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ACOUSTICAL SHADOW OF A SPHERE IMMERSED IN WATER. I
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In this study the acoustical field behind a rigid sphere is determined for the incidence of
a plane harmonic wave on it. This field was determined as the sum of acoustic pressures of
the wave incident on the sphere and reflected from it. Formulae describing the reflected
wave pressure given in different form by American, Japanese and Soviet acousticians, were
compared and their identity demonstrated. It was shown, that these formulae, though valid
for fixed spheres, can in practical hydroacoustic cases be also used for movable spheres. On
this basis directional characteristics of the shadow behind the sphere were determined for
the values of ka = 100z, 40z, 20n and 8=, which are essential for hydroacoustic problems
and for ultrasonic medical diagnostics. These characteristics were determined for distances
falling between 10 a and 100 a, where a denotes the radius of the sphere. Moreover, the
shape of directional characteristics was interpreted and the ranges of the shadow were
determined for different values of ka.

W pracy wyznaczono pole akustyczne za sztywna kula, powstajace w stanie ustalonym
przy padaniu na nia plaskiej fali harmonicznej. Pole to wyznaczono jako sume ciénienia fali
padajacej na kulg i ciSnienia fali od niej odbitej. Poréwnano wzory opisujace pole ciénienia
fali odbitej, podane w réznych postaciach przez akustykéw amerykanskich, japonskich
i radzieckich wykazujac ich identycznoéé. Pokazano, ze wzory te, cho¢ stuszne dla kul
nieruchomych, moga w praktycznych przypadkach hydroakustyki by¢ rowniez stosowane
dla kul swobodnych. Na tej podstawie wyznaczono charakterystyki kierunkowe cienia za
kula dla iloczynéw liczby falowej k i promienia kuli a, ka = 1007, 407 207 i 8, istotnych
w problematyce hydroakustycznej i ultradzwickowej diagnostyce medycznej. Charakterys-
tyki te, zmieniajace si¢ w zaleznosci od odleglosci za kula wyznaczono dla odleglosci
zawartych w granicach od 10 a do 1000 a z krokiem katowym réwnym 1°, 0,2° lub 0,05°.
Podano przy tym interpretacj¢ ksztattu tych charakterystyk oraz wyznaczono zasiegi strefy
cienia dla réznych wartosci ka.

1. Introduction
The problem of acoustical shadow behind solid bodies is essential for many
questions of the ultrasonic technique, in particular for hydroacoustics and medical
diagnostics. In the literature, many studies were devoted to wave reflection from
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solid bodies, such as sphere, cylinder etc. On the other hand, the authors did not
come across studies related to analysis of the shadow forming behind such solid
bodies. :

The object of the study is the acoustical shadow forming in the steady state
behind a rigid sphere immersed in water. The obtained results can be also
generalized to soft tissues since they contain more than 70% of water in their
composition and their acoustical parameters are very close to those of water. The
previous rather preliminary, studies by the authors [3] showed that the shadow
characteristics for rigid and elastic spheres resemble each other. It was assumed,
therefore, that the considered spheres are rigid. The computer time necessary for the
determination of the shadow behind an elastic sphere is much longer than in the case
of a rigid sphere. Moreover, this applies to homogeneous and isotropic elastic
spheres, and after all, in hydrolocation practice or in medical diagnostics the inner

structure of solid bodies is very complex and unknown a priori.

2. Wave reflection from fixed and free movable spheres

Considering the ultrasonic wave reflection from a sphere, it is necessary to
distinguish between two cases: the case of a movable sphere, which can freely move
in water, and that of a fixed sphere. In real sea conditions, spherical objects can be
free, i.e., moving under the effect of the incident wave. This case can be considered on
the basis of the result of study [9].

Between the amplitude of the harmonic plane wave of the acoustic pressure p;
incident on the sphere and the amplitude of the wave p, reflected from the sphere,
there is a relation which takes the following form for a distance which is large
compares with the sphere radius and the wave-length [8]

a
p, = me (ka)p; (1)

where a is the sphere radius, k = w/c, ¢ is the wave velocity in water, r is the distance
from its centre. The function f, (ka) is called the form function and depends in
general on mechanical parameters of the sphere and the ambient medium. Using the
complex formulae given in papers [8] and [7] it is possible to determine the function
f..(ka) for both rigid and elastic spheres. However, the theory and the formulae
derived on its grounds apply only to fixed spheres.

