the speech in a room
with moderate reverberation time. Its disadvantage is
the degradation of speech due to errors in the evalua-
tion of the binary mask caused by noise and reverber-
ation of the room.

Some of the modern noise suppression methods use
a spherical microphone array composed of many mi-
crophones placed on the rigid sphere (McDonough,
Kumatani, 2012). Although the spherical microphone
array outperforms the linear microphone array with
similar dimensions, it is a rather expensive solution be-
cause it requires a specially designed spherical micro-
phone array with 32 to 64 microphones. Besides this,
it requires special multichannel analog-to-digital con-
verter (ADC) for the acquisition of a large number of
independent signals, and it needs a powerful computa-
tion platform to process a large number of these signals
in real time.

In recent studies (Krecichwost, et al., 2019;
2020) a microphone arrays are used in multichan-
nel acquisition devices for computer-aided diagnostics
of speech disorders. A specially designed head-worn
acoustic mask with spatially arranged microphones lo-
cated in front of subject’s mouth enables recording of
the speech signal with increased signal-to-noise ratio
of the weak speech components.

Computational auditory scene analysis (CASA) is
a method based on perceptual principles of auditory
scene analysis (Wang, Brown, 2006). In CASA, each
time-frequency (T-F) element is classified as speech-
dominant or noise-dominant. An ideal binary mask
(IBM) applied to noisy speech signal separates speech
from noise. Estimation of the IBM is a binary classifi-
cation problem where supervised learning is employed
to predict the label of each T-F unit (Wang, Chen,
2018). The binary mask can be estimated from a single
microphone or multiple microphones (binaural or mul-
tichannel processing). The CASA approach is suitable
for various noise types where improves speech intelli-
gibility and reduces the word error rate of automatic
speech recognition (ASR) even for low speech-to-noise



Z. Šarić et al. – Performance Analysis of MVDR Beamformer Applied. . . 613

ratio (Chen, et al., 2014). On the other hand, accord-
ing to our knowledge, there is no report about speech
distortion when it is applied to noise-free speech signal.

In accordance with the state of the art in the field
of speech enhancement and taking into account that
some applications demand speech enhancement with-
out speech distortion, the aim of this paper is to pro-
pose a low-cost noise reduction method without speech
distortion.

One of the approaches that provides suppression
of the ambient noise without any speech degradation is
the MVDR beamformer. As the performance of the
MVDR beamformer is poor in a real reverberant room,
we propose three improvements of the basic method.
Firstly, we propose an end-fire linear microphone array
which is proved to have better directivity index (DI)
than corresponding broadside microphone array (Pan
et al., 2014; Trucco et al., 2015; Soede et al., 1993;
Kates, Weiss, 1996; Greenberg, Zurek, 2001).

Secondly, to further increase DI, we propose using
unidirectional instead of omnidirectional microphone
capsules. Although it is intuitively clear that the use
of unidirectional microphones improves DI compared
to the use of omnidirectional microphones, to the au-
thors’ knowledge, no theoretical analysis has been per-
formed so far to confirm this fact and to quantitatively
evaluate signal to noise ratio (SNR) gain.

Thirdly, we propose an adaptation of the MVDR
beamformer during pause of speech, which prevents
desired speech cancellation and improves robustness
against deviation of the speaker’s position from opti-
mal direction (Saric, Jovicic, 2004; Jovicic et al.,
2005). Although each of these methods individually
improves SNR, the best performance is obtained by
applying these methods together.

The paper is organized as follows.
In Sec. 2, we theoretically analyzed the perfor-

mance of the end-fire microphone array with an ar-
bitrary number of unidirectional and omnidirectional
microphones. In Subsec. 2.1, we defined a signal model
for the reverberant room environment that will be used
in further analysis. Elements of the LCMV beamformer
and some common notations are presented in Sub-
sec. 2.2. The model of the unidirectional microphone
is presented in Subsec. 2.3. The model of the array
composed of an arbitrary number of unidirectional and
omnidirectional microphones and its application to the
LCMV beamformer is presented in Subsec. 2.4. Theo-
retical analysis of the SNR gain of the microphone ar-
ray in the diffuse noise field is presented in Subsec. 2.5.
White noise gain (WNG) for the proposed microphone
array is analyzed in Subsec. 2.6.

