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Various types of passive sonar systems are used to detect submarines. These activities are complex and
demanding. Therefore, computer simulations are most often used at the design stage of these systems. For
this reason, it is also necessary to simulate the acoustic ambient noise of the sea. The article proposes a new
numerical model of surface and quasi-spherical sea noise and presents its statistical parameters. The results of
the application of the developed noise model to analyse the received signals of the DIFAR1 sonobuoy are also
presented.
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1. Introduction

In active and passive sonar systems, the signal-to-
noise ratio at the receiver input determines the range
and accuracy of bearings of the objects observed. The
acoustic ambient noise of the water medium in which
the system operates is often the predominant noise. It
can be shown that, in addition to the noise level, the
range and accuracy of bearings also depend on noise
correlation (Rudnicki et al., 2020). The problem also
applies to detection in underwater acoustic commu-
nications UAC (Kochańska et al., 2018; Schmidt
et al., 2018). Active, narrow-band systems typically
assume that acoustic ambient noise is uncorrelated
(Burdick, 1984; Urick, 1983; 1986). In active sys-
tems, the distance between adjacent antenna elements
is typically about half the wavelength of the sonar
operating frequency. In passive systems of the DIFAR
type, this condition is not met because the distance
between the hydrophones placed in the antenna is al-
ways much smaller than the length of the waves of the
received signals.

1Directional Frequency Analysis and Recording (DIFAR)
is the most widely used sonobuoys system for the detection
and location of submarines. It is a passive system containing

At the present moment, a major and commonly
used method of system design is computer simula-
tion, with the use of tools such as MATLAB R○. It re-
quires the development of a numerical model for the
received signal and noise. The reliability of the sim-
ulation results depends on the similarity of the nu-
merical versions of the signal and noise to their real
analogue nature present in the environment. Rud-
nicki et al., (2020) present a developed numerical
model of isotropic sea noise and use it to analyse bear-
ing errors in the DIFAR system. They have extended
this model to include surface noise caused by wav-
ing, dominating in low frequencies (it does not take
into account the noise associated with human activi-
ty, emitted by ships, coastal industry, living organisms,
etc.) (Ren, Huang, 2020; Klusek, Lisimenka, 2016;
Kozaczka, Grelowska, 2011; Grelowska et al.,
2013).

The numerical model of such noise presented below
was designed to achieve similarity of their correlation
functions to those determined in theory and experi-
mentally.

five hydrophones that form the crossed two pairs of gradient
hydrophones and an additional central hydrophone (Mallet,
1975; Salamon, 2004; Rudnicki et al., 2020).



592 Archives of Acoustics – Volume 46, Number 4, 2021

2. Numerical model of surface noise

Surface sea noise is emitted in the waving process
and its level depends on the sea state. It is mainly
in the frequency range up to several dozen kilohertz,
and its level decreases at a rate of about 6 dB/octave
(Burdick, 1984; Urick, 1983; 1986; Klusek, Lisi-
menka, 2016). To put it simply, the surface sea noise
emission mechanism is based on the collapse of air bub-
bles sucked into the sea by waves, especially waves that
break in high wind (Klusek, Lisimenka, 2004). Col-
lapsing air bubbles generate acoustic pulses whose nar-
row band spectrum is similar to the Gaussian noise
spectrum. Based on these properties of the sea wave
noise, it was assumed that the sources of surface
noise are points emitting acoustic waves with a time
course described by white Gaussian noise. Two types of
sources were initially considered, namely, single spheri-
cal wave sources and double dipole sources having a di-
rectional radiation pattern similar to that in Fig. 8
(Crocker, 1998). The motivation for using dipole
sources was brought about by the conditions for acous-
tic wave reflection at the water-air boundary. As it
is known, an acoustic wave in water is the superposi-
tion of a wave emitted by a spherical source located
below the water surface and by a virtual spherical
source in the air. The virtual source is symmetrical
in relation to the real source and emits a wave with
a sign opposite to the wave generated by the real source
(Crocker, 1998).

The following are the geometric relationships for
the model with dipole sources. The analysis was per-
formed for a receiving antenna consisting of 7 non-
directional hydrophones. Five of them, located in the
horizontal plane (H0, H1, H2, H3, and H4), form a con-
figuration analogous to that in the DIFAR type system,
and two additional ones (H5 and H6) complete the con-
figuration of the antenna in the vertical direction. It is
assumed that K of the dipole sources is distributed
randomly but statistically evenly in a circle with a ra-
dius of R with a surface density of ρ. The centre of the
circle is on the surface of the water and on a straight
line passing through the vertically located antenna hy-
drophones (H5, H0, and H6), as shown in Fig. 1. The
centre of the X, Y , Z spatial system under considera-
tion is the central hydrophone H0 of the antenna. The
XY plane is parallel to the sea surface and the centre of
the antenna is immersed at a depth of h. It is assumed
that each point noise source emits a spherical wave of
equal intensity.

