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Nonlinear excitation of the entropy perturbations by magnetosonic waves in a uniform and infinite plasma
model is considered. The wave vector of slow or fast mode forms an arbitrary angle θ (0 ≤ θ ≤ π) with the
equilibrium straight magnetic field, and all perturbations are functions of the time and longitudinal coordi-
nate. Thermal conduction is the only factor which destroys isentropicity of wave perturbations and causes the
nonlinear excitation of the entropy mode. A dynamic equation is derived which describes excitation of pertur-
bation in the entropy mode in the field of dominant magnetosonic mode. Effects associatiated with temperature
dependent and anisotropic thermal conduction are considered and discussed.
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1. Introduction

The understanding of magnetohydrodynamic (MHD)
perturbations and associated nonlinear phenomena
has a cornerstone role in the astrophysical applications
(e.g. Ballai, 2006). They are of key importance in
the solar hydrodynamics, fluid flows in thermonuclear
reactors, planetary nebulae, interstellar gases, and
laboratory plasma. Gaseous plasma is often an open
system. This may be modelled by some heating-cooling
function which incorporates radiation losses and re-
lease of energy (Vesecky et al., 1979; Dahlburg,
Mariska, 1988; Ibáńez, Parravano, 1994).

In this study, we focus on plasma flows with ther-
mal conduction exclusively. This is the most important
reason for the magnetosonic waves damping compared
to electrical resistivity and mechanical attenuation of
a plasma (Chin et al., 2010; Zavershinskii et al.,
2020). The thermal conduction has impact both on
the evolution of the fast and slow magnetosonic modes
and on nonlinear phenomena. In many cases, the lin-
ear theory can not explain the experimental data on
plasma’s heating. The nonlinear transfer of the wave
energy into microscopic energy of chaotic motion of
molecules leads to magnetosonic heating, that is, to the
excitation of the entropy mode. This happens to non-
linear flows due to impact of the damping factors and
heating-cooling function. In particular, Wang (2011)

and Afanasyev, Nakariakov (2014) pointed to im-
portance of the nonlinear effects in the coronal heating.
De Moortel, Hook (2004) and Zavershinskii et al.
(2020) have concluded that the thermal conduction is
the most significant damping factor in the dynamics
of magnetosonic waves and relative nonlinear phenom-
ena. Nonlinear heating due to passage of a wave should
be distinguished from that due to impact of an ex-
ternal source of energy. Waves transport energy and
momentum, but the excited entropy mode is not the
wave motion. It is characterised by isobaric variations
in temperature in the areas through which the wave
passes. Observation of dynamics of the entropy mode is
more convenient than observation of the wave process
and may confidently indicate the wave exciter, equi-
librium parameters of a plasma and transport factors.
Since the magnetosonic heating is a slow process, it is
of great importance in the remote observations. This
concerns astrophysical applications first of all.

The theory of magnetosound heating is not yet
sufficiently developed. Probably, the first results on
the way of analytical description of the magnetosonic
heating caused by any kind of magnetosonic ex-
citer due to impact of the heating-cooling function
and thermal conduction, were obtained by the au-
thor (Perelomova, 2018a; 2020). They concern con-
stant thermal conduction. The transport parameters
in a plasma are essentially anisotropic (Braginskii,



390 Archives of Acoustics – Volume 46, Number 3, 2021

1965). This study considers anisotropicity of thermal
conduction. It considers also variations of parallel and
perpendicular to the magnetic field compounds of ther-
mal conduction with temperature. In description of
nonlinear interaction of modes, we face mathemati-
cal difficulties which are much severe than in the case
of nonlinear dynamics of individual mode. Following
Nakariakov et al. (2000), Chin et al. (2010), we
consider weakly nonlinear planar flow of completely
ionised gas with constant angle between the wave vec-
tor and straight equilibrium magnetic field. Weak non-
linearity imposes the smallness of the Mach number
in a flow: M ≪ 1. Nonlinearity has crucial impact
on the wave dynamics and may lead to discontinu-
ities in the waveform. While perturbations of infinitely
small magnitude develop independently, the nonlinear-
ity and deviation from adiabaticity of any kind condi-
tion interaction of different types of a fluid’s motion.