The above-mentioned authors [9] introduced a correction to the function f (ka)
which permits the use of Eq. (1) for rigid movable spheres too. Then, for movable
spheres there is the modified form function in the form

f¥(ka) = [, (ka)+4f,, (ka), (2)
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where

oy [ kaj(ka)—j, (ka)__ Ji(ka) ] *

~ ka| Ekah® (ka)— P (ka) h? (ka)

Jj; and j; are the spherical Bessel function of the first order and its derivative with
respect to the argument. h'? and h{?" are spherical Hankel functions of the second
kind, of the first order and its derivative with respect to the argument, j = ./ —1, ¢ is
the density ratio between the sphere and the ambient liquid.

Fig. 1 shows the modified shape function (modulus) calculated by the authors for
a free movable sphere with density ¢ = 7.7 g/cm? steel and for a fixed rigid sphere
(curvé R). The curve R does not depend on the density of the sphere.

2
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FiG. 1. The modulus of the shape function f, (ka) for a fixed rigid sphere (R) and the modified shape
function ka for a free movable sphere with the relative density ¢ = 7.7 (steel) and & =4

Hence, for ka > 6, both curves, namely the curve R and that for steel (¢ = 7.7)
practically coincide. On the other hand, for small values of ka, there can be large
differences between the two curves (e.g. curve ¢ = 4). Hence, it can be concluded that
in the present case a sphere with large density can be treated as a fixed one. In
practical cases in echo ranging this condition is usually satisfied. On the other hand
the conclusion is not valid for spheres with small density and for low values of ka
since, then the rigid sphere vibrates as a whole under the action of the incident wave

pressure. In such a case verifying calculations should be performed according to Egs.
(2) and (3).
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3. Acoustical shadow. Formulae describing wave reflection
from a rigid sphere in steady state

The shadow forming arround a rigid sphere can be determined from expressions
describing the acoustic pressure of the wave p, emerging around the sphere. It is the
sum of acoustic pressures of the plane wave incident on the sphere p, and of the
reflected wave p,

ps 34 Pi+pr' (4)

The acoustic pressure of the wave reflected from the sphere p, is obtained as a result
of the solution of the scalar wave equation in the medium surrounding the sphere.
The boundary condition should be satisfied, namely the normal component of the
acoustic velocity should vanish on the surface of the rigid sphere.

Since in the studies by American, Japanese and Soviet authors there are various
forms of formulae describing the pressure of the reflected wave p,, therefore the
formulae for the pressure p, also take different forms. To determine unambigously if
these formulae are the same, this question should be analyzed.

The instantaneous value of the plane wave of the acoustic pressure incident on
the sphere can be expressed in the form

rcos@

P; = Pio €XP I:jw(t— )] = p;o €Xp(—jkr cosO)exp(jowt), (5)
where the index p;, denotes the amplitude. According to Japanese authors, from Eq.
(3) in study [6], the wave reflected from the sphere was in the form

oo

pr e piO z (_J)m(2m+ I)Cum(COSB)hg](kr)exp(]‘ﬂ)t), (6)

m=0

where the coefficient ¢, equals
¢ = — [Fujm(ka)—kaj,(ka)]/[F , b7 (ka) — kah" (ka)]. (7

Formulae (5) and (6) are valid in a polar coordinate system in which the wave is
incident on the sphere travelling from left to right (Fig. 2a). In this system the radius
was denoted by r and the azimuth by 6. P,(cosf)) denotes the Legendre polynomial
and h? and h{?"" are spherical Hankel functions of the second kind and its derivative
with respect to the argument.
It can be shown [2] for a rigid sphere that
F.=0. ®)

Then, Eq. (7) becomes
Cn = —Jm(ka)/h3 (ka). 9)
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direction of the incidence of the plane wave on
the sphere. a) — used in American and Japanese
studies, b) — used in Rzhevkin’s study [13]

b)
<
FiG. 2. The polar coordinate system and the a ’ ’—‘

———

ik
As can be verified, the following relation occurs [2]
j(sinn,)exp(in,) = —jn(ka)/h (ka) = c,, (10)
where
tann,, = —jn(ka)/n,(ka) (11)

in accordance with Eqgs. (7), (5) and (8) in study [6]. n,, and n,, are Neumann spherical
functions and their derivatives with respect to the argument.

