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A hybrid method is presented for the integration of low-, mid-, and high-frequency driver filters in loud-
speaker crossovers. The Pascal matrix is exploited to calculate denominators; the locations of minimum
values in frequency magnitude responses are associated with the forms of numerators; the maximum
values are used to compute gain factors. The forms of the resulting filters are based on the physical
meanings of low-pass, band-pass, and high-pass filters, an intuitive idea which is easy to be understood.
Moreover, each coefficient is believed to be simply calculated, an advantage which keeps the software-
implemented crossover running smoothly even if crossover frequencies are being changed in real time.
This characteristic allows users to efficiently adjust the bandwidths of the driver filters by subjective
listening tests if objective measurements of loudspeaker parameters are unavailable. Instead of designing
separate structures for a low-, mid-, and high-frequency driver filter, by using the proposed techniques
we can implement one structure which merges three types of digital filters. Not only does the integra-
tion architecture operate with low computational cost, but its size is also compact. Design examples are

included to illustrate the effectiveness of the presented methodology.
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1. Introduction

Most high-end audio systems contain several loud-
speakers of various sizes. Each loudspeaker caters to
a frequency band within its range. To split frequency
components between different loudspeakers, an audio
crossover is needed. It divides an audio stream into sev-
eral frequency bands and then sends the split signals to
corresponding loudspeakers. For example, a three-way
crossover splits an audio feed into high-, mid-, and low-
frequency components separately routed to tweeters,
mid-ranges, and woofers. Audio crossovers are typi-
cally made of analog networks. Because of the advances
in audio digitization (KuLKA, 2011) digital signal pro-
cessors (DSPs) and very-large-scale integration (VLSI)
are increasingly popular. With the advent of computer
technology, computers are now able to process both au-
dio and video signals in real time. Therefore, software
crossovers are implemented in this paper. The driver
filter design procedure is also proposed for three-way
CrOSSOVers.

There have been various ways to design digital fil-
ters. One of the most efficient methods is the bilin-
ear transformation, a design procedure which has been
simplified by utilizing the Pascal matrix (PSENICKA
et al., 2002; KONOPACKI, 2005). As an alternative to

the modification of traditional design procedures, the
pole-zero placement techniques (PRADABPET et al,
2003; WATERSCHOOT, MOONEN, 2007) enable people
to design biquad filters in the digital domain. Here, we
extract the features of the Pascal matrix (PSENICKA
et al., 2002) and the pole-zero placement techniques
(PRADABPET et al., 2003), adding a magnitude scal-
ing method, to develop a new design procedure. In
real time, the resulting filter structure operates more
efficiently than that based on Butterworth prototype
filters (YAO et al., 2012). As long as the cut-off fre-
quencies of the desired high-pass and low-pass driver
filter and the center frequencies of the desired band-
pass driver filter are all at the same place, the result-
ing transfer functions can share the same denominator,
therefore can be implemented with more compact size
and lower computation cost. While the full pole-zero
placement techniques (PRADABPET et al., 2003; Wa-
TERSCHOOT, MOONEN, 2007) only cope with second-
order systems, the hybrid design procedure is compat-
ible with higher-order digital filters. Numerical exam-
ples of fourth-order infinite impulse response (ITR) fil-
ters are demonstrated in this paper. Also, it presents
fewer matrix operations and a more intuitive approach
than the full Pascal matrix approaches (PSENICKA
et al., 2002; KONOPACKI, 2005).
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2. Driver filter design procedure

The general form of an Nth-order analog low-pass
filter can be expressed as
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while its corresponding digital low-pass filter is in the
following form
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In order to use the concept of the bilinear transforma-
tion, we have to let
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and f. is the cut-off frequency of the desired digital
low-pass filter; fs, the sampling frequency. As a result,
(2) can be rewritten as (5) by combining (1) and (3),
and the fact that H(z) is an Nth-order filter, so n+r
always equals N.
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in which the numbers C7' are known as the binomial
coefficients denoted as

n!
Cp = m (6)

