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This study analyzed the acoustic fields generated by interactions between acoustic
waves and the edge of a half plane and a right angle wedge. Using known solutions of the
diffraction of a monochromatic wave on a half-plane and a right angle wedge, they were
written in a form permitting simultaneous analysis of three wave types: plane, cylindrical
and spherical. Approximate forms of solutions were adopted and the ranges of théir
applicability analyzed. In the space around the chosen obstacle, its efficiency was calculated
with respect to a free field, for wavelengths and distances of interest in urban acoustics.

W artykule poddano analizie pola akustyczne jakie powstaja na skutek oddzialywania
fal akustycznych z krawedzig polplaszczyzny i ostrzem klina o kacie rozwarcia rownym
katowi prostemu. Wykorzystujac znane rozwiazania dyfrakcji fali monochromatycznej na
polplaszczyznie i ostrzu klina zapisano je w postaci pozwalajacej na jednoczesna analize
trzech typow fal: fali plaskiej, cylindrycznej i kulistej. Przyjeto przyblizone postacie
rozwiazan, dokonujac analizy zakresu ich stosowalnosci. W przestrzeni woko6t wybranych
przeszkod obliczono ich efektywno$é w stosunku do pola swobodnego, dla dhugoéci fal
i odleglosci stanowiacych przedmiot zainteresowania akustyki urbanistycznej.

Basic notation

V  part of the acoustic potential ¥ of the monochromatic wave dependent on the spatial coordinates:
¥ = Vexp(—imn),

k wave number. k =2nr/i=2nflc =w/c, i — wavelength, [ — frequency, ¢ — wave velocity,
@ — angular frequency,

n normal to the barrier surface,

0o radial coordinate of the source position,

¢ radial coordinate of the position of the observation point,

¢o angular coordinate of the source position,

¢ angular coordinate of the position of the observation point,

zo z-th coordinate of the source position,

z z-th coordinate of the position of the observation point.
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Introduction

The notion of diffraction may be understood to mean all deviations from the
laws of geometrical acoustics in the process of interactions between acoustic waves
with obstacles whose acoustic properties are different from those of the ambient
medium. In the simplest case, this is a step-like change in acoustic properties which
occurs on the edge of a half-plane.

In practice diffraction is, e.g., a phenomenon which determines the efficiency of
flat acoustic screens in the shadow area. However, the use of such screens as
a measure against the noise propagation from highway requires considering changes
in the acoustic field not only in the shadow area, but also throughout the space of the
screen.

In general, wishing to describe the acoustic field in complex urban systems, it is
first necessary to gain knowledge of the elementary processes forming the acoustic
fields, including wave reflection and diffraction.

For urban systems it is acceptable to describe the acoustic field basing on the
laws of geometrical acoustic, with a correction for the diffraction occurring on edges
of the types of half-plane and wedge, e.g. diffraction on the half-plane type edge
occurs for the flat acoustic screens mentioned above. Diffraction at the right angle
wedge occurs at house corners, balconies etc. In the case of a depressed highway
diffraction occurs at the wedge of the slope, this time at the wedge whose opening
angle depends on the inclination angle of the slope, and which may be different from
a right one.

Generally, highways can be recognized as the main noise source urban area. In
the first approximation, for large distances, the highway can be considered as
a source of plane waves. At shorter distances, the model of a linear source is assumed
for it. Very close to the highway distinguishing individual vehicles, the waves from
them are considered spherical waves. Using more complex models of highway, the
acoustic field can be treated as one composed of elementary waves, e.g. plane,
cylindrical and spherical.

Considering the two basic elements at which diffraction occurs (the half-plane
and wedge) and three elementary wave types (plane, cylindrical and spherical), this
study analyzes the acoustic fields for these cases.

Section 1 of the study presents a general description of the strugture of the
acoustic field for chosen cases. The starting point were the known solutions of the
diffraction problem [1, 2] in which it is possible to extract the geometrical and
diffraction parts. The study shows that the asymptotic forms of these solutions for
the cases in question can be written in the form of the sum of waves forming
independent pairs related to the real source and the image sources representing the
waves reflected from the obstacle. The pair of waves related to one source consists of
the geometrical wave occurring only in limited space around the barrier, and the
diffraction wave present throughout the space.

