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This paper presents results of a theoretical analysis of interactions between a mono-
chromatic light wave and series of acoustic pulses in the Bragg diffraction region. An
expression for the electric field intensity of a diffracted light wave was achieved on the basis
of known theories. The intensity is a sum of harmonics formed due to the diffraction of
inciding light onto harmonics of the acoustic wave. Individual components of the light wave
resulting from diffraction are spatially separated. A numeric analysis performed for a series
of perfect, rectangular acoustic pulses proved that the measurement of the angular
distribution of light intensity in a diffracted beam leads to the analysis of the acoustic wave’s
amplitudes spectrum. Therefore, an acoustic wave spectrum analyzer can be built with the
utilization of the described interaction. The possibility of measuring parameters of acoustic
pulses directly during propagation in the medium without influencing these parameters is
the main advantage of such an analyzer. The frequency band of the proposed analyzer is
limited by the Bragg condition depends on acoustic and acousto-optics properties of the
medium and the geometry of the interaction region.

W pracy przedstawiono wyniki teoretycznej analizy oddzialywania monochromatycz-
nej fali swietlnej z ciggiem impulsow akustycznych w obszarze dyfrakcji Bragga. Na
podstawie znanych teorii otrzymano wyrazenie opisujgce nat¢zenie pola elektrycznego
ugietej fali §wietlnej. Natezenie to jest suma skladowych harmonicznych powstajacych
w wyniku dyfrakcji padajacego $wiatla na skladowych harmonicznych fali akustycznej.
Poszczegolne skladowe fali $wietlnej powstalej w rezultacie dyfrakcji sa rozdzielone
przestrzennie. Na podstawie analizy numerycznej przeprowadzonej dla ciagu idealnych,
prostokatnych impulsow akustycznych wykazano, ze pomiar rozkladu katowego natgzenia
swiatla w wiazce ugigtej pozwala na analize widma amplitud fali akustycznej. Tak wigc
opisywane oddzialywanie stwarza mozliwo$¢ budowy analizatora widma fali akustycznej.
Do glownych zalet takiego analizatora nalezy zaliczy¢ mozliwos¢ pomiaru parametrow
impulsow akustycznych bezposrednio w czasie ich propagacji w osrodku bez zmiany tych
parametrow w czasie pomiaru. Pasmo przenoszenia proponowanego analizatora jest
ograniczone koniecznoscia wypelnienia warunku Bragga i zalezy od wlasnoéci akustycz-
nych i akustooptycznych osrodka i geometrii obszaru oddzialywania. :
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1. Introduction

The light-acoustic pulses interaction is one of the more important problems in
acousto-optics arousing interest during the last several years. However hitherto
published papers are mainly concerned with the Raman-Nath type of diffraction
[1-3, 5-7].
~ This paper presents a theoretical analysis of light diffraction on acoustic pulses in
the Bragg region.

~ On the basis of known theories of light diffraction on a continuous acoustic
wave an angular distribution of diffracted light wave component intensities resulting
from light-acoustic wave harmonics interaction. Also results of numeric calculations
are presented.

2. Theoretical analysis

Let us assume an acoustic wave in the form of rectangular pulses with duration 7,
repeating period T and carrier frequency £,. A series of such pulses is shown in Fig. 1.

FiG. 1. Series of acoustics pulses with carrier frequencies Q,

Such a wave can be described with function @(7, t) which is a sum of harmonics

D(F, t) = i Aexpli[(Q,+1-4Q)-t —K,F]} (1)

I=-n

;. 2
—;; Q, —n, K, wave vector of the

where A, amplitude of the l-component, AQ = =T
0

Q,+1-4Q . 4 :
wave [-component, equal to Frwoped e v propagation velocity of the acoustic wave,

7 vector of position.
Let us accept the geometry of interaction presented in Fig. 2. The acoustic wave
propagates along the z-axis. L is the width of the acoustic beam. The light wave
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FiG. 2. Geometry of the interaction area

propagates in the xz plane under angle 0 to the x-axis. The intersection of the light
beam forms a square with side equal to w.

Let us assume- also that these waves have constant intensity in the area of
interaction. The diffracted light wave propagates in the xz plane under angle ¢ to the
X-axis.