Performance analysis of the proposed microphone
array is presented in Sec. 3. The SNR gain for three
configurations of the microphone array with limited
WNG is evaluated for the diffuse noise field in Sub-
sec. 3.1. The performance of the proposed microphone

array in the simulated room environment is presented
in Subsec. 3.2, while the performance of the laboratory
model of the proposed microphone array in the real re-
verberant room is presented in Subsec. 3.3. Results are
discussed in Sec. 4. Conclusions are presented in Sec. 5.

2. Model of the proposed microphone array
(Method)

2.1. Signal model

Let us consider a microphone array composed ofM
microphones, as shown in Fig. 1. In accordance with
the reverberant room model (Benesty, et al., 2008)
measurements ym(t) at m-th microphone are

ym(t) = gT
ms(t) + vm(t), (1)

where s(t) = [s(t), ..., s(t − Lg + 1)]T is a column vec-
tor of last Lg samples of zero mean speech signal,
gm = [gm,1, ..., gm,Lg ]

T is Lg-column vector that repre-
sents room impulse response from the desired speaker
to them−th microphone, vm(t) is additive noise uncor-
related with s(t). Superscript T is transpose operator.
The corresponding model in discrete Fourier transform
(DFT) is

Ym(ω, l) = gm(ω)S(ω, l) + Vm(ω, l), (2)

where Ym(ω, l), S(ω, l), and Vm(ω, l) are DFT coeffi-
cients of ym(l), s(l), and vm(l) respectively at segment
l and angular frequency ω. Discrete Fourier transforms
are performed on overlapping segments. For simplicity,
the index l is omitted in the rest of the paper. Matrix
form of the signal model (2) is

Y(ω) = G(ω)S(ω) +V(ω), (3)

where Y(ω) = [Y1(ω) Y2(ω) Y3(ω) ... YM(ω)]
T is

the M -column vector of complex microphone signals,
G(ω) = [g1(ω), ..., gM(ω)]T is the M -column trans-
fer vector, and V(ω) = [V1(ω), ..., VM(ω)]T is the M -
column vector of the ambient noise. The output of the
beamformer is the weighted sum of the microphone
signals,

Z(ω) = hH(ω)Y(ω), (4)

Fig. 1. Beamformer in DFT domain.
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where h(ω) = [h∗1(ω) h∗2(ω) h∗3(ω) ... h∗M(ω)]
H is

the M -column vector of complex weights. Superscript
H denotes complex conjugate transpose while * de-
notes conjugate operation. The commonly used meth-
ods for weights estimation are MVDR or LCMV esti-
mators. In the following, we will focus on the LCMV
estimator as a more general estimation method.

2.2. LCMV beamformer

Estimation of the LCMV beamformer’s weights can
be defined as conditional minimization (Frost, 1972)

hLCMV(ω) = arg min
h

hHΦv(ω)h

subject to CH
(ω)h(ω) = f,

(5)

where Φv(ω) = E {v(ω)vH(ω)} is the noise covariance
matrix, E{⋅} is the mathematical expectation opera-
tor, C(ω) is constraint matrix, and f is the desired re-
sponse vector. Each constraint is defined by a column
of the constraint matrix C(ω) and the corresponding
element of the desired response vector f . Usually used
constraint is unit gain for the desired speech defined by

GH
(ω)h(ω) = 1. (6)

The solution of the optimization problem (6) is
(Frost, 1972; DeFatta, 1988)

hLCMV(ω) = Φ−1
v (ω)C(ω) [CH

(ω)Φ−1
v (ω)C(ω)]

−1
f .
(7)

To ensure inversion of the matrix Φ−1
v (ω), as well as

to control white noise gain (WNG) of the beamformer,
the diagonal loading has to be applied by (Van Trees,
2004)

Φv(ω) = Φ̃v(ω) + δI, (8)

where Φ̃v(ω) is noise covariance matrix estimated in
the pause of speech, I is the unit matrix, and δ is
a small positive scalar.