The above description differs from the geometrical diffraction theory proposed
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by KELLER [3, 4] in that, instead of diffraction rays describing the total effect of
interaction with the obstacle, it introduces diffraction waves related to particular
sources of geometrical waves. This makes it possible to explain the nature of the field
at the geometrical boundaries and close to them, which cannot be done on the
grounds of the geometrical diffraction theory.

Section 2 gives explicit forms of the component geometrical and diffraction
waves distinguished in the description. It discusses in detail the applicability ranges
of the asymptotic forms of solutions which provided the basis for the description
introduced and which are different for particular cases. The regions where the
conditions of asymptotic approximation are satisfied at the same time for all the
cases presented coincide with the applicability range of the geometrical diffraction
theory.

Taking into account the conditions met in urban area, section 3 compares the
efficiency of two kinds of obstacle (half-plane and wedge) for three types of wave
(plane, cylindrical and spherical) in the area of the geometrical shadow. Also, it
distinguishes area where the presence of obstacle does not cause any significant
disturbance and those where, as a result of interference between the waves in them,
alternating increases and decreases in the total field amplitude occur.

The fields were analyzed for monochromatic waves from which complex
acoustic signals are made. The description of the field used the acoustic potential
which is linearly related to the acoustic pressure of the monochromatic wave.

1. Structure of the acoustic field around the half-plane and wedge

By using the appropriate approximations of the exact solutions of the problems
of the wave-obstacle interactions, the acoustic potential expressions describing the
total field around the obstacle can be written in the form of the sum of the
geometrical and diffraction parts of the potential [1, 2].

The geometrical part of the acoustic potential can be obtained on the basis of
the laws of geometrical acoustics in the form of the sum of geometrical waves coming
from the real source and those from the image sources represented by the waves
reflected from the obstacle surfaces.

The areas where geometrical waves are present are determined by the obstacle
size. In view of this, the total geometrical field, which is the sum of geometrical
waves, is discontinous. This discontinuity is compensated by the diffraction part of
the acoustic potential.

After the appropriate rearrangement it was possible to represent the diffraction
part of the potential in the form of the sum of diffraction waves, each related to the
source of a geometrical wave. Around the geometrical boundary, where the
geometrical wave from one of the sources vanishes, the related diffraction wave takes
maximum values compensating the jump of the geometrical wave, providing at the
same time, the continuity of the field.
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On the ground of a description of the field containing the related pairs of
geometrical and diffraction waves coming from the same source, one obtains
a uniform description of the structure of the acoustic field around the obstacle
independent of the type of wave and the kind of obstacle.

1.1. Structure of the acoustic field around the obstacle

The acoustic field of a monochromatic wave with the frequency f, around the

ideal hard half-plane, can be determined by the solution of the Helmholtz equation
for the acoustic potential

(42 +k*) V=0, (1)
with the boundary condition
v
— =0. 2
n _ @
This equation can be written in the following form: 1
V=V'+V (3)

where V? is the geometrical part of the acoustic potential and V* is the diffraction
part of the acoustic potential.

In a cylindrical coordinate system (Fig. 1) the equation of the half-plane

Plg,¢) ___._i_ ________

b)

P(g.9.2) I
z{

FIG. 1. The coordinate system applied: the screen is a half-plane with the equation y =0, 0 < x < o0, or
¢ =0, P — observation point, § — source
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disturbing the acoustic field, has the form-

¢=0, (4)
the geometrical part of the potential can be written in the form
Ve =n(n—p)V'(R)+n(x—B) V(R), (5)
where
B=¢—o,, (6)
B = ¢+, (7
R=R(p), R =R(p), )

R is the distance between the observation position and the source S and R’ is the
distance between the observation point and the image source §'.
The function 5(x) is the step function

rr(x)={1’x>0’ o)

0,x<0.

The potential V*(R) represents a wave incident from the source S (Fig. 2), whereas the

potential V' (R’) represents that from the source §’, namely a wave reflected from the
half-plane ¢ = 0.

FiG. 2. The position of the shadow boundary ¢ = ¢gc = n+ ¢, and that of the boundary of the reflected
wave ¢ = dgp = n—,

The diffraction part of the potential can be written in the form of the sum of two
diffraction waves

Vi=VI[R(BI+V[R(B)]. (10)

The potential V*[R (B)] represents the wave generated as a result of the interaction
of a wave from the source S with the edge of the half-plane, and the potential
V4(R(p')] — the wave generated by the interaction between a reflected wave and the
edge, i.e. the interaction between the wave from the image source S’ and the edge.