In order to determine the correlation function of
the noise received by the pair of hydrophones lying
on the coordinate axes, one must calculate the dis-
tances between the individual point sources of noise
and the hydrophones of the antenna. Because the spa-
tial system under consideration is symmetrical in rela-
tion to the Z-axis, the formulas presented will be limi-

Fig. 1. Geometry of the sea wave noise model.

ted to the analysis of the noise received by the two hori-
zontal hydrophones in the horizontal plane (marked by
indexes 1 and 2) and by two in the Z-axis (marked
by indexes 5 and 6).

The distances of the k-dipole source from the hy-
drophones are equal to:
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where r(k) is the distance from the centre of the k-di-
pole to the centre of the antenna, the sign “–” indicates
the distance from the virtual source and the sign “+”
from the real source, d determines the distance from
hydrophones H1, ..., H6 to the central hydrophone H0,
and a indicates the distance from real or virtual source
to the centre of the k-dipole.
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The times of wave propagation from the sources to
the hydrophones are:

τ(k) =
r(k)

c
, τi−(k) =

ri−(k)

c
,

τi+(k) =
ri+(k)

c
,

(10)

where c is the acoustic wave speed in water, and the i
index is the hydrophone number.

Using formulas (1)–(9) and assuming that ri(k) ≈
r(k) and a≪ h and d≪ h, the following are obtained
approximately for all hydrophones:

τ1−(k) − τ(k) ≅
−dx(k) + ha

cr(k)
,

τ1+(k) − τ(k) ≅
−dx(k) − ha

cr(k)
,

(11)

τ2−(k) − τ(k) ≅
dx(k) + ha

cr(k)
,

τ2+(k) − τ(k) ≅
dx(k) − ha

cr(k)
,

(12)

τ5−(k) − τ(k) ≅
−h(d − a)

cr(k)
,

τ5+(k) − τ(k) ≅
−h(d + a)

cr(k)
,

(13)

τ6−(k) − τ(k) ≅
h(d + a)

cr(k)
,

τ6+(k) − τ(k) ≅
h(d − a)

cr(k)
.

(14)

Let us now introduce the following symbols:

τx(k) ≅
dx(k)

cr(k)
, τd(k) ≅

hd

cr(k)
, τa(k) ≅

ha

cr(k)
. (15)

For such symbols, the dependencies (11)–(14) can
be expressed as:

τ1−(k) = −τx(k) + τa(k) + τ(k),

τ1+(k) = −τx(k) − τa(k) + τ(k),
(16)

τ2−(k) = τx(k) + τa(k) + τ(k),

τ2+(k) = τx(k) − τa(k) + τ(k),
(17)

τ5−(k) = −τd(k) + τa(k) + τ(k),

τ5+(k) = −τd(k) − τa(k) + τ(k),
(18)

τ6−(k) = τd(k) + τa(k) + τ(k),

τ6+(k) = τd(k) − τa(k) + τ(k).
(19)

Figures 2 and 3 illustrate the correctness of the sim-
plifications used. Figure 2 shows the delays calculated
from formulas (1)–(3) and from the simplified formu-
las (15). Figure 3 presents the differences in the delays
shown in Fig. 2. As one can see, the differences in de-
lays are small and are mainly due to time discretisation
in formulas (1)–(3). The sampling rate is marked as fs,
and the duration of one measurement cycle is T .

Fig. 2. Delays of the noise received by the hydrophones;
red line – from formulas (15), black line – from formu-
las (1)–(3) (R = 250 m, h = 10 m, K = 500, d = 0.2 m,

a = 0.03 m, fs = 0.3 MHz, T = 0.1 s).

Fig. 3. Difference in the delays calculated from formulas
(1)–(3) and formulas (15) (parameters as in Fig. 2).

The ni(t) noise received by the i-th hydrophone2

is the difference of the noise from the real and vir-
tual sources. Assuming a spherical propagation model,
there is:

ni(t, k) =
r0

r(k)
{n [t − τi−(k)] − n [t − τi+(k)]} , (20)

where r0 is the unit distance.