In this paper, the first constraint is the unit gain for
the desired speech signal. The additional constraints
are used to model unidirectional microphones.

2.3. Model of the unidirectional microphone

A unidirectional microphone can be modeled as
a differential microphone composed of microphones
mk and mk+1, Fig. 2, (Elko, 2004). Beam-pattern
of the unidirectional microphone model is determined
by the null steering angle θ0 which is controlled by the
distance between microphones dc and the time delay τc

θ0 = cos−1
(−cτc/dc), (9)

where c is the speed of sound. Angles θ0 = 90○, θ0 =

109○, θ0 = 125○, and θ0 = 180○, define dipole, hypercar-
dioid, supercardioid, and cardioid pattern, respectively

(Elko, 2004). Without loss of generality, we consider
the cardioid pattern, (θ0 = 180○) for which τc = dc/c.
We used the cardioid pattern because it is widely used
for low-cost electret microphone capsules.

Fig. 2. Model of unidirectional microphone.

The flat frequency response of the model is ob-
tained by the compensation factor hc(ω):

hc(ω) =
1

1 − exp(−j2ωτc)
. (10)

2.4. Constraint-based unidirectional
and omnidirectional microphone array model

Although it is obvious that unidirectional micro-
phones built into an array of microphones increase its
directivity, a quantitative analysis of that contribution
has not been performed so far. In this paper, we per-
form this analysis using a model of microphone array
in which each unidirectional microphone is represented
by one constraint in constraint matrix C(ω). Figure 3
shows a microphone array in which two omnidirec-
tional microphones at positions k(u) and k(u) + 1 act
as a differential microphone. The equivalent complex
weights hk(u)(ω) and hk(u)+1(ω) of the microphones
mk(u) and mk(u)+1 are

h∗k(u)(ω) = h
∗

k(u), k(u)+1(ω)hc,

h∗k(u)+1(ω) = −h
∗

k(u), k(u)+1(ω)hc exp (−jωτc),
(11)

where h∗k(u), k(u)+1(ω) is complex weigh of u-th unidi-
rectional model.

a) b)

Fig. 3. (a) Microphone array with model of differential mi-
crophone at k(u), k(u) + 1 position; (b) unidirectional
microphone model realized by microphones mk(u) and

mk(u + 1) with common weight hk(u), k(u)+1.
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Equations (11)1 and (11)2 define a linear constraint
of the LCMV beamformer in a form

cHu (ω)h(ω) = 0, (12)

where

cHu (ω) = [

M (M is number of array elements)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
0 ... 0 exp(jωτc)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k(u) position

1
®

k(u)+1

0 ... 0], (13)

The first column of the constraint matrix C(ω) is
the unit gain constraint vector, Eq. (6). Other Mu co-
lumns of C(ω) are constraint vectors cu = 1, ...,Mu

defined by Eq. (13), where Mu is number of unidi-
rectional microphone of the array. Finally, constraint
matrix C(ω) is

C(ω) = [G(ω) c1 ... cMu]. (14)

According to Eqs (6) and (12), the desired response
vector is

f = [1 0 ... 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mu+1

]
T. (15)

Constraint matrix C(ω) and desired response vec-
tor f have to be substituted into Eq. (7) to obtain
LCMV beamformer’s weights.