The mathematical method is projecting of the ini-
tial PDE system onto the governing equations for inter-
acting modes. It has been applied by Leble, Perelo-
mova (2018), Perelomova (2006) in studies of non-
linear interaction of wave and non-wave modes in
a number of different fluid flows. The essence of the
method is to specify some linear combination of equa-
tions which reduces all linear terms containing non-
specific perturbations. This leads to a set of dynamic
equations describing interaction of different modes. In
the linear part, they include perturbations of the ex-
cited mode exclusively, and the nonlinear terms form
the stimulative “sources”. Actually, projecting relies
on the links of specific perturbations which represent
every dispersion relation. In the context of magneto-
sonic heating, the quadratic terms including magne-
tosonic perturbations are of major importance among
all quadratic terms forming the “source” exciting the
entropy mode. The nonlinear dynamic equation for
the excitation of the secondary entropy perturbations
is valid with the accepted accuracy up to quadratic
nonlinear terms, that is, up to terms proportional to
the squared Mach number, M2. That concerns also
terms originating from the thermal conduction. The
perturbations which specify the entropy mode, enlarge
in absolute value over time. In the frames of a model,
their magnitudes should not exceed magnitudes of ex-
citing magnetosonic perturbations. When these mag-
nitudes equalise, the entropy mode may have impact
on the wave process. Hence, the equations are valid
over some temporal and spatial domains, where the
wave perturbations remain dominant. The effects of
plasma’s boundaries are not considered.

We do not consider mechanical losses in a plasma
and its finite electrical conductivity whose impact is
well understood. These factors introduce additional at-
tenuation of the magnetosonic perturbations and en-
hance the nonlinear interactions. The magnetoacous-
tic heating/cooling due to exclusively heating-cooling

function has been studied by Perelomova (2018a;
2018b). Some kinds of heating-cooling function may
overbalance thermal conduction and lead to acoustical
activity and magnetosound cooling of a plasma. In this
study, we analyse the instantaneous dynamic equation
describing excitation of the entropy mode in the field
of planar magnetosonic wave (fast or slow) and discuss
it in the cases of periodic and impulsive wave pertur-
bations. The only damping mechanism is the thermal
conduction of a plasma which depends on its temper-
ature and on the geometry of a flow.

2. Evolutionary equations in the
finite-magnitude flow with thermal losses

We start from the MHD equations describing uni-
form, quasi-neutral, and fully ionised plasma with in-
finite electrical conductivity. Ideal magnetohydrody-
namics is a reasonable approximation in astrophysi-
cal applications. The mechanical viscosity and electri-
cal resistivity of a plasma are discarded. We make use
of the continuity equation, the momentum equation,
the energy balance equation, and electrodynamic equa-
tions in the differential form (Krall, Trivelpiece,
1973; Callen, 2003):

∂ρ

∂t
+∇ ⋅ (ρv) = 0,

ρ
Dv
Dt

= −∇p + 1

µ0
(∇ ×B) ×B,

Dp

Dt
− γ p

ρ

Dρ

Dt
= (γ − 1)∇ ⋅ (χ∇T ),

∂B
∂t

= ∇ × (v ×B),

∇ ⋅B = 0,

(1)

where p, ρ, v are thermodynamic pressure, mass den-
sity of a plasma, and its velocity, B designates the
magnetic field, µ0 is permeability of the free space,
χ is the thermal conduction of a plasma. The third
equation in the set (1) incorporates the continuity and
energy equations. We consider plasma as an ideal gas
with the ratio of specific heats (per unit mass) under
constant pressure and constant density γ, γ = CP /CV .
T designates the temperature of a plasma (it obeys an
ideal gas state T = p

(CP−CV )ρ
). The equation of state

for an ideal gas is valid for weakly coupled plasmas.
The two last equations are the induction equation and
the Maxwell’s equation reflecting solenoidal character
of B. We accept the geometry used in the studies by
Nakariakov et al. (2000) and Chin et al. (2010): the
wave vector of a planar flow k is directed along axis z
and forms a constant angle θ (0 ≤ θ ≤ π) with the
straight equilibrium magnetic field B0. The figure dis-
plays the geometry of a flow.
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The thermal conduction coefficient depends on θ
and T :

χ = χ⊥(T ) sin2(θ) + χ∣∣(T ) cos2(θ).
The classical transport theory concludes that the ther-
mal conduction parallel to the magnetic field is much
larger than the perpendicular one, that is, χ∣∣ ≫ χ⊥,
χ∣∣ ∼ T 5/2, χ⊥ ∼ T −5/2 (Braginskii, 1965). This study
considers χ⊥ bearing in mind its impact at θ ≈ π/2. The
equilibrium thermal conduction at T = T0 sounds as

χ0 = χ0,⊥ sin2(θ) + χ0,∣∣ cos2(θ)
(χ0,∣∣ = χ∣∣(T0), χ0,⊥ = χ⊥(T0)). All thermodynamic per-
turbations are functions of t and z. The y-component
of B0 equals zero, and

B0,x = B0 sin(θ), B0,z = B0 cos(θ), B0,y = 0.