2.1. Determination of the denominator

The computational cost of (5) is high, and there-
fore, the Pascal matrix (PSENICKA et al., 2002) was
proposed to compute the coefficients. In order to re-
duce the computational load further, we only con-
sider the associated part of obtaining the denominator.
Through using the Pascal matrix, the denominator can
be represented as

b=PxB, (7)

where
b=1[by b1 by ... by, (8)
B’ = [By Bic By ... BycV]T, (9)
and the (N + 1) x (N + 1) Pascal matrix P is formed
by the following steps:

1. Each element in the first row is equal to 1.

2. The elements P; y4+1 in the last column are equal
|

to (=1)71 ,
gy PR
1,2, N+1.

3. Finally, we calculate the remaining elements by

in which 7 =

Pim=Pi_1m+ Pi—1,m+1 + Pjm+1, (10)
where
j=2,34, ..., N, N+1

and
m=N, N-1, N-2, ..., 2, 1.

When it comes to designing digital high-pass fil-
ters or band-pass filters with the same cut-off or cen-
ter frequency, PSENICKA et al. (2002) and KONOPACKI
(2005), the elements inside the Pascal matrix have to
be changed. According to the filter design by PRAD-
ABPET et al. (2003), it is found that the poles of the
band-pass filter can be placed at the same position as
those of the low-pass filter if the center frequency of a
band-pass filter equals the cut-off frequency of a low-
pass filter. The idea is applied to driver filter design in
this paper, thereby reducing real-time computational
complexity. That is, the Pascal matrix can remain the
same and it is unnecessary to do any other matrix op-
erations.

The stability of filters depends on the positions of
poles relating to the roots of the denominator. The bi-
linear transformation only transfers the roots of analog
prototype filters on the left-half s-plane to the z-plane,
so that the resulting digital filters will be exactly stable
and causal (PROAKIS, MANOLAKIS, 1996).

2.2. Determination of the numerator

The zeros on the z-plane can make the magnitude
of H(z) be minimal since they are the roots of numera-
tor. Therefore, their positions provide us the informa-
tion to decide the numerators of the filters.

For digital low-pass filters, the minimum values of
magnitude frequency responses happen at the highest
frequency in the Nyquist interval, so we locate zeros at
7, i.e., 2 = e¥|,—r, where w is the frequency in radians
and j is defined as /—1 in the rest of this paper. Thus,
Npp(z), the numerator of the resulting digital low-pass
filters, can be expressed as (1+2z71)", which means N
zeros should be put at 7 on the z-plane when designing
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Nth-order low-pass filters. On the other hand, in digi-
tal high-pass filters, zeros have to be placed at the low-
est frequency in the Nyquist interval, i.e., 2 = €“|,,—o.
The zero position makes Ny p(z), the numerator of the
digital high-pass filters, in the form (1 — z=1)V.

As to designing digital band-pass filters, the mini-
mum magnitude simultaneously happens at the high-
est and lowest frequency, m and 0, so the numerator
Npp(z) is written in form as [(1 + 2~ 1)(1 — 2~ 1)]N/2,

2.8. Determination of the gain

The transfer function of digital filters now is di-
vided into two parts as shown in the following formula

XJE anz" "
H(z) = "= =GH'(2), (11)
S bpzTT
r=0
where N
H'(z) = Dz;. (12)

H'(z) has already been obtained, and thereby
in this subsection we apply a magnitude scaling
method (OPPENHEIM, SCHAFER, 1999; PROAKIS,
MANOLAKIS, 1996) to get the gain factor, G.

In (11), H'(z) is the transfer function of the desired
digital filter without normalization, so we merely have
to calculate the maximum value of |H'(z)|, and then
G is equal to its inverse which can normalize the max-
imum value of the magnitude frequency response to be
0 dB.