It follows from above that each of the sources, both S and §', are sources of
geometrical and diffraction waves. Geometrical waves occur only in certain areas
around the half-plane, diffraction waves are present throughout the space. The direct

11 — Arch. of Acoust. 1-2/88
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wave V'(R) from the source § exists in the area

0<¢<m+do,, (11)
where '
n+¢o = Pac ; (12)
is the shadow boundary (Fig. 2). The region
bc <P <2m (13)

is the area of the geometrical shadow where there are no geometrical waves.
The reflected wave V*(R’) coming from the source S’ exists in the region

0<¢<n—oy,, (14)
where

n—@o = Pp (15)

is the boundary of the reflected waves (Fig. 2).

In relation to the geometry of the system, the solutions obtained are symmetrlzed
with respect to the half-plane ¢ = =, hence, it is possible to limit the analyms of the
field, assuming the source position to be within the interval

0<¢y<m. (16)

1.2. Structure of the acoustic field around the wedge

For a wedge with the opening angle of 2Q (Fig. 3) the area of the acoustic field
description is the region

2n—2Q = vn, (17
where

v>1, (18)

5(Q0, %)

Plg.d) A

FiG. 3. The position of the right angle wedge in the coordinate system applied
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ie. the region outside the wedge. For wedges for which the parameter v satisfies
condition (18), the formulae given below are valid if the appropriate value of v is put
in plane of v = 3/2 represented a right angle wedge.

The acoustic field which would emerge as a result of the interaction between the
acoustic wave and the ideal rigid right angle wedge, is described by the acoustic
potential satisfying the Helmholtz equation (1), with the boundary conditions (2),
which in this case must be satisfied on two half-planes forming the wedge (Fig. 3).

Just as for a single half-plance, this potential can be written in the form of sum
(3) of the geometrical part V¥ and the diffraction part V¢ of the potential. The
geometrical part V¢ (Fig. 4) consists of three waves: the wave (V' (R)) coming from the
real source S, the wave (V(R')) reflected from the half-plane ¢ = 0, coming from the
source §', and the wave (V*(R")) reflected from the half-plane ¢ = 37/2 coming from

a)

b)

c)

¢=3n/2

FiG. 4. The sources of the waves making up the acoustic field around the right angle wedge: a) the

half-planes ¢ = 0 and ¢ = 3n/2 making up the wedge; b) the position of the source S’ representing the

wave V!(R') reflected from the half-plane ¢ = 0; c) the position of the source §” representing the wave
V(R") reflected from the half-plane ¢ = 3n/2
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the source S”
Ve =n(n—pB)n(n/2—¢) V'(R)+n(n—p)n(3n/2—$) V'(R)
+n(n—p")n(3n/2—¢) V(R"), (19)

B=¢—do, @)
B = ¢+, (21)
B’ = (3n/2—$)+(n/2— do) = 3n—(d + o), (22)
R=R(f), R =R(p), R"=R(p). (23)
The diffraction part of the potential is the sum of the four waves
V= VI[R(Bo)+ V' [R(B0)]+ VO [R (B3n2)]+ V' [R (B 341215 (24)
ﬂo =¢—o = B, (25)
Bo=¢+¢o=F, (26)
Baxz = (31/2—§)—(3n/2— o) = —(p— o) = — 5, (27
Banz = (37/2— ) +(31/2— o) = 3n—(p+ do) = 3n—f' = f". (28)

The existence of four diffraction waves results from the fact that the wedge is made of
two half-planes. A right angle wedge is made of two half-planes. A right angle can be
recognized as one formed by the junction of two half-planes (Fig. 4):

¢=0,¢=vn=73n/2. (29)

The source S is accompanied by the source §', which is a specular reflection of the
source § in the half-plane ¢ = 0 or in its extension (Fig. 4 b). The waves from these
two sources S, §' interact with the edge of the half-plane ¢ = 0. This interaction
occurs in presence of the half-plane ¢ = 3n/2 forming the wedge therefore the waves
V4[R(B,)] and V?[R(B;)] are different from the diffraction waves V*[R(f)] and
V4[R(B)] occurring for a single half-plane in expression (10).

The interaction between the wave from the source S and the half-plane ¢ = 3n/2
is similar to that of the half-plane ¢ = 0. This can be found from expressions (27) and
(28), where:

3n/2 = ¢, (30)
is the angular distance of the source S from the half-plane ¢ = 3n/2 (Fig. 4c), and
In/2—¢, (31)

is the angular distance of the observation point from this plane.