2.5. SNR gain of the microphone array model

The commonly used measure for signal enhance-
ment by LCMV beamformer is signal to noise ratio
(SNR) gain. Input SNR, denoted as iSNR(ω), is the
ratio of the input speech power, Φs(ω) = E {∣S(ω)∣

2
},

and noise power on reference microphonem1, Φv1(ω) =

E {∣V1(ω)∣
2
} (Pan et al., 2014),

iSNR(ω) = Φs(ω)/Φv1(ω). (16)

Speech power at the output of the beamformer is

Psout (hLCMV(ω)) = Φs(ω)h
H
LCMV(ω)G(ω)

⋅GH
(ω)hLCMV(ω). (17)

Noise power at the output of the beamformer
Pv out (hLCMV(ω)) is

Pv out (hLCMV(ω)) = hHLCMV(ω)Φv(ω)hLCMV. (18)

Taking into account Eqs (17) and (18), output SNR is

oSNR (hLCMV(ω)) =
Psout (hLCMV(ω))

Pv out (hLCMV(ω))

=
Φs(ω)h

H
LCMV(ω)G(ω)GH(ω)hLCMV(ω)

hHLCMV(ω)Φv(ω)hLCMV

= iSNR(ω)
hHLCMV(ω)G(ω)GH(ω)hLCMV(ω)

hHLCMV(ω)Γv(ω)hLCMV(ω)
, (19)

where Γv(ω) is noise pseudo-coherence defined by

Γv(ω) = Φv(ω)/Φv1(ω). (20)

SNR gain of the LCMV beamformer is the ratio be-
tween output SNR, (19), and input SNR. Taking into
account Eq. (19) and constraint (6), the SNR gain is

SNRgain (hLCMV(ω))=
1

hHLCMV (ω)Γv(ω)hLCMV(ω)
.

(21)
Substituting Eqs (20) and (7) into Eq. (21), SNR

gain for the LCMV beamformer is

SNRgain(ω) =
1

fH [C(ω)HΓ−1
v (ω)C(ω)]

−1
f
. (22)

From Eq. (22) we see that SNR gain depends on the
noise pseudo-coherence matrix Γv(ω), constraint ma-
trix C(ω), and desired response vector f . The pseudo-
coherence matrix Γv(ω) depends on the spatial distri-
bution of the noise power, while C(ω) and f are fixed
for the particular array structure.

2.6. White noise gain of the array

The white noise gain (WNG) shows the ability
of the array to suppress spatially uncorrelated noise
mostly caused by self-noise of the microphones. Omni-
directional and unidirectional microphones contribute
differently to output noise power. Under assumption
that all omnidirectional microphones have the same
noise variance equal σ2

o(ω) = E {∣ξm(ω)∣
2
}, their con-

tribution to the output noise power is (Pan et al.,
2014)

Pn_omni(ω) = σ
2
o(ω) ∑

m∈O

∣hm(ω)∣
2
, (23)

where O is the set of omnidirectional microphones of
the microphone array. Using Eqs (11)1 and (11)2, con-
tribution of unidirectional microphones to the output
noise power is

Pn_uni(ω) = σ2
U(ω) ∑

u∈U

(∣hk(u)(ω)∣
2
+ ∣hk(u)+1(ω)∣

2
)

= σ2
eU(ω) ∑

u∈U

∣hk(u),k(u)+1(ω)∣
2
, (24)

where σ2
U(ω) is white noise variance of microphones

mk(u) and mk(u + 1), σ2
eU(ω) = 2σ2

U(ω) ∣hc(ω)∣
2 is

variance of equivalent noise of the u-th unidirectional
microphone. Assuming that omnidirectional and uni-
directional microphones have the same self-noise, i.e.
σ2
eU(ω) = σ2

0(ω), white noise variances of the micro-
phones mk(u) and mk(u + 1) are

σ2
U(ω) = σ2

0(ω)/ (2 ∣hc(ω)∣
2
) . (25)
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Output noise power is sum of contributions of omnidi-
rectional and unidirectional microphones. Substituting
Eq. (25) into Eq. (24) and adding Pn_omni(ω), the out-
put noise power is