The electric field intensity of an inciding monochromatic light wave can be noted
as

E, = E,exp[i(wt—Fkp)], (2)

where w, k — frequency and wave vector respectively of the light wave.

It can be accepted that the diffracted light wave is formed as an interference result
of secondary electromagnetic waves emitted by electric dipole moments, induced by
the inciding light wave. By changing permittivity in the area of interaction acoustic
wave causes changes of the electric polarization vector. If we accept the medium as
an isotropic, non-magneti dielectric, then the vector of polarization is equal to

P =(gy— l)eoEp, ‘ (3)

where: &, — permittivity of free space, ¢ — relative permittivity of the medium.

When an acoustic wave propagates in the medium then the permittivity of the
medium is a sum of two components: constant component £° — corresponding with
permittivity without disturbance. and modulating term related to the disturbance of
the medium:

&=+ 4e = e2—(°?ps, (4)

where p — effective value of the medium’s photo-elastic constant, s — deformation of
the medium due to transition of acoustic wave.
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It can be proved that the electric field intensity of the light wave generated as
a result of interaction between the inciding wave and acoustic wave is equal to

exp[— ik’ (F —7))

E 0= P, ) xk]xk’ e dv, 5
i 0 = g [{IPC, xR xR} == )
where k — vector of the diffracted light wave, 7 — vector of position of points

outside the area of interaction.
Expression (5) is integrated along the area of interaction. Including expressions
(1) and (4) the polarization vector P, defined by formula (4), can be expressed as

P(F, 1) = (°—1)eo E,+£,p(e°)? KE, Y A exp{i[(2,+142)t—KF]}, (6)
l==n
where s = —K®, K — mean value of the wave number for acoustic wave.
The first term in expression (6) will be disregarded in further considerations,
because it does not influence the generated of the diffracted light wave. Substituting
(6) in formula (3) we reach

ol o ij{[Po,xk']XE’}exp[—:(k_+K,)"_]exP[ kel gy 151

et o F—7
where ;
Py, = eqepK A expli(w+2)t] - E°, 8)
E° — amplitude of electric field intensity of inciding light wave
Q= Q,+1-4Q

and it was also accepted that £ = ¢&. We accept that E° L k" in order to simplify
further considerations. Then

{[Poyxk'Ixk'} = —k?Py,. 9)

As a result the expression (7) in scalar notation will have the following form

E-.2 exp[—ik'|F —#]
P —ilk+K

4mm_Z_n ;‘: or€xp[—ilk+K)F] V=7

The diffraction pattern is most frequently observed at a much greater distance in

relation to linear dimensions of the diffraction area. Furthermore we can accept that

k =~ k' because k > K. This also means that angles 6 and ¢ are small angles.

Calculating the integral in expression (10), with mentioned above assumptions,
we reach the final expression for E,

d

av. (10)

= _szspE exp(—ikd - cos @) W2L sin[k(cos0—cos¢)L/2]
’ b d-coso cosf)  k(cos—cosg)L/2

3 i ys sin{[K,—k(sin0+sing)]w/2

& AR renos smpywn T PLAG Sl )
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where d — distance from area of interaction to the plane in which diffraction is
observed.

Therefore, the electric field intensity of the diffracted light wave is a sum of
harmonics with frequencies w+ Q, formed as a result of interaction between inciding
light and harmonics of the acoustic wave. Diffraction angles ¢ at which the electric
field intensity of the diffracted light beam reaches maximum are defined for
individual components by the following conditions

(cos0—cos ) —»0; [K,—k(sin0+sing)] -0 (12)

If we assume the angle of incidence @ of the light beam to be constant, what usually
happens in experimental research, and include the previous assumption concerning
the value of angles ) and ¢, then angle ¢ at which the electric field intensity of the
l-component of the diffracted wave reaches maximum is expressed

K,—k(sing+sin0) = 0. (13)

This means that individual harmonics of the diffracted light wave will be distributed
in space and will be relatively simple to measure. The following formula expresses
light intensities of individual components

2

= 47 N (14)

Id!= =
0

Eq

where

sin| k(cosf —cos )L

g bo k* KepE® exp[ —jkdcosp] w?L 2" ¥
§cionds d-cose cosf L
k(cos()—cosq))i

X

sin{[K,—k(sin8+sin(p)] ;’}
by = explj(w+0)-1]
[K;—k(sin0 +sin )]