Thus, in analogy to (25) and (26) for the half-plane ¢ = 0, expressions (27) and
(28) are the difference and the sum of the angular distances of the source and
observation point from the half-plane ¢ = 3n/2.

As a result of a specular reflection of the real source S in the half-plane ¢ = 3n/2
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there occurs the source S” (this reflection may occur in the half-plane ¢ = 3n/2 or its
extension). The result of the interaction between the wave from the source S and the
half-plane edge ‘¢ = 37/2 in the presence of the half plane ¢ = 0 is the diffraction
wave V! [R(B3y2)]. All the four diffraction waves (24) occur throughout the space
around the wedge, on the other hand, geometrical waves only do so in certain areas
determined by the source position ¢,. For this reason, it is convenient to distinguish
four regions of the source position (Fig. 5).

If the source is in region I (Fig. 5 (I))

0 < g < 2/2, (32)
the direct wave V*(R) occurs in the region
0.<. Er+ o (33)

I: a)¢=n/2

II: a))

VI=VIR)+VIRY

FiG. 5. The four regions of the source position distinguished here: I — (0 < ¢y < 7/2), Il ~ (0 < ¢ < 1),

I — (7/2 = ¢ < 3m/2), IV — (n/2 < ¢ < 7). a) the region of the real source position, b) region of an

image sources position corresponding to the position of a given real source and areas where particular
geometrical waves occur
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where, just as for a single half-plane (12)

n+@o = dsc, (34)
is the shadow boundary. In the space
boc < ¢ < 3m/2 (35)

the geometrical shadow occurs, where there are no geometrical waves. For the right
angle wedge, this area is smaller than that for a single half-plane, since the part of the
space :

Inf2< ¢ <2n (36)

is occupied by the wedge itself.

If the source is situated in region I (32), the wave V' (R”) geometrically reflected
from the half-plane ¢ = 37/2 cannot occur, since the half-plane ¢ = 3n/2 is within
the geometrical shadow.

If the source is situated in region II (Fig. 5 (IT))

0<do<m, 37

then occurs the wave V*(R') reflected from the half-plane ¢ = 0. It appears in the
interval

0< ¢ <m—dy, (38)
where, just as for a single half-plane (15):
n—¢o = b6p (39)

is the boundary of the wave reflected from the half-plane ¢7= 0.
For the source position in region III (Fig. 5 (III)):

/2 < ¢y < 3m/2, (40)

there is the wave V'(R") geometrically reflected from the half-plane ¢ = 3x/2, and its
occurrence area is the interval

2n—¢y < ¢ < 3m/2, (41)
where |
2n—¢o = dgp'» ‘ (42)
is the boundary of the wave V*(R") reflected from the half-plane ¢ = 3m/2.
It follows therefore (Fig. 5 (IV)) that for the source position in region IV:
2 < ¢o<m, _ (43)

in the space around the wedge there is no shadow area, but there are two reflected
waves: the wave V'(R') reflected from the half-plane ¢ = 0 (in region (38)) and the
wave V'(R”) reflected from the half-plane ¢ = 3n/2 (in region (41)).
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In view of the geometry of the system, the descriptions of the acoustic field are
symmetrical with respect to the half-plane ¢ = 5n/4 (Fig. 4a). Therefore, the
complete analysis of the field requires to consider the source position only in the
interval

0< ¢, < 51/4. (45)

1.3. Acoustic field on geometrical boundaries

In the assumed coordinate system, the geometrical boundaries are half-planes
with equations ¢ = const. They are the boundary ¢gc of the shadow (12), (34) the
boundary ¢, of the wave reflected from the half-plane ¢ = 0 (15), (39), and, in
addition, for the wedge, the boundary ¢, of the wave reflected from the half-plane
¢ = 3n/2 (42).

On the geometrical boundaries ¢ = ¢ge, Pgp Pgp One of the geometrical
waves V'(R), V!(R’) and V*(R") coming from the sources S, §' and §” making up the
geometrical part of potential (5) or (19) always vanishes.