In the cases of digital low-, high-, and band-pass
filters, we expect the maximum values happening at 0,
m, and w, respectively, so

1
e = H e T (13)
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From the above two subsections, the locations of
minimum values in frequency magnitude responses are
used to decide numerators and the maximum magni-
tude values are used to compute gain factors. It is clear
that Chebyshev or Elliptic filters having equiripple
passband or stopband will make the locations of mini-
mum and maximum magnitude ambiguous. Therefore,
provided that the magnitude frequency response of an
IIR filter is monotonic in the passband and the stop-
band, like that of a Butterworth filter, the maximum
and minimum points are always at the special frequen-
cies such as 0, 7, or we.

3. Examples

The following examples will show how to design
low-, high-, and mid-frequency driver filters in a three-
way audio crossover based on the proposed algorithm.

In the first example, we design a fourth-order low-
frequency driver filter with 3-dB pass-band corner fre-
quency 1 kHz and sampling frequency 48 kHz. To be-
gin with, the Butterworth prototype filter is

1

H(s) = 16
O = S asne a2 11 (Y
and the parameter ¢ can be computed by (4), i.e.,
10007
=cot | —— | = 15.2571. 1
¢ =co <48000> 5.257 (17)

Together with (7), the coeflicients can be obtained by
the matrix operation

bo 11 1 1 17[1.0000
by 42 0 —2-4]|39.866
by|=|6 0 -20 6 ||79471|. (18)
bs 4-2 0 2 —4]]|9280.2
by 1-1 1 -1 1 ||>54186.

Thus, the denominator is represented as

D(z) = 64302 — 2352212~ 4 323533272
— 19826023 + 456622 *. (19)

Then, by using the zero placement, the numerator
Npp(z) is (1 + 271 Finally, the gain factor Gpp is
computed by the magnitude scaling method, thereby
equaling 1. The responses can be found in Fig. 1.

The second example illustrates the procedure of de-
signing the corresponding high-frequency driver filter
with the same cut-off and sampling frequency. First,
the denominator remains the same as shown in (19).
Second, the zeros are located at 0, which makes the nu-
merator Ngp(z) be (1 —z71)%. Finally, | D(e7%|,—r)|
divided by |Ngp(e?*|u=r)| equals Gyp, ie., 54185.
The responses are shown in Fig. 2.

In the final example, a mid-frequency driver filter
is designed, operating at a rate of 48 kHz and having
1 kHz center frequency. In the first place, the denom-
inator is the same as (19). Then, the center frequency
in radian units can be presented as

27 x 1000

.= = 0.1300. 2
w TRoo = 0-1309 (20)

Through the concept of the zero placement, the numer-
ator of mid-frequency driver filters is [(1 + z71)(1 —
2712, To determine the gain factors, Gpp, which
equals 329.1476, can be calculated by (15). The re-
sponses are presented in Fig. 3.

Group delay will absolutely be introduced into the
audio signal when using IIR filters. By looking into
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Fig. 1. The a) magnitude, b) phase frequency response, and
c) group delay of the low-frequency driver filter.

the frequency responses in Fig. 1, Fig. 2, and Fig. 3,
interestingly, we notice the similar group delay curves
in Fig. 1c, Fig. 2¢, and Fig. 3c.
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Fig. 2. The a) magnitude, b) phase frequency response, and
c) group delay of the high-frequency driver filter.

The resulting fourth-order digital filters with the
same denominator can be compactly implemented to-
gether. By considering the mid-frequency driver fil-
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Fig. 3. The a) magnitude, b) phase frequency response, and
¢) group delay of the mid-frequency driver filter.

ter as the basic building block, the low- and high-
frequency driver filter can be rewritten as following
transfer functions:

Hpp(z) = Gpp N;P;;) g;}z 8 i- 2_327 o
Hyp(z) = GBPNBP(Z) Gup (1—271)?2 "

D) Gpp (1+2-0)2

Figure 4 shows the example of transposition struc-
ture (OPPENHEIM, SCHAFER, 1999) as well as the cas-
cade and parallel implementation of (21) and (22).
The integration architecture simultaneously repro-
duces three kinds of frequency responses with lower
computational complexity. For hardware implementa-
tions, given low-pass, high-pass, and band-pass driver
filters with the same cut-off or center frequencies can
be merged into one realization structure. However, ac-
cording to the filter coefficients as shown in Fig. 4, the
high dynamic range of filter coefficients may make the
hardware architecture sensitive to electronic noise. In
order to keep from the sensitivity, the proposed system
is implemented in software.
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Fig. 4. The block diagram of the resulting filters.