2The numerical value of the voltage at the hydrophone output
is proportional to the sound pressure of sea noise. The purpose of
the simulation is to test the correlation properties of noise, and
therefore the use of any unit of measurement may be neglected.
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In order to evaluate the amount of noise received by
each hydrophone, we determine the Fourier transform
of Eq. (20). It is as follows:

Ni(jω, k) =
r0

r(k)
[ejωτi−(k) − ejωτi+(k)]N(jω, k), (21)

where N(jω, k) = I{n(t, k)}.
Using dependencies (11)–(14), we obtain the spec-

tra of noise received by each hydrophone:

N1(jω, k) =
r0

r(k)
ejω[τ(k)−τx(k)]

⋅ [ejωτa(k) − e−jωτa(k)]N(jω, k), (22)

N2(jω, k) =
r0

r(k)
ejω[τ(k)+τx(k)]

⋅ [ejωτa(k) − e−jωτa(k)]N(jω, k), (23)

N5(jω, k) =
r0

r(k)
ejω[τ(k)−τd(k)]

⋅ [ejωτa(k) − e−jωτa(k)]N(jω, k), (24)

N6(jω, k) =
r0

r(k)
ejω[τ(k)+τd(k)]

⋅ [ejωτa(k) − e−jωτa(k)]N(jω, k). (25)

Expressions before the square brackets describe
shifts of the phase of noise received and do not af-
fect the amount of noise. The determining factor of
the amount of noise received is the same in formulas
(22)–(25) and is as follows:

A(jω, k) =
2jr0

r(k)
sin [ωτa(k)]N(jω, k). (26)

Replacing τa with the expression from formula (15)
results in the following:

A(jω, k) =
2jr0

r(k)
sin [ω

ah

cr(k)
]N(jω, k). (27)

In order to simplify the model, we assume that the
argument of the sine function takes small values and
then it can be replaced by its argument. Assuming that
the limit value of the argument is π/6, the following
simplification condition is obtained:

ω
ah

cr(k)
<
π

6
. (28)

The upper frequency fg of the noise spectrum oc-
curs at the minimum distance r(k) = h and is:

fg =
c

12a
. (29)

In the frequency range f < fg, formula (27) can be
expressed as:

A(jω, k) ≅
2jr0

r(k)

ωah

cr(k)
N(jω, k). (30)

At a constant noise power spectral density a(t, k) =
I−1{A(jω, k)} the amount of noise is proportional to
the noise derivative n(t, k).

If we assume that the noise pressure spectrum
decreases at a rate of −6 dB/oct of the frequency
beginning with a certain frequency of ω0, then the
spectrum N(jω, k) can be expressed as N(jω, k) =

(ω0/ω)N0(jω, k), where N0(jω, k) is the spectrum of
Gaussian noise. The result is:

A (jω, k) =
2jr0

r2(k)

ω0ah

c
N0(jω, k) for ω > ω0. (31)

After the determination of the inverse Fourier
transform, we obtain a description of the noise received
by the hydrophones:

a(t, k) =
2jr0

r2(k)

ω0ah

c
n(t, k) for ω > ω0. (32)

Excluding the delay of τ(k) in formulas (22)–(25),
after determining the inverse Fourier transform, we ob-
tain the following noise time-domain expression:

n1(t, k) = a[t + τx(k), k], (33)

n2(t, k) = a[t − τx(k), k], (34)

n5(t, k) = a[t + τd(k), k], (35)

n6(t, k) = a[t − τd(k), k]. (36)

The noise emitted by all K sources is summed, re-
sulting in:

nsi(t) =
K

∑
k=1

ni(t, k), i = 1,2,5,6. (37)

The conversions made above led to a significant
simplification of the numerical procedure for determin-
ing the noise received by the hydrophones. In a non-
simplified version of the model, it is necessary to deter-
mine the distances from the virtual sources to the hy-
drophones from formulas (2)–(9) and the correspond-
ing delays of noise received from these distances. In
the simplified model, the delays are calculated using
formulas (15) which only requires the calculation of
the distance r(k) from formula (1). As a result, the
number of numerical operations decreases twelvefold,
which is important in the case of a very large number
of noise samples processed in the model. In addition,
there are no limits to the noise bandwidth, since any
small values of a can be used in formula (29) without
compromising the accuracy of the calculations.
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The correctness of the simplifications made has
been verified by establishing the dependency of the
standard deviation of noise received by the hy-
drophones from their distance r to the sources of
noise. According to formula (30), the standard devia-
tion should be inversely proportional to the distance
when excluding the impact of propagation. The sample
result of such verification shown in Fig. 4 and other cal-
culations fully confirm the validity of the conversions
carried out.

Fig. 4. Standard deviation of noise as a function source
distance (○ – from formula (19), red line – from formula
(32), R = 250 m, h = 10 m, K = 500, d = 0.2 m, a = 0.03 m).

It follows from formula (30) that the module of
spectrum of noise received by the hydrophones should
grow linearly as a function of frequency. Figure 5 shows
an example of a spectrum module and a designated
trend line for the source of white Gaussian noise.

Fig. 5. Module of the spectrum of noise received by the
hydrophone (∗ from formula (21), red line – trend line;

parameters as in Fig. 4).