The diffraction wave, which forms a pair with the vanishing geometrical wave,
on the geometrical boundary, takes a value equal to half the value of the acoustic
potential of the related geometrical wave,

VI[R(¢ = ¢¢)] =0, (46)
VI[R($ = ¢e)] = 1/2V'[R( = ¢g)]. 47)

For the half-plane, on the shadow boundary (12), there vanishes the wave V'(R)
coming from the source S, then the geometrical part of potential (5) becomes

V¥ (¢gc) = 0. (48)
At the same time, the diffraction wave related to the source S, takes the form
VIR (¢6c)] = 1/2 V' [R(dgo)]- (49)

The diffraction part of potential (10) is the sum
Vi(dac) = 1/2V [R($)]+ V[R(B = n+2¢,)]. (50)

The total acoustic potential (3) on the shadow boundary is the sum of the
geometrical (48) and diffraction (50) parts.

For a wedge, on the shadow boundary, the geometrical part of the acoustic
potential (19) contains only the wave coming from the source S, which vanishes, i.e.

Ve(dgc) = 0. (51)

The diffraction part of the acoustic potential (24) on the shadow boundary takes the
form

V4(@6p) = 1/2V'[R($6)]+ VR (Bo = n+2¢,)]
+ V! [R(Bswz = —m)]+ V! [R(B3r2 = 2n—2¢¢)]  (52)
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Just as for a single half-plane, the total acoustic potential on the shadow boundary
consists only of the diffraction part (52).

For the case of a single half-plane on the boundary of the wave V*(R’) reflected
from the half-plane ¢ = 0, the geometrical part of potential (5) takes the form:

W(¢Gn) e Vi(R (¢Gn)]- (53)
In turn, the diffraction part of potential (10) takes the form
V4 (¢ep) = V'[R(B = n—2¢¢)1+1/2 V' [R' (¢gp)]- (54)

The total acoustic potential on the boundary of the reflected wave is the sum of
potentials (53) and (54).

For the case of a wedge on the boundary of the wave V*(R') reflected from the
half-plane ¢ = 0, the geometrical part of potential (19) takes the form of (53). In turn
the expression of the diffraction part (24) is as follows:

Vi ($ap) = V/[R(Bo = m—26)1+1/2V'[R'($6p)]
+ VA [R(Bsx2 = 2¢0—m]+ V! [R(B3x2 = 2m)].  (55)

The total potential is the sum of potentials (53) and (55).

In addition, in the case of a wedge, there can occur the boundary (42) of the
wave V'(R") reflected from the half-plane ¢ = 3n/2. The geometrical potential (19)
takes the form

Ve(dep) = V' (R(¢p)], (56)
and the diffraction part (24) of the potential becomes

Vi(dop) = V! [R(By = 2n—2¢)]1+ V! [R(Bo = 2m)]
+ VAR (B3ny2 = 200—m]+ 12V [R"($6p)]. (57)
The total field is the sum of potentials (56) and (57).

2. Explicit forms of acoustic potentials describing the acoustic field around the half-plane and right angle
wedge for plane, cylindrical and spherical waves

The first step towards the description of the acoustic field shown in Sect. 1 is the
division of the expression describing the potential into the geometrical and
diffraction parts (3).

The division of an exact solution describing the acoustic potential around the
half-plane into the geometrical (5) and diffraction (10) parts is only possible for the
incident plane wave. In the case of cylindrical and spherical waves, this division can
be peformed only for the approximate form of solution which is obtained as the
condition is satisfied [2]

kR, > 1, (58)
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where R, is the shortest distance between the source and the observation point
calculated through the edge.

R, can be treated as the parameter which takes a form which depends on the
wave type. Considering the fact that the plane wave is the limiting case of a wave
radiated by the source which is in infinity, in the assumed coordinate system the
distance R, is

— for the plane wave

R, =e, (59)

— for the cylindrical wave
R, =¢,+te0,; (60)
— for the spherical wave :

R, = [(eo+0)* +(z—2,)*1"">. (61)

According to expressions (58) and (60), for the cylindrical wave, the division of
the potential into the geometrical and diffraction parts is possible. in the case of
system in which the source or the observation point are far from the diffraction edge
(with respect to the wavelength). For the spherical wave, according to expressions
(58) and (61), it is possible, just as for the cylindrical wave, when the source or the
observation point are far from the edge and also when the source and the
observation point are distant enough along the z-axis (k|z—zo| > 1).