Thus, in the case of a rigid sphere, eq. (6) can be written in two equivalent forms,
which can be met in Japanese [6] and American [8] studies

Jm(ka)

02 (ka )pm(cos 0) x h{P (kr)exp (jot), (12)

P, = —Pio E (=i 2m+1) 22

and

Q0

Pe'= P z (—j)m+ 3 (2m + I)Sin Hm exp(mm)Pm(COS Q)hg)(kr)eXpUWt)s (1 3)

m=0
where tan ,, is expressed by Eq. (11). The above formulae are valid in the coordinate
system r, 0 (Fig. 2a). On the other hand in Soviet studies there are different formulae
[12]. To compare them with the formulae of Japanese and American authors, let us
introduce the coordinate system r, 3, in which the wave incident on the sphere

travels from right to left (Fig. 2b). It has the form (see [12], p. 257).

rcosd

Pi=Dis exp[jco(t+ )] = p;o€Xxp(jkrcosJ)exp(jwt). (14)

In turn, from Eq. (9.6) in the cited handbook [12], the wave reflected from the sphere
is described by the formula

P, = —Dio i "1 (2m+ 1)siné,, (ka)exp[jd,,(ka)] P, (cos ) h? (kr)exp(jwt). (15)

m=0

3 — Arch. of Acoust. 1-2/89
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According to the formulae in Ref. [12] (p. 259) for a rigid sphere
sind,, (ka)exp[jo,,(ka)] = j[im(ka)/hyz” (ka)]. (16)
Substitution of Eq. (16) to Eq. (15) gives

m(ka)

hzz)(k )P (cos )P (kr)expjot). (17)

P, = —Dio Z J"(2m+1)

To compare Eq. (17) with Egs. (12) and (13) one should notice that the following
relations (Fig. 2).

@=n—9 or cosf = —cos9. (18a, b)

The Legendre polynomials are given by the expression [1]

1 d"[(x*—1"]

PoX) = S ™ dxm

(19)
From Egs. (18b) and (19) follow the relations
P,(x)=(—1"P,(—x) or P,(cos9)=(—1)"P,(cos0). (20a, b)

Substitution of Eq. (20b) in Eq. (17) gives finally the form of Eq. (12).

In this way the equivalency of formulae obtained by Japanese, American and
Soviet acousticians was demonstrated for the case of the wave reflection from a rigid
sphere. 3

4. Directional characteristics of the shadow

Taking into account relations (4), (5) and (13) computer programmes elaborated
from the following formula (assuming p;, = 1) were applied for calculations of the
shadow behind a rigid sphere

p, = exp(—jkrcosf)—

— 3 (—jytt @me+ Dysin, (ka)explin, (ka) Po(cos DR Kr)  (21)

m=0

where the quantity #,,(ka) is given by Eq. (11). Eqgs. (12), (13) and (21) can be
simplified if the spherical Hankel function h,(kr) is replaced by approximating
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formulae valid for large arguments kr. However, this simplification was abandoned
in order to investigate the shadow distribution at short distances from the sphere.

The spherical Bessel, Neumann and Hankel functions j,, (ka), 1,,(ka) and h$?(ka),
and also Legendre polynomials P, (cosf) are tabulated only for low orders of m. In
the present study, for large values of ka up to ka = 314, it proved necessary to apply
the above mentioned functions even to values of the order m = 300. Therefore, the
computations involved the reduction formulae drawn from Refs. [12], [1] and [10],
and appropriate computer programmes.

Fig. 3, 4, 5 and 6 show chosen results of the calculations of the acoustic field

ka =100
i r=10a
- m=z0. . 505

IR(8)]

ost ka =100
r=50a
m=0...505

IR(e)

o5t ka =100
r=90a
m=l. . 505

IR (e)!

FiG. 3. Directional characteristics of the acoustic field behind the sphere for ka = 100z (f = 150 kHz,
a=0.5 m) at different distances r. The dashed area corresponds to the shadow
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Fic. 4. As in Fig. 3 however for ka = 40n (f = 60 kHz, a = 0.05 m)

distribution behind the sphere in the polar coordinate system. The plotted curves are
the directional characteristics of the shadow p, = p,(f). The plane wave with the
amplitude p,, = 1 travels from left to right along the axis 6 = 180°. The centre of the
sphere is situated at the origin of the coordinate system. Successive curves in each of
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FiG. 5. As in Fig. 3 however for ka = 20n (f = 150 kHz, a=0.1 m)

the figures correspond to increasingly large distance r from the centre of the sphere.
The dashed area corresponds to the acoustical shadow which becomes smaller and
smaller as the distance from the sphere increases. The above calculations were
carried out for the azimuth step 460 = 1°.
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FiG. 6. As in Fig. 3 however for ka =8z (f = 60 kHz, a=0.1 m)