Assuming, according to the results of the mea-
surements of noise spectral density presented in the
literature (Burdick, 1984; Urick, 1983; 1986; Sala-
mon, 2006), that in the range of approximately 500 Hz
to several dozen kilohertz, it decreases at a rate of
6 dB/oct of frequency, the noise spectrum was multi-
plied by the function marked with the red line in Fig. 6.

Fig. 6. Spectrum module of noise with a decreasing spec-
tral density of 20 dB/dec (parameters as in Fig. 4).

As a result, the module of noise emitted by the sources
has changed as shown in this figure. This change re-
sults in the course of the spectrum module of noise
received by the hydrophone shown in Fig. 7. Accord-
ing to formula (31), the average value of the module
as shown by the trend line is virtually constant.

Fig. 7. Module of the spectrum of noise received by the
hydrophone from the sources of noise with the spectrum

from Fig. 4 (parameters as in Fig. 4).

3. Noise model functions and statistical
parameters

The dependencies presented above describe the
proposed surface noise model. We will further define its
functions and statistical parameters, namely, the cor-
relation functions, the Pearson correlation coefficients
(Cohen, 1988), and the standard deviations of noise.
We will calculate the correlation function in the fre-
quency domain from the following formulas (Franks,
1981):

R12(t) = I−1
{I[N1(f)] ⋅ I

∗
[N2(f)]}

and

R56(t) = I−1
{I[N5(f)] ⋅ I

∗
[N6(f)]},

(38)

where Ni(f) = I{nsi(t)}.
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The parameters of the surface noise model are the
radius of the circle R, on which the sources of noise
are located, the surface density ρof these sources, the
variance of noise emitted and the distance of the real
sources from the virtual sources 2a. The noise cor-
relation functions and correlation coefficient are also
affected by the system parameters: antenna immer-
sion depth h, hydrophone distance 2d, filter band B,
and sample rate fs. We select the model parameters
in such a manner that their properties are not sensi-
tive to their changes in a relatively broad range. The
constancy of the correlation coefficient as a function
of the model parameters can be assumed as a cri-
terion. It is evident that the greater the number of
noise sources and the larger the radius of the surface
containing these sources, the better the model corre-
sponds to the reality. In view of the desired limita-
tion of the numerical operations performed, the small-
est acceptable R and ρ values should be sought. The
tests carried out showed that stable results are ob-
tained when R/h ≥ 10 and the minimum surface den-
sity ρ = 1/m2. This density ensures a sufficient number
of noise sources in the area near the Z-axis. A constant
sample rate value fs = 300 kHz is assumed to provide
sufficient measurement time resolution for the smallest
distance d = 0.05 m. It corresponds to 20 time samples.

In the calculations, we take into account the y(k)
coordinate of the noise sources for which the above-
mentioned dependencies have been omitted, as they do
not differ from those provided for the x(k) coordinate.

Figure 8 shows the correlation functions for a hor-
izontal hydrophone pair, normalised by the maximum
values, and Fig. 9 presents those functions for a vertical
hydrophone pair. The graphs are made for noise with
a constant noise power density. The width of the corre-
lation function is larger with the narrower the B filter
bandwidth. With wide B bandwidths, the correlation
function is limited by the ±2d/c times, marked with
point lines. At a bandwidth of B = 50 kHz, there are

Fig. 8. Correlation function for the horizontal hydrophones
(R = 100 m, h = 10 m, ρ = 1/m2, d = 0.1 m, fs = 300 kHz,

T = 0.1 s, K ≈ 31,400).

Fig. 9. Correlation function for the vertical hydrophones
(parameters as in Fig. 8).

large fluctuations as a function course. This is because
the acoustic wavelength λ = c/B = 3 cm at this fre-
quency is smaller than the distance of the hydrophones
2d = 20 cm. The noise spectrum then has a number
of harmonics with opposite signs, resulting in the ap-
pearance of local minima. In theory, the R12(t) cor-
relation function should be symmetrical. Deviations
from this principle in numerical calculations are due
to the lack of symmetry of the random surface distri-
bution of noise sources despite their very large number
(K ≈ 31,000). The maxima of the R56(t) function for
the vertical hydrophone pair, with the B bandwidth in-
crease, approaches the 2d/c time, and at high frequen-
cies, the main function section is within the (0–2d/c)
time interval.