Pn_TOT(ω)=σ2
o

⎡
⎢
⎢
⎢
⎢
⎣

∑
m∈O

∣hm(ω)∣
2
+

1

2 ∣hc(ω)∣
2

⋅ ∑
u∈U

(∣hk(u) (ω)∣
2
+ ∣hk(u)+1 (ω)∣

2
)

⎤
⎥
⎥
⎥
⎥
⎦

, (26)

where U is the set of unidirectional microphones of the
microphone array. WNG is the ratio between input and
output noise power expressed by (Bitzer, Simmer,
2001)

WNG(ω) =
σ2
o

Pn_TOT(ω)
=

1

a∗
, (27)

where

a∗ = ∑
m∈O

∣hm(ω)∣
2

+
1

2 ∣hc(ω)∣
2 ∑
m∈U

(∣hk(u)ω)∣
2
+ ∣hk(u)+1(ω)∣

2
).

3. Results

In all tests we assume that the target signal is direct
path speech for which the transfer vector G(ω) is

G(ω) = [1 e−jωτ2 ... e−jωτM ]
T
,

where τm is time delay on m-th microphone, m =

2, ...,M , relatively to the microphone m1.

3.1. SNR gain in ideally diffuse noise

Due to the multipath effect, noise in a real room
may have an energy flow of equal probability in all
directions (Pan et al., 2014; Bitzer, Simmer, 2001;
McCowan, Bourlard, 2003). Hence, diffuse noise is
usually used to predict the performance of the array
in a real reverberant room. In diffuse noise, (i, j)-th
element of the noise coherence matrix ΓV (ω) is (Pan
et al., 2014)

[Γv(ω)]i,j = sin[ω(τi − τj)]/ [ω(τi − τj)] . (28)

Substituting Eq. (28) into Eq. (22), we can calcu-
late SNR gain in terms of frequency. SNR gains were
evaluated on 4-microphone array for three analyzed
configurations:

(i) an array composed of four omnidirectional micro-
phones (“4-omni” configuration),

(ii) an array composed of one cardioid microphone
and three omnidirectional microphones (“1-uni
3-omni” configuration),

(iii) an array composed of four cardioid microphones
(“4-uni” configuration).

In all configurations, the distances between adja-
cent microphones were 5 cm. The distance between
microphones in the differential microphone model was
1.5 cm. The selected distance of 1.5 cm is the half wave-
length for 11 333 Hz. It provides a good accuracy of the
unidirectional model for frequencies in the range from
100 to 8000 Hz. White noise gain was calculated by
Eq. (27) and kept over 1/4, (i.e. −6 dB). Diagonal load-
ing of the matrix Γv(ω) is also applied by Eq. (8) with
experimentally determined scalar δ. Figure 4 displays
SNR gains for tested microphone array configurations
calculated by Eq. (22).

Fig. 4. Comparison of the SNR gains for different array
configurations when WNG is limited to −6 dB.

3.2. Results in the simulated reverberant room

The performance of the different microphone array
configurations was tested on the model of the small re-
verberant room shown in Fig. 5. The room was mod-
eled by the acoustic image method (Allen, Berkley,
1979). Dimensions of the room were 5× 4× 2.85 m. Re-
flection coefficients were 0.7754 for all walls. Reverbe-
ration time T60 was 400 ms calculated by Eyring’s for-
mula

T60 = 0.163V / (−S logβ) , (29)

where V is the volume of the room [m3], S is the total
surface of the room [m2], and β is reflection coefficient.
Ambient noise was the sound of an air conditioner,
https://www.soundsnap.com/tags/air_conditioner. To be
more realistic, the air conditioner was represented by
three independent point sources horizontally spaced
35 cm along the x-axis, as shown in Fig. 5. Speech sig-
nal was taken from the “Harvard Sentences” database,
http://www.cs.columbia.edu/~hgs/audio/harvard.html.
Processing was performed with a 16 kHz sampling
frequency. We compared performances of the same
array configurations analized in Subsec. 3.1.