The system (1) displays the nonlinearity of MHD flows.
For further analysis, its leading-order form is conside-
red, valid with accuracy up to quadratic nonlinear
terms (Chin et al., 2010; Perelomova, 2018a), com-
pleted with the nonlinear terms originating from the
temperature-dependent behaviour of χ:

∂ρ′

∂t
+ ρ0

∂vz
∂z

= −ρ′ ∂vz
∂z

− vz
∂ρ′

∂z
,

∂vx
∂t

− B0,z

ρ0µ0

∂Bx
∂z

= −vz
∂vx
∂z

− B0,z

ρ20µ0
ρ′
∂Bx
∂z

,

∂vy

∂t
− B0,z

ρ0µ0

∂By

∂z
= −vz

∂vy

∂z
− B0,z

ρ20µ0
ρ′
∂By

∂z
,

∂vz
∂t

+ 1

ρ0

∂p′

∂z
+ B0,x

ρ0µ0

∂Bx
∂z

= ρ′

ρ20

∂p′

∂z
+ B0,x

ρ20µ0
ρ′
∂Bx
∂z

− 1

ρ0

∂

∂z
(
B2
x +B2

y

2µ0
) − vz

∂vz
∂z

,

∂p′

∂t
+ c2ρ0

∂vz
∂z

− χ0

ρ0CP

∂2γp′

∂z2
+ χ0c

2
0

ρ0CP

∂2ρ′

∂z2

= −γp′ ∂vz
∂z

− vz
∂p′

∂z
− χ0

ρ20CP

∂2(γp′ρ′ − c20ρ′2)
∂z2

+5(χ0,∣∣ cos2(θ) − χ0,⊥ sin2(θ))

⋅ (γp
′ − c20ρ′)

2c20CP ρ
2
0

∂2(γp′ − c20ρ′)
∂z2

,

∂Bx
∂t

+ ∂

∂z
(B0,xvz −B0,zvx) = −Bx

∂vz
∂z

− vz
∂Bx
∂z

,

∂By

∂t
− ∂

∂z
(B0,zvy) = −By

∂vz
∂z

− vz
∂By

∂z
.

(2)

The linear terms proportional to χ0 are responsible
for the linear damping. Equations (2) describe small
signal MHD perturbations and refer to the combined
effects of weak nonlinearity and weak damping due to
thermal conduction.

2.1. Linear analysis

The linear analysis of the flow properties al-
ways precedes the nonlinear one. This is the case of
small magnitude perturbations which are described by
Eqs (2) with zero nonlinear terms on the right of equa-
tions. The dispersion relations follow from Eqs (2), if
one looks for a solution in the form of a sum of planar
waves proportional to exp(iω(kz)t − ikzz),

f ′(z, t) =
∞

∫
−∞

f̃(kz) exp(iω(kz)t − ikzz)dkz,

where kz designates the wave number. We remind four
relations inherent to the magnetosonic modes which
rely on compressibility:

ωj = Cjkz + i
Aj

2
k2z , j = 1, ...,4, (3)

where

Aj =
C2
j −C2

A

2C2
j − c20 −C2

A

χ0 ( 1
CV

− 1
CP

)
ρ0

, (4)

Cj is the magnetosonic speed, a root of the equation

C4
j −C2

j (c20 +C2
A) + c20C2

A,z = 0, (5)

CA and c0

CA = B0√
µ0ρ0

, c0 =
√

γp0
ρ0

designate the Alfvén speed and the acoustic speed in
unmagnetised gas in equilibrium, CA,z = CA cos(θ).
There are two dispersion relations ω = ±CAkz which
specify the Alfvén waves with the links

vy = ∓
B′

yCA

B0
, ρ′ = 0, p′ = 0, vx = 0,

vz = 0, B′

x = 0,

and one relation corresponding to the entropy mode.
Equations (3) are leading order, they are valid with
accuracy up to terms proportional to the first power
of χ0. The dispersion relations (3), Eq. (5) and the
dynamic Eq. (7) have been derived by Chin et al.
(2010) for the more general case taking into account
the heating-cooling function. As for the entropy non-
wave mode, it is specified by the dispersion relation

ωent = ik2z
χ0

CP ρ0
(6)
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and the links

vx = −
CA,xχ

CA,zCP ρ20

∂ρ′

∂z
, vz = −

χ

CP ρ20

∂ρ′

∂z
,

p′ = 0, vy = 0, B′

x = 0, B′

y = 0.