4. Software realization of loudspeaker crossovers

The software crossovers are designed in VST spec-
ification. A stereophonic sound file needs two VST
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Fig. 5. The screen shot of the proposed VST plug-in setting for a stereophonic sound source.

plug-ins. The one is for a left channel; the other for
a right channel. Figure 5 presents the screen grab of
the stereo system and Fig. 6 shows the correspond-
ing diagram of a crossover plug-in. Users can make
adjustments to the crossover frequency as well as vol-
ume controls by moving sliders. The volume can be
adjusted effectively and immediately. The crossover
frequency adjustment, however, will take effect from
next audio frame in order to keep listeners from hear-
ing audible clicks in real time. The plug-ins are com-
patible with two-way loudspeakers, when users choose
to float the middle outputs. The proposed software
crossover is available by downloading from our web-
site (http: //postgrad.eee.bham.ac.uk/yaos/).

Left channel

lx(n)

Left crossover

yrp(n) ypp(n) \ J’HP("IL

Woofer

Mid-range Tweeter

Fig. 6. A single loudspeaker crossover
for the left audio channel.

5. Comparisons

Generally speaking, each sample of the signal needs
processing 2(N+1) multiplications in an Nth-order
IIR filter, so it needs 3 x 2(N+1) multiplications
for passing by an Nth-order high-pass, low-pass, and
band-pass IIR filter. By using the proposed integration
technique, the additional transfer functions, like the
last terms of (21) and (22), designed for high-pass and

low-pass driver filters are —th-order, and therefore the

total number of multiplications should be about
N
2(N+1)+2><2(3+1>.

To be more precise, the odd-order coefficients of the
numerator in the proposed band-pass driver filter are
always 0. Plus, the proposed architecture needs addi-
tional three gains used for magnitude normalization.
As a result, the total number of multiplications actu-
ally equals

2(N+1)+2><2<g+1> —g+4.
Table 1 specifically shows the computational costs from
fourth-order to tenth-order systems. Through looking
into the percentages of reduced computational com-
plexity in Table 1, we notice that the higher the order
is, the more efficient the algorithm is.

Table 1. Computational complexities for the proposed system and a general system.

Number of multiplications

Syst d
ystet order of a general system

Computational
burden reduced

Number of multiplications
of the proposed system

4th-order 30 24 20%

6th-order 42 31 26.19%
8th-order 54 38 29.63%
10th-order 66 45 31.82%
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6. Conclusion

In this paper, we combine the characteristics of
the pole-zero placement and the Pascal matrix with
the magnitude scaling method, to produce a simple
procedure for designing and integrating driver filters
for three- or two- way loudspeaker crossovers. On the
one hand, full pole-zero placement techniques are in-
tuitive, but for high-order digital filters, the proce-
dure would be complicated; on the other hand, the
bilinear transform by the Pascal matrix allows the
design for any filter order. However, when consider-
ing different kinds of filters, the matrix needs modi-
fication, a change which increases the number of ma-
trix operations. Therefore, the proposed procedure not
only includes the advantages of these methods but
also overcomes the problems they have raised. The
software implementation of audio crossovers with an
adjustable crossover frequency in real time is pre-
sented.

Further objective and subjective measurements are
planned for future work. The further experimental re-
sults of using real loudspeakers may reveal additional
engineering applications of the proposed algorithm.
The potential for the compensation of nonlinear or
time-variant distortions in loudspeaker will be of great
interest.
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