The noise covariance matrix Φv(ω) was estimated
in the pause of speech, while LCMV weights were cal-
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Fig. 5. Test scenario of the simulated room.
Coordinates are x – width, y – depth, z – height.

culated by Eq. (7). Once estimated, these parameters
were fixed and used to process microphone signals. The
performance of the tested array configuration is evalu-
ated by using three measures:

• Noise attenuation (NA) measure, which is de-
fined by

Anoise = Pv1/Pv out, (30)

where Pv1 is noise power on reference micro-
phone mic 1 calculated during the non-speech
interval, Pv out is noise power at the output of
the beamformer calculated during the same non-
speech interval. This measure displays the ability
of the beamformer to suppress ambient noise un-
der the assumption of unit gain for the desired
speech.

• Signal to noise ratio gain (SNR_gain) mea-
sure takes into account the possible attenuation
of the desired speech. This measure is defined by

Table 1. Quality measures for WNG > 1/4 (−6 dB).

Measure Algorithm
No steering

error
[dB]

Steering
error +15○

[dB]

Steering
error −15○

[dB]

Anoise

4-omnidirectional 10.472 10.472 10.472
1-unidirectional/3-omnidirectional 13.193 13.193 13.193

4-unidirectional 13.314 13.314 13.314

SNR gain

4-omnidirectional 9.560 9.441 9.317
1-unidirectional/3-omnidirectional 12.835 12.590 12.514

4-unidirectional 12.483 11.995 11.951

SRR
4-omnidirectional 8.538 8.509 8.702

1-unidirectional/3-omnidirectional 10.037 9.907 10.066
4-unidirectional 11.436 11.045 11.192

SNR_gain = oSNR/iSNR, (31)

where iSNR is input signal to noise ratio,

iSNR = Ps m1/Pv m1. (32)

Ps m1 is speech power on the reference microphone
mic 1, Pv m1 is noise power at the same micro-
phone, oSNR is output signal to noise ratio,

oSNR = Psout/Pv out, (33)

where Psout is speech power at the output of the
beamformer, and Pv out is noise at the output of
the beamformer. SNR_gain is not sensitive to the
suppression of the reverberation.

• Signal to reverberation ratio (SRR) is the ra-
tio between the power of the direct path speech
and the power of reflections at the output of the
beamformer. SRR is calculated by

SRR =

t2

∑
t=t1

(sdpout(t))
2

t2

∑
t=t1

(sout(t) − sdpout(t))
2

, (34)

where sdpout(t) is direct path speech recorded at
the output of the beamformer, and sout(t) is the
total output of the beamformer in the reverberant
room, (t1, t2) is speech interval.

In order to evaluate the robustness of the beam-
former against small changes of the speaker’s posi-
tion, we compared its performances for three cases:
(a) no steering error, (b) with steering error +15○,
(c) with steering error −15○. WNG was limited to 1/4
(−6 dB). The results are displayed in Table 1. Quali-
ty measures are displayed in dB. We note that Anoise

doesn’t depend on the steering error because this mea-
sure doesn’t take into account speech power attenua-
tion at the output of the beamformer.
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3.3. Tests in the real room

Real room tests were aimed to evaluate the abi-
lity of the microphone array to suppress the ambi-
ent noise in the real room environment. Tests were
conducted in a small office room. Dimensions of the
room were 5× 4× 2.85 m. The reverberation time was
T60 = 400 ms exactly the same as in the scenario sim-
ulated in Subsec. 3.2. There were three active noises.
The first was an air conditioner placed near the ceiling,
which generated ambient noise of 45 dB. The second
was the cooler of the notebook PC placed at a dis-
tance of 110 cm from the microphone array, which gen-
erated a noise level of 56 dB at the position of the
microphone array. The third was the street noise of
40 dB SPL. The noise level was measured by sound
level meter CESVA SC420. As in the simulation Sub-
sec. 3.2, speech signals were taken from the “Har-
vard Sentences” database, http://www.cs.columbia.
edu/~hgs/audio/harvard.html. The speech was played
by loudspeaker placed at the distance of 90 cm in front
of the microphone array generating 65 dB at the posi-
tion of the microphone array, Fig. 6.