An attenuation of the wave modes given by Eq. (4)
depends on the kind of sound (fast or slow), on the
angle θ and the ratio α = CA

c0
. Figure 1 shows the di-

mensional attenuation in the case of nearly parallel or
perpendicular propagation of the magnetosonic wave
(the lower index j is omitted).

The appropriate evolutionary nonlinear equation
for an excess density in any magnetosonic mode ρms
takes the form (Chin et al. (2010); the lower index is
omitted):

∂ρms
∂t

+C ∂ρms
∂z

+ Cε
ρ0
ρms

∂ρms
∂z

− A
2

∂2ρms
∂z2

= 0, (7)

Fig. 1. Dimensionless attenuation Aρ0
(1/CV −1/CP )χ0

in the case of a nearly parallel (upper row, χ0 ≈ χ0,∣∣) and nearly perpen-
dicular (bottom row, χ0 ≈ χ0,⊥) magnetic field and the wave vector of the magnetosonic mode as a function of α = CA

c0
and θ. Left panels: slow waves, right panels: fast waves.

where ε is responsible for nonlinear distortions,

ε = 3c20 + (γ + 1)C2
A − (γ + 4)C2

2(c20 − 2C2 +C2
A)

.

The case θ = 0 and C = c0 = CA is special. In fact, two
magnetosound modes exist in this case, and two roots
(ω = ±CAkz) degenerate into the Alfvén modes with
the links

vx = ∓
B′

xCA
B0

, ρ′ = 0, p′ = 0, vy = 0,

vz = 0, B′

y = 0.

The dynamic equation for the velocity in the degener-
ate modes is as follows:

∂vx
∂t

+C ∂vx
∂z

= 0. (8)

These wave forms do not subject to distortion due to
nonlinear effects and thermal conduction. They do not
contribute to magnetosonic heating.
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3. The dynamic equation
for the magnetosonic heating

The details of linear projecting and its application
to the magnetosonic heating/cooling in a weakly non-
linear plasma flow may be found in (Perelomova,
2018a; 2018b). The ideas of projecting in the va-
rious fluid flows have been developed and discussed by
Leble, Perelomova (2018). In the context of excita-
tion of the entropy perturbations in the field of magne-
tosonic dominant mode, the dynamic equation for the
perturbation in density in the entropy mode may be se-
lected from the Eqs (2) by applying of the projection
operator Pent. It distinguishes an excess density in the
entropy mode from the total vector of perturbations

ψ = (ρ′ vx vy vz p′ Bx By)T

and may be readily established from the system of
seven algebraic equations (ρent is an excess density
specifying the entropy mode)

Pentψ = ρent, (9)

bearing in mind linear relations between perturbations
specifying every mode. Its leading order form is

Pent =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−(γ − 1)CA,xχ0

CA,zc20CP

∂

∂z

0

−(γ − 1)χ0

c20CP

∂

∂z

− 1

c20

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (10)

The equation which governs an excess density in
the entropy mode, has been obtained and analy-
sed by the author in a number of studies in the
case of constant thermal conduction of unmagnetised
gases (Leble, Perelomova, 2008; Perelomova,
2006). The magnetosonic heating/cooling due to some
heating-cooling function has been described and dis-
cussed by Perelomova (2018a; 2018b). Including in
the consideration χ∣∣, χ⊥ and their dependence on tem-
perature in the magnetised plasma, we arrive to the
diffusion equation with the magnetosonic source Q:

∂ρent
∂t

−
χ0,∣∣ cos2(θ) + χ0,⊥ sin2(θ)

CP ρ0

∂2ρent
∂z2

= Q, (11)

where

Q =
(γ − 1)(χ0,∣∣ cos2(θ) + χ0,⊥ sin2(θ))

