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APPLICATION OF DIGITAL TECHNIQUE TO THE-SPECTRAL ANALYSIS
OF MANDELSHTAM-BRILLOUIN SCATTERED LIGHT
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- Ipstitute of Acoustics, A. Mickiewicz University
(60-769 Poznan, ul. Matejki 48/49)

The experimentally recorded Mandelshtam-Brillouin type light scattering function is in
general a convolution of the real scattering function and the overall instrumental function,
accounting for all the deformations introduced by the measuring arrangement. We propose
an algorithm for the numerical deconvolution of the spectrum applicable to the correction
of the latter, and the deformation of the parameters of the scattering function. Results
obtained when testing the computer program determining the Rayleigh line halfwidth Av,
as well as the shift dvy, halfwidth Av, of the Mandelshtam-Brillouin line are given, proving
high degree of the effectivity of our numerical method. ;

Rejestrowana eksperymentalnie funkcja rozpraszania $wiatla typu Mandelszta-
ma-Brillouina jest w ogolnosci splotem rzeczywistej funkcji rozpraszania oraz caltkowitej
funkcji aparaturowej opisujacej wszystkie znieksztalcenia wnoszone przez uklad pomiaro-
wy. W pracy przedstawiono algorytm numerycznej metody dekonwolucji widma za-
stosowanej do korekcji widma i wyznaczenia parametrow funkcji rozpraszania. Przed-
stawiono rowniez rezultaty testowania programu komputerowego wyznaczajacego szero-
kos¢ potowkowa linii Rayleigha Av, oraz przesunigcie dv,,, i szeroko$é polowkowa Ay
linii Mandelsztama-Brillouina. Wyniki testu wykazaly duza przydatnos¢ zastosowanej
metody numeryczne;.

1. Theoretical foundations of Mandelshtam-Brillouin light scattering

Molecular light scattering by liquid media is due to time-dependent ther-
modynamical fluctuations of quantities such as temperature, pressure, and concent-
ration. Mandelshtam-Brillouin scattering is a process of this kind. The fluctuations
can be said to modulate the scattered light spectrum. Thus, in accordance with the
Wiener-Kinchin theorem, their variations in time reflect the underlying stochastic
ocurring in the scattering media.

Classitally [1], the spectral intensity distribution of the light scattered is
proportional to the Fourier transform of the autocorrelation function of fluctuations
in density (concentration). This quantity is termed the structural factor, and is
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generally denoted by S(v, g). Its analytical form is due to Mountain [2]:

AvMB AVMB
cq)’ + v (vo—cq)® + Avigp

+AVMB v+cq v+cq (1)
cq [(v—cq)+Avim (V=cqf’+Avig |}

The first three components of the scattered light spectrum are Lorentzian in form.
These are: the Rayleigh line of frequency unchanged compared to the incident
frequency, and the Mandelshtam-Brillouin doublet, disposed symmetrically on either
side of the central line at a distance dvyg = +cg. The fourth and fifth components
give a non-Lorentzian correction to the Mandelshtam-Brillouin lines shifting them
slightly (towards the central line) and causing them to become asymmetric. This
correction is usually very small. However, it affects the positions of the lines
perceptibility and has to be taken into account when interpreting the spectrum. With
the shift measured amounting to v, and the linewidth equal to Avyg, the real position
of the Mandelshtam-Brillouin has to be determined from the formula

S(v, ) = A{(l—l/ ) 2+ yipgl /v)[(%_

Vg = Vi +24vip. (2)

The preceding relations are valid for media in which no relaxational processes occur.
Liquids with relaxation exhibit moreover a line referred to as the Mountain line [2].

The experimentally recorded scattered light spectrum is in general the con-
volution of several functions [3, 4]: the line corresponding to the light source with
the spectral distribution I(v) the line of the spectral analyzer with the distribution
T(v, v') and the scattering line with the distrubution S(v, v'). The notation X (v, v) is
meant to signify that the function X determines the intensity of the output radiation
of frequency v which has arisen in response to input radiation of unit intensity and of
frequency . Since all these distributions take non-zero values only in a narrow
interval about the central frequency of the incident light wave we are justified i
writing

S(v, v) = S(v—v), T(v,v)=Sv—v). &)

In this case, the spectrum observed is given by the formula
. + a0 + a0 2
0w = [ Tv—v) | Sy=v)I(V)dvadv' = F HUF[TEIF[SMIF W]}, @)

with % the Fourier transform, and % ~' the inverse transform.
Thus, the scattering function can be determined from the following expression

SO = F HF M/ F[TONF TV} quings)

The preceding operation is referred to as deconvolution of the spectrum. It has to be
performed in order to determine the “true” scattering function contributed by the
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scattering liquid and, consequently, such parameters as the shift in Mandelsh-
tam-Brillouin line dvyg and its halfwidth Avy.