Fig. 6. Positions of the microphone array,
PC and loudspeaker Sp1.

Acoustic signals were acquired by a conference mi-
crophone Proel BMG2 upgraded with 3 additional
electret microphones (mic 2–mic 4), Fig. 7. Digitali-
zation was performed with 48 kHz sampling rate.
Data acquisition was conducted by software developed
in MS Visual C++. The processing was performed in
Matlab at 16 kHz sampling rate.

Fig. 7. Four-element microphone array composed of Proel
conference microphone BMG2 (mic 1) and the additional

3 electret microphone capsules (mic 2, 3 and 4).

According to the (Ricketts, 2001), we have two
options for the practical realization of the unidirec-
tional microphones. Firstly, we can use two closely-
spaced omnidirectional microphones and apply the
model presented in Subsec. 2.3. Secondly, we can use
a single unidirectional microphone capsule with the
cardioid polar pattern. As the second option is cheaper
and more practical for realization, we used it in real
room experiments. Tests were conducted on two array
configurations:

(a) “1-uni 3-omni” – an array composed of one uni-
directional microphone and three omnidirectional
electret microphones. The first microphone was
the original BMG2 unidirectional microphone,
while other microphones were WM 61A Pana-
sonic.

(b) “4-uni” – an array composed of four unidirectional
microphones. The first microphone was the same
unidirectional microphone as in configuration (a),
while the next three microphones were Coolvox
MDN-318.

Test sentences were the same as in simulated room
experiments. We generated 15 test examples which
were independently processed by the proposed method.
SNR_gain was obtained by comparing SNR of the
tested array configuration with the SNR on the om-
nidirectional microphone (WM 61A).

SNR_gain of two tested array configurations and
the SNR_gain on the single unidirectional microphone
are displayed in Fig. 8. The average SNR_gain of
the single unidirectional microphone was 4.39 dB with
a standard deviation of 0.622. SNR_gains of the ar-
ray configurations “1-uni 3-omni” and “4-uni” were
12.21 dB and 13.83 dB respectively. Corresponding
standard deviations were 2.094 and 1.225 respectively.

Fig. 8. SNR_gain of different configurations
in the real room.

Speech quality was also evaluated by PESQ mea-
sure (ITU-T, 2001) using the corresponding speech
samples from the database as reference. PESQ im-
provement was calculated relative to the PESQ at the
output of the omnidirectional microphone. The results
are displayed in Fig. 9. The average PESQ improve-
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ments at the output of the single unidirectional micro-
phone, at the output of the “1-uni 3-omni” array, and
at output of the “4-uni” array were 0.41, 0.56, and 0.63,
respectively. Corresponding standard deviations were
0.25, 0.24, and 0.23, respectively.

Fig. 9. PESQ measure of different configurations
in the real room.

Typical time diagrams are displayed in Fig. 10 for
the test sentence “The last switch cannot be turned
off”.

a)

b)

c)

d)

e)

Fig. 10. Time diagrams: (a) original speech signal “The last
switch cannot be turned off”, (b) output of the single om-
nidirectional microphone, (c) output of the single unidirec-
tional microphone, (d) output of the array configuration

“1-omni 3-uni”, (e) output of the array configuration
“4-uni”.

4. Discussion

The aim of the performance analysis of the pro-
posed microphone array was to investigate its theoreti-
cal limits as well as to evaluate its performance in
the real reverberant room. We were also interested
in which combination of unidirectional and omnidi-

rectional microphones maximally suppresses ambient
noise and delivers the best perceptual speech quality.