2CP ρ20c
2
0C

3
A,x(C4 − c20C2

A,z)
[(C6(c20CA,x

+2(C2
A,xCA,z +CA,xC2

A −C3
A,z)) −C4c20(2c20CA,x

+2C2
A,xCA,z + 7CA,xC

2
A,z − 6C3

A,z + 4(γ − 1)C3
A,x)

+C2c20(c40CA,x + c20(8CA,xC2
A,z − 6C3

A,z + (γ − 1)C3
A,x)

+2C2
A,xC

2
A,z(CA,x(γ − 2) − γCA,z))

+ c20(C2
A,z(c20(2CA,z − 3CA,x)

+C2
A,x((γ − 1)CA,x + 2γCA,z)))]

∂

∂z
(ρms

∂ρms
∂z

)

+
(γ − 1)2(χ0,∣∣ cos2(θ) + χ0,⊥ sin2(θ))

CP ρ20
ρms

∂2ρms
∂z2

−5(χ0,∣∣ cos2(θ)−χ0,⊥ sin2(θ)) (γ−1)2

2CP ρ20

∂
∂z

(ρms
∂ρms
∂z

),
(12)

where ρms designates a perturbation of density which
individuates some dominant magnetosonic mode. The
magnetosonic mode is dominant if magnitudes of its
perturbations are much larger than those of other
modes. We consider one dominant mode and hold only
its quadratic terms in the source Q on the right of
Eq. (12). The source is associated with the thermal
conduction. The source Q coincides with that obtained
in the context of acoustic heating of unmagnetised
gases and constant thermal conduction, where CA = 0,
C = c0, ρms = ρs (Perelomova, 2008):

Q = (γ − 1) χ0

ρ20CP
(5 − 3γ

2
(∂ρs
∂z

)
2

− γ − 3

2
ρs
∂2ρs
∂z2

)

(ρs is the acoustic excess density). Its averaged over
the exciter’s period form for the nearly harmonic
acoustic exciter is

⟨Q⟩ ≈ −(γ − 1)2 χ0

ρ20CP
⟨(∂ρs

∂z
)
2

⟩ .

Generally, the source Q depends on χ0,∣∣ and χ0,⊥ indi-
vidually and includes the term

5(χ0,∣∣ cos2(θ) − χ0,⊥ sin2(θ))(γ − 1)2
2CP ρ20

∂

∂z
(ρms

∂ρms
∂z

)

which refers to the power dependence of the thermal
conduction on temperature. Typically, χ0,∣∣ ≫ χ0,⊥. In
the coronal case, χ0,∣∣ ≈ 1011χ0,⊥, and in the chromo-
spheric case, χ0,∣∣ ≈ 108χ0,⊥ (Heyvaerts, 1974). Thus,
the individual impact of χ0,⊥ might be significant at the
angles θ very close to π/2.
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4. Excitation of the entropy mode

For definiteness, we consider the dominant magne-
tosonic mode (slow or fast) with C > 0.

4.1. Nearly parallel to the magnetic field wave vector
of the dominant wave

This is the case CA,z = CA, CA,x = 0, C = c0

Q = −
(γ − 1)(3γ − 5)χ0,∣∣

2CP ρ20

∂

∂z
(ρms

∂ρms
∂z

)

+
(γ − 1)2χ0,∣∣

CP ρ20
ρms

∂2ρms
∂z2

− 5χ0,∣∣
(γ − 1)2
2CP ρ20

∂

∂z
(ρms

∂ρms
∂z

) .

In the case γ = 5/3, the first term equals zero.

4.1.1. Harmonic exciter

The harmonic magnetosonic exciter takes the lead-
ing order form

ρms =Mρ0 sin(z −Ct
Λ

) ≡ ρA sin (Z), (13)

where Λ−1 designates the wave number, and ρA =Mρ0
is the amplitude of an exciting perturbation in density.
In this case,

Q = −
(γ − 1)M2χ0,∣∣

2Λ2CP
((γ − 1) + (7γ − 9) cos (2Z)).

The approximate evaluation of ρent is an integral of Q
over time (we suppose that the nonlinear interaction
starts at t = 0):

ρent = −
ρ0
T0
Tent =

t

∫
0

Qdt = −
(γ − 1)2M2χ0,∣∣

2Λ2CP

⋅ (t + (7γ − 9)Λ
(γ − 1)C cos(Ct

Λ
+ 2Z) sin(Ct

Λ
)).