Obviously, Eq. (5) is not accessible to strict solution, though a number of
methods exist permitting approximate solutions of the problem. Here, we have in
mind primarily the pseudodeconvolution method of JONEs et. al. [5], as well as that
of LEIDECKER and LAMAccHiIA [4]. We shall discuss the former in more detail in
Section 2.

2. The influence of the instrumental line on the recorded Mandelshtam-Brillouin scattered light spectrum

The deformations incurred when recording various spectra have long been the
object of studies in the infrared, Raman and Mandelshtam-Brillouin spectroscopy. It
has been established [3, 5, 6] that the deformation caused by the instrumental line
can be neglected if the ratio of its halfwidth Av; and that of the line investigated Av
fulfils the condition Av,/Av < 0.2. In most cases this condition is not fulfilled. Thus in
order to obtain correct results, one has to have recourse to one of the methods
evolved for correcting the experimentally recorded spectra.

In dccordance with what has been said above, the instrumental line in the
Mandelshtam-Brillouin case is the resultant of the Gaussian gas laser line [7], the
Fabrv Pérot étalon line given by the Airy function [8]. and the line due to the finite
size of the scanning aperture described by a triangle function [4]. In practice, for the
sake of simplicity, one usually makes use of the over-all instrumental function A(v).
The latter can be expressed as the product of a Gaussian and a Lorentz function:

AW) = Ao [1+(1/AvE)(v—v)*Texp[ —(1/4vE)(v=v,)*]. (6)

Applying the over all instrumental function A4(v) alone, the experimentally recorded
spectrum can be written in the following form:

00 = | Av—v)S()dv, (7

where S(v) is the scattering function. Eq. (7) is an integral equation of the convolution
type accessible to numerical solution by reduction to a set of linear equations:

n
0;= ) A;S;, =123 ..., n (8)
j=
0 and S are, respectively, jvectors of the experimental points measured and the
scattering function, whereas A is the transformation matrix of the instrumental
function the matrix elements of which represent the values of the symmetric
instrumental function measured at the same intervals Av as the values of O(v). The
matrix A fulfils the normalisation condition. For deconvolution of the spectrum, i.e.
for determining the scattering function S(v) from the experimental functions S(v) and
A(v), we used one of the available methods of deconvolution (referred to as
Y-deconvolutions), namely that of Jones et. al. [4]. According to Jones, the
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transformation matrix of the instrumental function is constructed in the following
form:

Gy 1t B v o Bt 0 0 Qv . (9

0_ dzy B2 ... Qam 0 O I3 1)
B = S e O Rt s YT M &

The matrix is obtained as follows; having available n values of the scattering function
S(v;) and n values of the instrumental function A(v;) we assume that the 2/ values of
the function A(v;) lying on the wings of the line are zero.,Thus, the matrix A has
m = n— 2l rows. In practice, the values of the matrix elements a;; are determined by
recording light scattering from a statistically homogeneous medium.

Jones’ is an iterative method. As the zeroth approximation, one assumes the
experimentally observed values of the scattering function

gl e % b 9)
The k-th step of the iteration pfoccdure consists of 4 stages. In the first, one
determines the vector B(B,, B,,..., B,) from the formula
B® — A-Sk-1 : (10)
In the second — the vector R(R,, R,,..., R,)
Ro= Sl /B o ke L2t W (11

In the third stage, one finds the next (k+ 1)-st approximation of the vector S:

Sk+ — g o i=1,2,...,1 (12)
Skt - gL R, o, i=l+1,142, ..., 1+m (13)
S$k+1)=SEk)'Rm» i=l+m+1,l4+4m+2,....n (14)

The equations (12) and (14) describe the wings of the line. In the fourth stage we
determine the value of

50 = 3 |SB— S, (15)

i=1
One continues the iterative procedure until the following condition is fulfilled
|68 — k=D < g, (16)

where the parameter ¢ is a prescribed number. For practical purposes a sufficient
approximation is achieved after some 10-20 iterations. '

On having determined the function S(v) by deconvolution, one can procged to
determine the parameters of the spectrum: the halfwidth of the Rayleigh line Avg,
that of the Mandelshtam-Brillouin line Avyg, and the Mandelshtam-Brillouin shift
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dvyg. To this aim, we made use of the procedure consisting in fitting the theoretical
curve of eq. (1) to the ,experimentally” determined points of the function S(v) by the
least squares method.