The shift of the symmetry axis of the vertical cor-
relation function of a pair of hydrophones, visible in
Fig. 9, is caused by a shorter propagation time of the
acoustic wave emitted by noise sources lying on the sea
surface received by the upper hydrophone. This ef-
fect also occurs in the following figures for vertical
pairs of hydrophones, it does not occur for horizon-
tal pairs of hydrophones, and also for the isotropic
noise field (Rudnicki et al., 2020). Figures 10 and 11

Fig. 10. Correlation function for the horizontal
hydrophones (parameters as in Fig. 8).
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Fig. 11. Correlation function for the vertical
hydrophones (parameters as in Fig. 8).

show correlation functions when the noise spectral
density decreases at a rate of 6 dB/oct above a fre-
quency of 500 Hz, as shown in Fig. 6. The course of
the noise spectral density is similar to that of the func-
tion of a low-pass filter with an upper limit frequency
of 500 Hz. As a result, the correlation function shapes
are similar to those shown in Figs 8 and 9 for the band-
width of a B = 2 kHz width. The effect of the B filter
bandwidth is limited, as the filters only change the in-
clination of the function resulting from attenuation.

The course of the correlation function depends on
the distance of the hydrophones, as shown in Figs 12
and 13, made for a frequency attenuation of 0 dB/oct.
It is evident that the width of the correlation function
is limited by the 2d/c frequencies. In the figures, these
limits are marked for d = 0.4 m. The cause of the fluc-
tuation of the correlation function is the same as that
discussed for Figs 8 and 9. At a frequency of 2 kHz, the
wavelength is 0.75 m and is smaller than 2d = 0.8 m. In
general, there is no reason for any fluctuation when half
the wavelength for the high frequency of the noise spec-
trum is greater than the distance of the hydrophones.

Fig. 12. Correlation function for the horizontal hy-
drophones (R = 100 m, h = 10 m, ρ = 1/m2, B = 2 kHz,

fs = 300 kHz, K ≈ 31,400).

Fig. 13. Correlation function for the vertical
hydrophones (parameters as in Fig. 12).

The fact that the correlation function is not af-
fected by the h antenna immersion depth is illustrated
in Figs 14 and 15. The graphs were made for a con-
stant number of noise sources and a surface radius of
R = 10h, modifying the surface density of the noise
sources accordingly. This is due to the limited memory

Fig. 14. Correlation function for the horizontal hy-
drophones (d = 0.1 m, B = 2 kHz, fs = 300 kHz,

T = 0.1 s, K ≈ 31,400).

Fig. 15. Correlation function for the vertical
hydrophones (parameters as in Fig. 12).
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of the MATLAB R○ environment, as at a constant den-
sity, the number of K sources grows with the square of
the R radius reaching more than 3 million for h = 100.
This has no significant impact on the quality of the
results, as with the increase of the depth, the num-
ber of sources in a constant solid angle around the
Z-coordinate increases.

The effect of the B bandwidth of the low-band fil-
ter on the noise model parameters is shown in Figs 16
and 17. The parameters are normalised by the corre-
sponding parameter at a bandwidth of B = 1 kHz. The
values of these parameters are given under the figure
captions. They do not have physical values, but they
are used to compare the parameters of horizontal and
vertical hydrophone pairs. With an increase in the B
bandwidth of the filter, there is an increase in the stan-
dard noise deviation σ. This is because, with a constant
noise spectral density, the power of the noise received
increases in proportion to the bandwidth of the noise.
As the B bandwidth increases, the noise correlation

Fig. 16. Model parameters for the horizontal hydrophone
pair; B1 = 1 kHz, σ12(B1) = 0.025, r12(B1) = 0.03,
R12max(B1) = 142 (d = 0.1 m, h = 10 m, R = 100 m,

fs = 300 kHz, T = 0.1 s, K ≈ 31,400).

Fig. 17. Model parameters for the vertical hydrophone pair;
B1 = 1 kHz, σ56(B1) = 0.025, r56(B1) = 0.37, R56max(B1) =

195 (parameters as in Fig. 16).

is reduced, as shown in the graph of the r12 and r56

correlation coefficients.
Figure 17 shows the R56 max correlation function

maximum increase with the increase in B bandwidth,
which is related to the movement of the maximum of
this function in the direction of the 2d/c time and its
near-triangle shape (Buckingham, 2012; Barclay,
Buckingham, 2014; Cron, Sherman, 1962; 1965).

Figures 18 and 19 show the effect of hydrophone
distance d on the model parameters. The standard de-
viation of the noise received is constant as it applies
to a single hydrophone. As the hydrophone distance
increases, the level of noise correlation is reduced, as
can be seen from the graphs of the r12 and r56 correla-
tion coefficients and the maximum values of the corre-
lation function R12 max and R56 max. It is because the
delays between the noise received by the hydrophone
pairs are increasing. The graphs are normalised by the
parameters for d = 0.05 m.

Fig. 18. Model parameters for the horizontal hydrophone
pair, d1 = 0.05 m, σ12(d1) = 0.025, r12(d1) = 0.87,

R12max(d1) = 184 (parameters as in Fig. 16).

Fig. 19. Model parameters for the vertical hydrophone pair;
d1 = 0.05 m, σ56(d1) = 0.025, r56(d1) = 0.76, R56max(d1) =

205 (parameters as in Fig. 16).