It is negative on average and does not depend on α:

⟨ρent⟩ = −
(γ − 1)2M2χ0,∣∣t

2Λ2CP
.

This corresponds to the positive excess temperature
of the background Tent due to transform of the wave
energy into the energy of chaotic motion of molecules.

4.1.2. Gaussian impulse

The magnetosonic excitation in the form of the
Gaussian impulse

ρms = ρA exp(−(z −Ct)2
Λ2

) ≡ ρA exp (−Z2) (14)

results in

Q = −
(γ − 1)M2χ0,∣∣

Λ2CP
(8 − 36Z2 + γ(28Z2 − 6))e−2Z

2

and achieves a maximum

Qmax =
(γ − 1)(6γ − 8)M2χ0,∣∣

Λ2CP

at Z = 0. The simple evaluations of an excess density
associating with the entropy mode after passing of the
impulse, yields the negative quantity

ρent = −
ρ0
T0
Tent =

∞

∫
−∞

Qdt = −
(γ − 1)2√πM2χ0,∣∣√

2ΛCCP
.

4.2. Nearly perpendicular to the magnetic field wave
vector of the dominant wave

This is the case CA,z = 0, CA,x = CA, C =
√
c20 +C2

A.

Q = − χ0,⊥

CP ρ20

⋅ (γ−1)(γ(3+4α2) − 5−9α2−2α4)
2(1 + α2)

∂

∂z
(ρms

∂ρms
∂z

)

+ (γ − 1)2χ0,⊥

CP ρ20
ρms

∂2ρms
∂z2

+ 5χ0,⊥
(γ − 1)2
2CP ρ20

∂

∂z
(ρms

∂ρms
∂z

) ,

where the last term dominates over the first one if α <
1.25 at γ = 5/3.

4.2.1. Harmonic exciter

The harmonic excitation (13) results in

ρent = −
(γ − 1)2M2χ0,⊥

Λ2CP

⋅ ( t
2
− a∗ cos(Ct

Λ
+ 2Z) sin(Ct

Λ
)),

where

a∗ = Λ(γ(7 + 8α2) − 9 − 13α2 − 2α4)
2C(γ − 1)(1 + α2) .

The averaged over the exciter’s period quantity is nega-
tive:

⟨ρent⟩ = −
(γ − 1)2M2χ0,⊥t

2Λ2CP
.

4.2.2. Gaussian impulse

The source associating with the Gaussian impulse,
Eq. (14), takes the form

Q = (γ − 1)2M2χ0,⊥

Λ2CP

b∗

1 + α2
e−2Z

2

,
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where

b∗ =(36Z2 − 8 + α4(8Z2 − 2) + 4α2(13Z2 − 3)

+ γ(α2(7 − 32Z2) − 28Z2 + 6)).

Approximately, an excess density associating with the
entropy mode after passing of the impulse, equals

ρent =
∞

∫
−∞

Qdt = −(γ − 1)2√πM2χ0,⊥√
2ΛCCP

and is independent from α. Figure 2 shows the source
as a function of α and Z.

� Q

Z

Fig. 2. Dimensionless magnetosonic source CPΛ
2Q

χ0M2 in the
case of nearly perpendicular magnetic field and the wave
vector of the dominant mode χ0 = χ0,⊥ as a function of

α = CA
c0

and Z = z−Ct
Λ

.

5. Summary and remarks

In this study, we consider the nonlinear excitation
of the entropy mode exclusively due to thermal con-
duction which depends on plasma’s temperature and
an angle between the equilibrium magnetic field and
the wave vector, that is, is anisotropic. In the MHD
theory, only parallel compound of the thermal conduc-
tion χ∣∣ is usually considered (e.g., Nakariakov et al.,
2000; Ofman, Wang, 2002; De Moortel, Hood,
2004; Chin et al., 2010). The transport parameters
in a plasma flow depend on the temperature and are
anisotropic in essence. The electrical resistivity is out
of attention in this study. It originates from collisions
between electrons and ions and depends on tempera-
ture as T −3/2 (Spitzer, 1962). It is anisotropic with
at most σ−1