Three types of noise sources are commonly used
for microphone array analysis: (a) coherent noise, (b)
diffuse noise, and (c) uncorrelated noise. Generally
speaking, a linear array of N omnidirectional mi-
crophones can suppress coherent interferences coming
from N −1 point sources (Van Trees, 2004). In addi-
tion toN−1 point sources, an array composed ofN uni-
directional microphones can suppress an additional in-
terference coming from the direction of the spatial null
of unidirectional microphone’s beam pattern. For the
cardioid microphone spatial null is on 180○.

Suppression of the diffuse noise depends on the
array configuration. Maximal noise suppression, i.e.,
maximal SNR_gain, is obtained for the array com-
posed of only unidirectional microphones (i.e., configu-
ration denoted by “4-uni”), Fig. 4. The configuration
“1-uni 3-omni” provides better SNR gain than the con-
figuration “4-omni”, but worse than the configuration
“4-uni”.

Evaluation of the SRR measure gives us useful in-
formation about the improvement of speech clarity.
While the SNR_gain measure does not distinguish the
power of the direct path from the power of the echo,
the SRR measure explicitly estimates echo suppres-
sion. From the Table 1 we see that “4-uni” configuration
has more than 1 dB better SRR than “1-uni 3-omni”
configuration. Higher suppression of the reverberation
by “4-uni” configuration explains its lower SNR_gain
compared to the “1-uni 3-omni” array configuration.

Columns 2 and 3 in the Table 1 display perfor-
mance of the proposed beamforming method in the
presence of steering errors +15○ and −15○ respectively.
Comparing columns 2 and 3 with column 1 (no steer-
ing error), we see that the SNR_gain of each array
configuration is not degraded by more than 0.5 dB.
Hence, we can say that the proposed microphone ar-
ray with weights estimated in the pause of speech is
robust against moderate steering errors (Saric, Jovi-
cic, 2004).

Tests in real reverberant room evaluated the perfor-
mance of the proposed microphone array model. Simi-
lar to the experiments with the simulated model of
the reverberant room, the best SNR_gain is obtai-
ned by the “4-uni” configuration, Fig. 8. The obtained
SNR_gain of 13.83 dB is the result of combined action
of the cardioid microphone beam patterns and the di-
rectivity of the four-element LCMV microphone array.
SNR gain of the “1-uni 3-omni” array configuration was
1.62 dB lower.

The proposed microphone array improves speech
quality by two means. The first is by improving SNR,
and the second is by dereverberation of the room. Per-
ceptual speech quality was assessed by the PESQ mea-
sure. Results, displayed in Fig. 9, again showed the best
performances of the “4-uni” array configuration.
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5. Conclusions

In this paper, the end-fire adaptive microphone
array, composed of an arbitrary number of unidirec-
tional and omnidirectional microphones was analysed.
Theoretical analysis was performed by modelling each
unidirectional microphone with a two-element differ-
ential array and using an additional constraint of
the LCMV beamformer for each unidirectional micro-
phone. The analysis also included white noise gain esti-
mation adapted for the analysed array configurations.

White noise gain limit, diagonal loading and adap-
tation in the pause of speech were included in the pro-
posed beamforming method. Performance analysis of
the various combinations of unidirectional and omni-
directional microphones conducted on the diffuse noise
model, in the simulated and in the real reverberant
room showed the best performance of the microphone
array composed of only unidirectional microphones.
The robustness analysis in terms of the steering er-
rors showed a good performance of the proposed mi-
crophone array for moderate variations of the speaker’s
position.

The proposed processing method is linear with no
additional distortion of the speech. Hence it can be
successfully used in any application that demands high
quality of the speech. It is worth noting that, around
speech recognition threshold (SRT), even small gain in
SNR leads to an appreciable increase in intelligibility,
e.g., an SNR gain of 1 dB near SRT leads to an in-
crease in the intelligibility of 5–10%, depending on the
interference material (Wang, Brown, 2006, Fig. 1.3).
Elder listeners and the subjects with hearing loss have
higher SRT. For these people, even a single dB of the
SNR gain can significantly improve their speech com-
munication.
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