The results of the calculation of the impact of the
h antenna immersion depth on the model parameters
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showed no such relationship in the range between 10 m
and 100 m; the parameters are fixed. The calculation
assumes a constant noise source surface density of ρ
and increases the R radius of the noise circle in pro-
portion to the h antenna immersion depth: R = 10h.
As the h immersion depth increased, the number of
active noise sources increased, which compensated for
the increase in transmission losses. This also results
from formula (9) in which the value of noise received
is proportional to the h immersion depth.

At the end, Figs 20 and 21 show the correlation
functions for 0 dB/oct attenuation without noise fil-
tering. The noise bandwidth is limited by the sam-
pling rate. The correlation function shapes are simi-
lar to those obtained theoretically (Buckingham,
2012; Barclay, Buckingham, 2014; Cron, Sher-
man, 1962; 1965).

Fig. 20. Correlation function for the horizontal
hydrophones, B = fs/2 (parameters as in Fig. 16).

Fig. 21. Correlation function for the vertical hydrophones,
B = fs/2 (parameters as in Fig. 20).

4. Application of the noise model
in a DIFAR-type system analysis

Radio direction finding systems used before World
War II to determine the bearing of radio transmitters

served as the prototype of the currently used DIFAR-
type systems (Jagodziński, 1961). As a result of the
current digital signal processing capabilities, the his-
torical solutions have been complemented by online
Fourier transforms, which significantly improves the
system’s performance. The current design and operat-
ing principle of the DIFAR system is discussed in detail
in (Rudnicki et al., 2020) and here we will only show
the subsequent stages of signal processing in simulation
tests.

Let us assume that the signal source is very far
away from the antenna and, as a result, delays in
receiving signals only depend on the source bearing.
These signals can therefore be expressed as:

si(t) = s0s(t − τi), (39)

where i is the hydrophone number shown in Fig. 1, s0

is the amplitude of the received signals, and τi is the
delay in the i-th hydrophone in relation to the centre of
the coordinate system. If you mark the azimuth angle
with ϕ and the elevation angle with θ, these delays are
equal to:

τ1 = −
d

c
sin θ cosϕ, τ2 =

d

c
sin θ cosϕ,

τ3 = −
d

c
sin θ cosϕ < τ4 =

d

c
sin θ cosϕ,

τ5 = −
d

c
sin θ cosϕ, τ6 =

d

c
sin θ cosϕ.

(40)

The signals received are summed with the noise
generated by their numerical model described above
and then subtracted in pairs. The result is:

x(t) = [s1(t) + ns1(t)] − [s2(t) + ns2(t)], (41)

y(t) = [s3(t) + ns3(t)] − [s3(t) + ns3(t)], (42)

z(t) = [s5(t) + ns5(t)] − [s6(t) + ns6(t)], (43)

where nsi(t) is described by formula (37).
The signals described with the above dependencies

are optionally filtered in finite impulse response fil-
ters, which, as known, have linear phase characteristics
(Salamon, 2006; Lyons, 2004) and then undergo the
Fourier transform. At the same time, the Fourier trans-
form of the signal received by the central hydrophone
u(t) = s(t)+n(t) is calculated. When marking the u(t)
transform as U(f), the following operations are per-
formed:

X(f) = imag [I{x(t)} ⋅U∗
(f)], (44)

Y (f) = imag [I{y(t)} ⋅U∗
(f)], (45)

Z(f) = imag [I{z(t)} ⋅U∗
(f)], (46)

where ∗ denotes the conjugate function.
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For each spectrum lines, the azimuth angle ϕ of the
real or virtual source (resulting from the existence of
noise) shall be calculated using the dependency:

ϕ = arctan(
X(f)

Y (f)
), (47)

and the θ elevation angle from the formula:

θ = arcsin
⎛

⎝

Z(f)
√
X2(f) + Y 2(f)

⎞

⎠
. (48)

With a good signal-to-noise ratio, the maxima of
the X(f), Y (f), and Z(f) spectra occur at the sine-
signal frequency and for this frequency we obtain the
source bearings sought, as shown in (Rudnicki et al.,
2020). The presence of noise results in errors in the
determination of bearings.

Examples of simulation results described with the
above formulas are shown in Figs 22 and 23. The points
in Fig. 22 have Cartesian coordinates X(f) and Y (f)
for each frequency f . The slope of the lines connecting
these points to the centre of the coordinate system de-
scribes the measured azimuth. Similarly, the points in
Fig. 23 have coordinates on the X axis with the vec-
tor length [X(f), Y (f)], ref. formula (48), and on the
Y -axis with the length Z(f). The results of 10 measur-
ing cycles in the range of a bandwidth of B of the filter
are presented. The caption of Fig. 22 defines the sur-
face noise model parameters and system parameters.
The average value of the azimuth error is −0.5○ and
its standard deviation is 1.9○. Elevation errors are 0.9○

and 3.7○, respectively. The central part of the figure
shows the azimuth and elevation measurements related
to noise.