3. Testing the numerical procedure. The design of a measuring stand for the digital recording
of Mandelshtam-Brillouin scattered light spectra

On the basis of the preceding Jones® algorithm we wroté in PASCAL language
a program for deconvolution of the spectrum and the determination of the
parameters of the Mandelshtam-Brillouin scattering spectrum recorded. The func-
tioning of the fitting procedure was checked on data generated on the basis of Egs.
(1) and (6). Fig. 1 shows the instrumental line of Eq. (6). Its parameters amount to:

I,
0t
instrumental line
Ay, =003 [cm™]
Ay, =004 lem
a5
0 1 A A | | 1
-004 -002 0 002 004 Av [crr]
Fig. 1. Instrumental line as determined from Eq. (6)
71,
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scattering function ’
Ay, =0012 [enr'] ———— convoluted line
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ast
a 1 1 1 i 1
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Fig. 2. Convolution of the instrumental line of Fig. 1 and the scattering function
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Av, =003 cm™ ', and Avg = 0.04 cm™ 1 1ts convolution with the scattering function,
of parameters equal to dvg = 0.012 cm ™!, Avyg = 0.022 cm ™! and dvyg = 0.207
em~!, is shown in Fig. 2, where one notes a lowering of the maxima and
a broadening of all the lines. The result of the deconvolution and fitting procedure is
shown in Fig. 3. Obviously, agreement between the parameters assumed and those
obtained is very good. _

A case of greater interest is shown in Fig. 4. Here convolution of the instrumental
line of Fig. 1 and a scattering function with the parameters Avg = 0.012 cm™1,
Avyg = 0.023 cm™! and dvyp = 0.073 cm ™! led to complete obliteration of the
hyperfine structure, so that an analysis of the spectrum by traditional methods was
not possible. However, the result of deconvolution of this spectrum is illustrated in
Fig. 5 where, quite obviously, the hyperfine structure is reconstituted and the values
of the parameters are in excellent agreement with those assumed.

iz,
10
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Fig. 3. The scattering function of Fig. 2 after deconvolution
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Fig. 4. Convolution of the instrumental line of Fig. 1 and the scattering function
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Fig. 5. The scattering function of Fig. 4 after deconvolution

Our test study permits the conclusion that the deconvolution method applied by
us is well adapted to the analysis of Mandelshtam-Brillouin scattered spectra.
Obviously, one has to keep in mind that experimental measurements involve yet
other sources of error so that an achievement of an accuracy as high as in the above
examples will hardly be possible. Nonetheless, the achievement of a 1-2% accuracy
in the determination of the Mandelshtam-Brillouin shift and an 8% accuracy in that
of the halfwidth of the Mandelshtam-Brillouin components is entirely feasible.

Whereas spectrometers construced hitherto, with numerical analysis of the
acattered spectrum [3] operated on the basis of separation in time of the light
recording process and the computational procedure, recent rapid developments in
computer technique permit the construction of a measuring stand of an on-line tvpe.

The arrangement designed by us designed (see Fig. 6) consists of the following four
elements: a light source, an analyzer of the scattered light spectrum, an electronic
system of detection. and a computer svstem. As light source we use a S0 mW He Ne
one-mode laser. As analyzer Fabry-Pérot interferometer tunable by continuous

chopper
He - Ne laser probe
she ;t;:—
generator ferometer
2 b A/D lock -in photo-
transducer amplifier multiplier

Fig. 6. Measuring stand for the digital recording of Mandelshtam-Brillouin light scattering spectra
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electrostrictional control of the distance between the mirrors in the range from 0.1 to
100 mm, corresponding to a spectral range within 0.05— 50 cm ™! was used. The role
of the detecting system is most essential: its aim is to amplify the signal from the
photomultiplier. Here, two possibilities present themselves — either a photon
counting system [3], or a chopper of the incident light beam and a selective phase
sensitive amplifier [9, 10]. The microcomputer system comprises an A/C transducer
with a resolution of at least 12 bits as well as a good microcomputer, preferably of
the IBM PC/XT class. We refrain from entering into the details of the optical system
since the matter has been dealt with extensively in the literature [3, 9, 10].

The present work was carried out within Project CPBP 02.03
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