5. Acoustical field behind the sphere along the propagation direction of the wave

In all cases, behind the sphere, round the azimuth 6 = 07, there is a thin lobe of
acoustic pressure with its amplitude only slightly greater than unity. It is the sharper
the greater the ka value is. At first sight this may seen contradictory to our everyday
experience with light shadows. However, it was exactly in optics that it was
demonstrated experimentally behind an opaque screen, in the centre of its shadow,
a bright spot of light [5]. This is evidence to the diffracted of light. This conclusion
was drawn by Poisson on the basis of Fresnel’s diffraction theory, contributing to the
victory of the wave light theory. The conditions of the experiment described in [5]



ACOUSTICAL SHADOW OF A SPHERE 39

indicate that this effect was obtained for coherent light gained by letting light
through a very small aperture [11]. Therefore it can not be observed in everyday life,
in normal incoherent daylight.

This phenomenon seems to be understable if one takes into account the perfect
symmetry of the system considered here. In such a case the coherent acoustic waves
difracted around the sphere always meet on the axis of symmetry behind the sphere
with the same phase. Therefore, it is impossible for them to vanish to form there the
shadow. If in turn, the observation point is displaced slightly from the symmetry axis,
the waves diffracted on both sides behind the sphere arrive with different phases. It is
then possible to cancel themself forming the shadow. This can be shown using the
construction of Fresnel zones as it was discussed by several authors [4] and [5].

6. Length of the shadow

The calculated directional distributions of the acoustic pressure field behind the
sphere permit the determination of the length of the shadow — its range. However,
this depend on the assumption of the appropriate criterion of the shadow boundary.
Such a boundary can be assumed to be a set of points for which the acoustic pressure
amplitude drops by 6 or 20 dB relative to the pressure of the incident wave pressure
Pio- On the other hand, the shadow boundary defined in this way also depends on
the angular resolution applied in calculations. This follows from Fig. 7 in which
acoustic pressure distribution, calculated round the azimuth 6 = 0° with the steps
40 = 1°, 0.2° and 0.05°, are shown. The case on the right in Fig. 7 shows that if the

ka =100t

~"PS(@)’, r=100a

r=75a

1 i 1 1 1 1 1 1 1
e o i 0 & 2o e
FIG. 7. The acoustic pressure distribution for low angles 0 and for ka = 100z at the distances r = 75a and
r = 100a, calculated with the steps A6 = 1°, 0.2° and 0.05°
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criterion of the shadow boundary is set at the level of — 6 dB, the shadow is absent,
assuming angular resolution of 1°. For 46 = 0.2° the shadow becomes distinctly
observable, for 40 = 0.05° no additional changes occur.

Fig. 8 shows the directional characteristics of the acoustic field behind the sphere
transfered into the rectangular coordinate system for various distances r. This case

] / ka=100 i a0

OO
25 5

500 riml

FiG. 8. Directional characteristics of the acoustic field behind the sphere for various distances r,

transfered into the reactangular coordinate system (ka = 100, 40 = 0.05°). The characteristics for the

distance r = 80 m, in the upper part of the figure, corresponds to the — 6 dB criterion of the shadow
boundary

applies to the largest value of ka considered here, namely ka = 100r. This figure
shows distinctly the structure and decay of the shadow with increasing distance.

The acoustic pressure drop of — 6 dB, assumed here as the criterion of the
shadow boundary, occurs at the distance r = 160 a = 80 m behind the sphere. This
case is shown on the form of an enlarged section in the upper part of Fig. 8. It is
interesting to noice that even at the distance r = 1000a = 500 m there is behind the
sphere a pressure drop of 1 dB for the angle 0 = 0.2°.

The other cases of the shadow for smaller values of ka, are simpler, requiring
much less computer time, and will not be consider here in any great detail.

Fig. 9 shows, as a function of the distance r the highest value of the azimuth
0 _ ¢qs for which the acoustic pressure amplitude falls by — 6 dB with respect to the
pressure amplitude of the incident wave p,,. It is necessary to cell the “highest” since
the second value of such an angle occurs for each main lobe at the axis of the system
behind the sphere when the maximum pressure is smaller than — 6 dB (see Fig. 8).
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F1G. 9. The dependence of the angle 0 _,, and the maximum acoustic pressure P i behind the sphere on

the distance r for three different sphere radius a. Solid curves correspond to the frequency f = 150 kHz,

the dashed ones to 60 kHz. Thick curves denote the dependencies calculated for the step 46 = 0.05°, thin
curves for 40 = 1°. In the top plots, thin solid curves coincide with dashed curves

The plot in the lower part of Fig. 8 represents the dependence of the amplitude of the
minimum acoustic pressure p.;, behind the sphere on the pressure amplitude of the
incident wave p,,. Thick curves represent these dependencies for 40 = 0.05° thin
ones stand for A0 = 1°,

The values of the shadow range r_gqp and the angle 0 _ ¢4 for shadows behind
spheres with various radii and for different angular resolution applied in calculations
are listed in Table 4.