Fig. 22. Azimuth measurement results (R = 100 m,
h = 10 m, ρ = 1/m2; K ≈ 31,400; d = 0.1 m, fs =

300 kHz, B = 2 kHz, T = 0.1 s, SNRi = −8 dB).

Fig. 23. Elevation measurement results
(parameters as in Fig. 22).

The input signal-to-noise ratio is defined as:

SNRi = 10 log
s2

0

2σ2
f

, (49)

where s0 is the amplitude of the sine signal, and σ2
f is

the variance of noise at the filter output.
From the point of view of the system operation,

two of its parameters are important, namely, the mag-
nitude of bearing errors and the output signal-to-noise
ratio (SNRo), which determines its detection capabil-
ities and bearing errors. We will investigate further
whether these parameters depend on the levels of en-
vironmental noise and how closely they are correlated.
The output signal-to-noise ratio is calculated using the
following dependency:

SNRo = 10 log
A2

max

A2(f)
. (50)

For the azimuth, A2
max is the maximum value of the

function [X2(f) + Y 2(f)] and for the elevation of
the function [X2(f) + Y 2(f) +Z2(f)]. The expression
in the denominator describes the variance of the
noise spectrum calculated using the above formulas,
excluding the maximum value associated with the sine
signal.

A very large measurement error occurs when the
Amax maximum value does not apply to the signal
but is associated with noise. The probability of this
event increases as the quotient of the Amax maximum
value of signal Amaxn maximum value of noise de-
creases. This quotient is expressed logarithmically as
SNRn = 20 log(Amax/Amaxn). Figure 24 shows the re-
lationship between both signal-to-noise ratios and the
SNRi input signal-to-noise ratio.

The figure shows a worse output signal-to-noise ra-
tio when measuring elevation, which can also be seen
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Fig. 24. Dependency of the output signal-to-noise ratio
(SNRa – of the azimuth, SNRe – of the elevation) and the
input signal-to-noise ratio (R = 100 m, h = 10 m, ρ = 1/m2;
K ≈ 31,400, d = 0.1 m, fs = 300 kHz, f0 = 50 Hz, B = 2,

T = 0.1 s).

in Fig. 23. This is related to a greater impact of noise
sources located on the sea surface on the vertical hy-
drophone pair. Above all, there is a significant improve-
ment in the output signal-to-noise ratio relative to the
input ratio. In addition, this improvement increases as
the input signal-to-noise ratio increases, which is un-
typical. For example, in active systems, usually there is
SNRo =D +SNRi, where D is the so called conversion
gain. Figure 24 shows that in the case at hand there
is approximately: SNRo ≈ D + 2SNRi. This is due to
the dependencies (44)–(46) in which the spectra are
multiplied by the U(f) spectrum, which is the sum
of the signal spectrum and the noise spectrum. In ac-
tive systems with matched filtration (correlation recep-
tion), the spectrum of the received signal is multiplied
by the spectrum of the known undistorted scanning
signal (Salamon, 2006).

Figure 25 shows that the bearing errors decrease
as the input signal-to-noise ratio increases, starting
with a definite small value of that ratio. In the case

Fig. 25. Bearing errors as a function of the input signal-to-
noise ratio (parameters as in Fig. 24).

presented in the figure, this value is SNRi ≈ −11 dB.
This is because of the bearing error method, which
calculates errors against the Amax maximum value.
As stated above, with a low signal-to-noise ratio, the
maximum values associated with noise may be greater
than the signal values, as shown in Figs 26 and 27, re-
ferring to the results presented in Fig. 25 for SNRi =
−13 dB. However, it should be noted that in the prac-
tical operation of the system, it is possible to estimate
bearings with a lower signal-to-noise ratio, since the
results of measurements in subsequent transmissions
relating to the signal are arranged along regular lines
and the noise-related results are distributed randomly.
This is shown in Fig. 27.

Fig. 26. Azimuth measurement results; SNRi = −13 dB
(parameters as in Fig. 24).

Fig. 27. Elevation measurement results; SNRi = −13 dB
(parameters as in Fig. 24).

In addition to the impact of the input signal-to-
noise ratio on bearing errors, it can be expected that
they are affected by the level of noise correlation. The
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value of the correlation coefficients depends on, i.a.,
the bandwidth B, assuming a constant noise spectral
density of the medium noises. The results of the calcu-
lations are shown in Table 1. The σ2 symbol denotes
the variance of noise at the hydrophone output after
filtration, the σ2

12 symbol denotes the variance of the
difference of noise in the H1 and H2 hydrophone pairs,
and σ2

12t is the theoretical value of this variance calcu-
lated using the formula σ2

12t = 2σ2(1−r12). The ϕ sym-
bol denotes the average azimuth error calculated based
on ten transmissions and σϕ is the standard deviation
of this error. The same symbols apply for elevation er-
rors.