After substitution we have

; ; L.
| [eo | k2KepE® WL sin |:k(cosG —Cos qa)il

a=5
[k(cosB —CO0S8 (p)ﬂ

2\ uo 4n  d-cosq@cosl
sin{[K! —k(sinf +sing)]

X

w

2

} 2
14> (15)

X

[K,—k(sin0+sin(p)]§
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3. Numerical calculations

The angular distribution of component intensities of a light wave diffracted on
a series of ideal rectangular pulses shown in Fig. 1 was calculated on the basis of
expression (15). In the case under consideration amplitudes of individual components

of the acoustic wave are
T
(1. 40°
_rldgsm(l QZ)

A
Y2 1-4AQr)2

(16)

If a light wave incides onto the area of interaction under the angle 0 = arcsin(K ,/2k),
equal to the Bragg angle for the carrier frequency of the acoustic wave and defined
by condition (13), then the ratio of the intensity of the [-component to the maximal
intensity of the central component 1 =0 is as follows

X

sin| k(cosf)—c )L
Iy (cos0)\? | sin(l-4Q-1/2) g
~ \cosg i A7/

I L
= k(cos( —cos (p)§

w ¥ |
sin {[Kl—k(sinﬁ-i—sin (p)]~2~}
< (17

)
[K,— k(sin@ + sin (p)]g

The dependence of the I-component’s intensity upon the ¢ angle is determined by the
square of the product of sinx/x type functions; while for small 6 and ¢ angles the last
term of the product, in braces, changes most quickly with a change of the ¢ angle.
This term conditions the width of the diffraction maximum of given component.
Fig. 3 presents maximal values of (I,/I,,) for components of a diffracted light wave
as a function of the number of component I. Two additional axes have been drawn in
the diagram. Diffraction angles ¢ corresponding with individual components and
frequencies of acoustic wave’s components @, for which diffraction occurs are
marked on them. Calculations were performed for following values of parameters
found in (17):

99=500MHz; ﬂg:lMHz; t=10""7s; L=2-10"m;
2n 2n

w=10"?m; /1=2k—n=630nm; v=5000?.

Angle of incidence, calculated from the Bragg condition 0 = 1°48'18".



LIGHT AND ACOUSTIC PULSE INTERACTION 9

I
gl
(Ida)max
10
n%lln.].] | | I.[.-J]III“ |
20 A-I50 A R ATS 0 5 0 5 20 1
1697 &3 - 1769 1805 1841 1877 193 9o
7V ARSEAAR D PARMMMAR" " DS BOARS " ARALNS A8 %

FiG. 3. Dependence of maximal values of relative intensities of diffracted light waves harmonics of the
number of component /, angle of diffraction ¢ and frequency of component of acoustic wave Q,, which
causes diffraction

Calculations were carried out in the range of angles expressed by inequality
1°36'18" < ¢ < 2°0'18”
with step Ap = 10".

4. Conclusion

It results from our considerations that the interaction of a light: wave with
acoustic pulses provides a possibility of analysing harmonics of these pulses.
Equation (15) and Fig. 3 show that the measurement of the angular distribution of
light intensity in a diffracted wave can lead to the determination of the amplitude
spectrum a series of acoustic pulses, calculated in the Fourier transform. Owing to
the spatial resolution of individual components of the diffracted light wave
measurements do not require complicated measuring methods. The direct measure-
ment of acoustic pulses propagating in a given medium, without the necessity of
converting them into electric signals (what inevitabely leads to deformations) is one
of the main advantages of the spectral analysis of acoustic pulses based on the
described interaction. It is also important that acousto-optic interaction do not
influence the propagation of an acoustic wave when non-linear effects do not occur.
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Therefore, parameters of the acoustic wave are not changed by the measuring
process. A practically linear dependence between the angle of diffraction and
frequency of investigated acoustic wave which causes diffraction is another facilita-
tion. Limitations of the method result from inaccuracies of measurements of the
angular distribution of the diffracted wave’s intensity and from the limited width of
the frequency band, related with conditions (13). This band depends also on the
chosen geometry of the interaction range and on acoustic and acousto-optic
properties of the medium.
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