Table 1. The range r_gg4p and the angle 0_c45 of the shadow behind the rigid sphere

T _6an/0_6an

f[kHz] 60 150
a [m] 0.1 0.25 0.5 0.1 0.25 0.5
ka 8n 20m 40 20n 50m 1007
46 =1° 1.5m/— 7.5 m/2° 30 m/1° 3 m/2° 12 m/1.2° 28 m/1°
40 = 0.05° 13m/5° 85m/1.95° 35m/0.95° |3.5m/1.95° 22m/0.76° 75 m/0.35°
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7. Discussion and conclusions

a. The formulae applied by the cited American, Japanese and Soviet acousticians
to describe the acoustic field of waves reflected from a rigid sphere are the same,
despite different forms, if the various coordinate systems assumed in the derivation of
these formulae are also taken into account.

b. The above formulae, assuming a fixed sphere, can be applied in the solution of
hydroacoustic problems if these spheres are dense enough (e.g. steel spheres). The
resulting error is small and negligible for values of ka > 6. On the other hand, in the
case of spheres with lower density the application of this theory can cause large
errors for small values of ka (see Fig. 1). This error decreases as the value of ka
increases.

¢. Summing up the acoustic pressure fields of the incident and reflected waves the
directional characteristics of the field behind the sphere were determined for
ka = 100, 407, 207 and 87 which are typical for technical problems in hydroacous-
tics as well as for medical ultrasonic diagnostics in the case of detecting calcifications
in soft tissue, accompanying cancer. These characteristics were determined depen-
ding on the distance from the sphere. The calculations were performed for the
azimuth step 0 = 1° and in few cases for 40 = 0.2" and 0.05°, permitting the more
exact determination of the shadow boundaries behind the sphere. A further decrease
of 40 does not bring about any further changes in the shapes of the angular
characteristics of the shadow calculated here.

d. To evaluate quantitatively the shadow which decays in a continuous way, it
was necessary to introduce a criterion permitting its unambiguous determination.
For that purpose the authors proposed the criterion of a drop in the acoustic
pressure amplitude by 6 dB relative to the pressure amplitude of the incident wave.
The range defined in this way also depends on the angular resolution applied in
calculations as follows from Figs. 7 and 9.

e. To evaluate the directional characteristics of the shadow in terms of angle, the
azimuth 0_ ¢4 was introduced. It is equal to the highest value of the angle for which
the amplitude of the acoustic pressure behind the sphere decreases by 6 dB relative to
the pressure amplitude of the incident wave. For distances shorter than the shadow
range (e.g. for r = 2.5 m in Fig. 8), there are two such angles, therefore it is necessary
to choose the higher value of them, since there is a still smaller value of 0, resulting
from the shape of the main lobe of the directional characteristics, situated near to the
axis @ = 0°. For a distance equal to the shadow range (for r = 80 m in Fig. 8) there is
only one value of the angle 0 _gqp, equal to the angle for which the acoustic pressure
reaches a minimum value. In the case considered here this angle is 0, 2°. The value of
the angle 0_gqp also depends on the resolution assumed in calculations; it follows
from Fig. 9. :

f In all the cases of the calculated directional characteristics, there is the main
lobe situated round the axis 0 = 0°. It is the narrower the greater ka value is. This is
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a result of the coherence of the incident acoustic wave. The physical sense of this
phenomenon was discussed in greater detail in Section 5.

g. There is the interesting fact that the shadow extends far beyond the sphere. In
the case shown in Fig. 8, for the assumed resolution in calculations 6 = 0.05°, for
ka = 100n at the distance r = 1000a = 500 m, there is still a drop in the pressure
amplitude by about 1 dB.

h. The plots in Fig. 9 can be useful i1 practice, permitting the determination of
the shadow angle 0_g4; and the minimum acoustic pressure, depending on the
distance r, for two different frequencies and for the calculation steps 40 = 1° and
40 = 0.05°. Table 1 lists the shadow ranges r_g4s and the correspondmg angles
0 _¢qp for considered cases.
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