⊥
≈ 3.4σ−1

∣∣
(the electrical conductivity along

the magnetic field σ∣∣ is the Spitzer value (Callen,
2003)). Ruderman et al. (1996) concluded that the
electrical resistivity is almost irrelevant in the solar
corona applications. In the context of magnetosonic
heating, implication of dependence of σ on temper-
ature introduces nothing into equations which gov-

ern magnetosonic dominant perturbations and associ-
ated entropy perturbations. That is due to the form
of projector Pent which includes zero order terms 1
and −1/c20 only in the first and fifth columns, respec-
tively. For the same reason, it is of no use to take
into consideration the temperature dependent viscosity
of a plasma which could be a more important damp-
ing term compared with finite electrical conductivity
(see, e.g. Hollweg, 1985). Five viscosity coefficients
η0, ..., η4 contributing to the viscous stress tensor de-
pend on temperature (Braginskii, 1965). In particu-
lar, η0 = 10−17T5/2 kg ⋅m−1⋅s−1 in the coronal condi-
tions.

The main result of this study is the dynamic equa-
tion (11) with the magnetosonic source of heating
Q (12). It considers dependence of the thermal con-
duction on temperature and its anisotropic character.
Equation (11) is instantaneous and fits any kind of ex-
citers, including impulsive ones. The example of flow
in a magnetised plasma is special due to variety of
fast and slow wave modes, nonlinear interactions, and
dependence of the plasma’s dynamics on an angle be-
tween the magnetic field and the wave vector θ and on
the ratio α = CA/c0. The periodic excitation leads to an
excess background temperature which grows linearly
with time on the average. The theory considers fast
and slow magnetosound waves as exciters of the en-
tropy perturbations and concludes that the secondary
perturbation of density in the entropy mode is pro-
portional to C−1. That concerns the residual quantity
after the passage of an impulse. Since C depends on θ
and α and looks differently in the case of fast and slow
magnetosonic waves, there is a variety in behaviour.
Figure 3 shows c0

C
in the case of the fast dominant

magnetosonic mode.

C

Fig. 3. c0
C

as a function of α = c0
CA

and θ. The case of a fast
magnetosonic wave.

In spite of smallness of the part of thermal conduc-
tion perpendicular to the magnetic field χ⊥, only this
part contributes to the dynamics of the magnetosonic
mode and associated nonlinear phenomena at θ ≈ π/2.
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In general, the magnetosonic source of heating depends
on χ∣∣ and χ⊥ individually in accordance to Eq. (12).
This may be of importance in the cases of non-periodic
exciters. In general, the magnetosonic source of heating
due to thermal conduction depends on θ, CA/c0 and in-
dividually on χ0,∣∣ and χ0,⊥. There are no restrictions on
the magnitude of the equilibrium magnetic field and an
angle between the equilibrium magnetic field and the
wave vector in this study. The theory may potentially
find application in laboratory and astrophysical plas-
mas. It may indicate physical processes and conditions
of a flow and equilibrium parameters of a plasma. The
results may be addressed both to cold plasma of inner
atmosphere and to rarefied plasma of the outer atmo-
sphere. In particular, studies of MHD waves and mag-
netosonic heating in the coronal loops are important
since the mechanism of dynamic flows in a corona and
coronal heating is still an unresolved problem (Kumar
et al., 2006).

Magnetosonic heating/cooling associated with the
heating-cooling function L was considered in detail by
Perelomova (2018a; 2018b). This sample is special
because the absolute values of magnetosonic pertur-
bations may grow unusually in the case af acoustical
activity, that is, if

c20
∂L

∂p
+ ∂L
∂ρ

> c20k2
χ

CP ρ0
.

The entropy perturbations behave unusually under
the condition of thermal instability (Field, 1965;
Parker, 1953; Soler et al., 2012):

(γ − 1)
c20

∂L

∂ρ
+ χ

CP ρ0
k2 < 0.

Nonlinear interactions may also occur unusually. In
particular, the background may get cooler due to
excitation of negative excess temperature associated
with the entropy mode. Taken alone, the damping
mechanisms (thermal conduction, electric resistivity,
mechanical viscosity of a plasma) lead to dissipation
of magnetosonic modes and excitation of the nega-
tive perturbation in density which is inherent to the
entropy mode. Magnetoacoustic heating may indicate
wave processes and parameters of plasma since it is
a slow readily observable process. In turn, it has im-
pact on the propagation of the MHD perturbations.
The temperature of a plasma and c0 increase. This
leads to enlargement of the magnetosonic speed C for
both slow and fast MHD modes.
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