In the case of interaction between the waves and the wedge the division of the
acoustic potential into the geometrical (19) and diffraction (24) parts can be only
made when the approximate form of an exact solution is used. The approximation
conditions are following:

— for the plane wave

ko > 1, (62)
— for cylindrical and spherical waves
keo @
—> 1. 63
N (63)

Since the source of the plane wave is in infinity, it can be said, in general, that if
there is the interaction between three types of wave plane, cylindrical and spherical,
and the wedge, the potential can be divided into the geometrical and diffraction parts
only if the source and the observation point are at the same time far from the wedge.

It follows from the above that for all the six cases considered (two kinds of
obstacle half-plane and wedge, for which each time there is the diffraction of three
wave types plane, cylindrical and spherical) the common area where solutions can be
divided into the geometrical and diffraction parts is the area which lies far from the
diffraction edge. It would be applied only to systems in which the source is also far
enough from the edge.

To move over from the symbolic-qualitative description of the acoustic field to
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a quantitative one, we need to know explicit forms of functions describing the
components of the geometrical parts of the potential (5), (19) and the diffraction parts
(10), (24).

The geometrical parts of potentials are made up of waves radiated by sources
whose positions are only different in the angular coordinate. Thus the distance R (x)
between observation point and the particular source differs only in an angle o
Therefore, for every type of wave: plane, cylindrical, spherical propagation from these
sources can be described by the same expression where the right quantity R (x) must
be put. This will be presented in Sect. 2.1.

Then step leading to the description given in Sect. 1 is the analysis of simplified
expressions describing the components of the diffraction part of the potentials. These
simplified expressions are valid in areas appropriately distant from the geometrical
boundaries tied up to successive sources. Moreover, it is possible to describe the
diffraction, waves on the geometrical boundaries by means of simple expressions.

In the case of not too large area in which simplified expressions for diffraction
waves are not valid on the basis of the field continuity, principle the field in this area
can be determined by extrapolation from the value taken in the area where
approximation is valid up to the value taken on the boundary itself. In this way, one
obtains a description of the field throughout the space around the barrier.

The appropriate explicit forms of functions describing the diffraction waves in
areas far from the geometrical boundaries and on the various boundaries are shown
in points 2.2 and 2.3.

The applicability range of the description presented and its accuracy are
discussed in subsection 2.4.

2.1. Explicit forms of the geometrical part of the acoustic potential

In the expression for the geometrical part of the potential for the half-plane (5) it
is necessary to substitute the explicit forms of functions describing the waves

ViR (@)], (64)
where

a=pp. (65)

R () is successively the distance of the observation point from the sources S and S'.
In the expression for the geometrical part of the potential for the wedge (19) it is
necessary to substitute the explicity forms of function (64) for

a=p,p,p" (66)
where R (o) is, successively, the distance of the observation point from the sources S,
S and §".
The explicit forms of function (64) for chosen types of wave, in the assumed
coordinate system, are as follows
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— for a plane wave:
V'[R (@] = exp [ikR (2], (67)
R(x) = —gcosa, (68)

— for a cylindrical wave:

VI[R(x)] = kR2( exp{i[kR («)—mn/4}, (69)
R(2) = [o§ +0>—2go 0cosa]"?, (70)
— for a spherical wave:
p _exp[ikR ()]
VI[R(®)] = T kR@ (71)
R(a) = [0%+0?—200 @cosa+(z—zy)*]"/2. (72)

2.2 Explicit forms of the diffraction part of the acoustic potential

From well-known expressions [1, 2] for the diffraction part of the acoustic
potential for chosen kinds of obstacles (a half-plane and right-angle wedge) and three
types of waves plane, cylindrical and spherical, the diffraction waves related to
sources distant by R (x) from the observation point can be represented in the form

expli {k[R, — R (®)] +7/4}]
V2nke
1

sl S'“("/ ") o5 (@0 —cos (&) v

xd[R@IV'[R@], (73)

VI[R(@)] = P(a,v)

where d [R («)] is a coefficient depending on the type of the wave. Formulae (73) and
(74) are valid if conditions (58), (62) and (63), and the inequality

k[R,—R(®)] > 1. (75)

are satisfied. Condition (75) means that the observation point must be far from the
geometrical boundaries: the shadow boundary ¢ (12), (34), the boundary ¢dgp of
the wave reflected from the half-plane ¢ = 0(15), (39), and the boundary ¢y, of the
wave reflected from the half-plane ¢ = 37/2 (42).