Table 1. Bearing errors as a function of noise bandwidth
(parameters as in Fig. 24).

B [kHz]
1 2 2 4 5

SNRi [dB] −2.0 −4.9 −6.9 −8.3 −9.2
r12 0.97 0.87 0.79 0.63 0.49
r56 0.94 0.75 0.54 0.34 0.13
σ2 0.59 1.58 2.37 3.33 4.30
σ2
12 0.037 0.41 1.02 2.51 4.20

σ2
12t 0.037 0.41 1.03 2.52 4.21

ϕ [deg] 0.02 0.02 0.28 0.04 0.57
σϕ [deg] 0.98 1.52 1.35 1.34 1.49
θ [deg] −0.64 −0.41 1.42 0.15 −0.97
σθ [deg] 1.60 1.49 1.56 1.71 1.98

The results presented in the table above show no
significant correlation between bearing errors and the
noise bandwidth B and the SNRi input signal-to-noise
ratio resulting from variations in noise bandwidth. An
increase in noise bandwidth causes a decrease of the
r12 and r56 correlation coefficients, which also suggests
that the bearing errors are not dependent on the level
of noise correlation. This dependency does not occur
despite the increase in the σ2 variance of noise at the
hydrophone output after filtration and a more promi-
nent change in the σ2

12 variance of the difference of
noise received by the hydrophone pair. This variance
does not differ from its theoretical value of σ2

12t calcu-
lated using the above formula.

The calculations made also showed that the 2d dis-
tance of hydrophone pairs does not affect the bearing
errors, as it is also shown in (Rudnicki et al., 2020).
This work provides a general explanation of the ab-
sence of the relationship discussed. However, its full
justification goes beyond the framework of this article,
as it requires a complex theoretical analysis of the er-
rors resulting from the formulas (44)–(48). It should
be stressed that the hypothesis that noise correlation
has no effect on bearing errors is false and results from
the use of a popular description of correlations with

correlation functions and correlation coefficients relat-
ing to the time domain. However, the system operates
in the frequency domain.

The hypothesis of no correlation of bearing errors is
undermined by the calculation results shown in Fig. 28
made for the uncorrelated noise model. This model as-
sumes that noise emitted by individual sources is re-
ceived by the hydrophones as uncorrelated. For com-
parison, bearing errors were determined for the same
parameters as in Fig. 25, relating to the correlated
noise model.

Fig. 28. Bearing errors for uncorrelated noise as a function
of the input signal-to-noise ratio (parameters as in Fig. 24).

When comparing the figure above with Fig. 25, we
can see that the bearing errors of similar values occur
for uncorrelated noise with an input signal-to-noise ra-
tio of approximately 30 dB higher than for correlated
noise. This fact should be taken into account when de-
signing DIFAR-type systems.

Figures 29 and 30 show azimuth measurements cor-
responding to the two input signal-to-noise ratios in
Fig. 28.

Fig. 29. Azimuth measurement results for uncorrelated
noise, SNRi ≈ 30 dB (parameters as in Fig. 24).
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Fig. 30. Azimuth measurement results for uncorrelated
noise, SNRi ≈ 10 dB (parameters as in Fig. 24).

The above figures show that the output signal-to-
noise ratio is in both cases large, as evidenced by a spot
with a small diameter in the centre of the coordinate
system. Unlike the model of correlated noise, large
bearing errors do not occur as a result of the appear-
ance of maximum Amax lines coming from noise, but
result only from the decreasing input signal-to-noise
ratio.

5. Conclusions

The numerical sea wave noise model presented in
the article is consistent with the results of theoreti-
cal works and measurements at sea (Buckingham,
2012; Barclay, Buckingham, 2014; Cron, Sher-
man, 1962; 1965). It can therefore be used during the
design phase of systems of the DIFAR type and other
passive underwater acoustics systems. This is eviden-
ced by the demonstrated examples of the DIFAR sys-
tem simulations. A full explanation of the relationship
of bearing errors with noise correlation requires an in
depth analysis, the results of which the authors intend
to include in a separate publication.

The consequence of introducing a noise-emitting
surface in the model is to limit the sphere contain-
ing noise sources in the previously adopted model by
the plane of the sea surface (Rudnicki et al., 2020).
By summing the noise generated by sources located on
the sea surface and the noise emitted by sources in the
truncated sphere in appropriate proportions, a com-
bined noise model that better reflects the noise field
in real bodies of water can be developed (publication
under preparation).
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