Expressions (73) and (74) are valid for wedges with an opening angle satisfying
condition (18). A single half-plane is a special case of a wedge with the opening angle

2Q =0. (76)
Hence, from expressions (17), for the half-plane
y=2. (77)

In the case of the half-plane, expression (73) must be applied to determine the two
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diffraction waves V¢ [R (2)] which are part of the diffraction part of potential (10) for
a=p,p. (78)

Then the diffraction part of the acoustic potential can be rewritten in relation to the
incident wave V'(R) coming from the real source S:

exp {i [k(R, — R) + n/4]}

=P(¢,¢,,v=2) m d(R)V'(R), (79
1 Lin: 1
P(¢, ¢g,v=2)= —3 + v (80)
: . cos ¢ _;bo cos . 2% :

Depending on the incident wave type, the coefficient d(R) takes the forms:

— for a plane wave

d(R) =1, (81)
— for a cylindrical wave
d(R) = \/E, (82
Qo
— for a spherical wave:
IR =— )

oV RIQOI

From formulae (59), (67), (68) and (81) the explicit form of the diffraction part of the
acoustic potential for a plane wave is as follows:

exp [i(ke+ 1:/4)]

/2nke

Hence, it follows that the diffraction part of the acoustic potential for a plane wave
interacting with half-plane can be regarded as a wave of a cylindrical type generated
by the edge. The amplitude of this wave decreases as a root of the distance from the
edge g. It differs from the cylindrical wave only by the directional coefficient
P(¢,do,v = 2). In a superposition with the geometrical part of the acoustic potential
(5), this wave gives the total acoustic field which appears as a result of the interaction
between the plane wave and the half-plane.

On the ground of the reciprocity theorem it is possible to mterchange the source
and the observation point positions. Thus, for cylindrical and spherical waves,
according to (58) it can be set that it is the source which is far from the edge. Then
the coefficients d(R), (82) and (83), can be interpreted as measures of the relative
curvature of the wave fronts interacting with the edge. The emerging diffraction

(84)

P(d, ¢,V =
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waves are cylindrical-type waves deformed by the coefficient d(R), with the
directional coefficients P(¢.,.v = 2) (80), generated by the diffraction edge.

For the wedge, the diffraction part of the acoustic potential (24) contains four
diffraction waves V“[R(«)]. To calculate them, it is necessary to use expression (73)
for

g ﬁo'ﬁ:}aﬁSMZsﬁ‘.’!n!Z' (85)

Moreover, inequality (75) must be satisfied for all R ().

Using the relations between the angle a occurring for the wedge, (25)28), the
diffraction part of the acoustic potential (24) can be rewritten in relation to the wave
V'(R) coming from the real source S:

exp {i[k(R, —R)+n/4]}
N/ 2mko

1

B ol

Vi=P($, 0,7 = 32)

d(R)V'(R), (86)

P(o,¢py,v=13/2)= %sin(2n:/3)
cos

1
i . (87
e SR &4,

3 3

It follows hence that if the waves of the three chosen types interact with the wedge,
the diffraction part of the acoustic potential (86) differs from the diffraction part for
half-plane (79) just in the directional coefficient P (¢, $o,v). For the half-plane it has
the form of (80), for the wedge that of (87). The other conclusions concerned with the
interpretation of the diffraction part of the acoustic potential remain valid. For the
six analyzed cases of wave interaction with obstacles the fulfilling of conditions (58),
(62), (63) and (75) gives the diffraction part of acoustical potential the same as that
derived on the ground of geometrical diffraction theory.

2.3. Explicit forms of the acoustic potential on geometric boundaries

The geometrical parts of the acoustic potential V?(¢;) on the geometrical
boundaries for the three chosen types of waves and two kinds of obstacles can be
obtained by substituting the appropriate forms of geometrical waves (64) in
expressions (48), (51), (53) and (56).

In the expressions describing the diffraction parts of the acoustic potential
V(¢g) on the geometrical boundaries, one of the components of the diffraction
waves is always determined by the explicit form of the potential of the geometrical
wave which vanishes on a given boundary (46), (47). If condition (75) is satisfied, the
other diffraction waves occurring in expressions (50) and (54) can be determined from
formula (73).
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E.g. on the shadow-boundary, for the half-plane the total acoustic potential is
equal to the diffraction part V?(¢gp) (50). In expression (50), the first term is
obtained, depending on the wave type, from one of expressions (67)-(72). In turn, the
other term can be determined from (73) only if inequality (75) is satisfied for it.

In the case of the wedge, in expressions (52), (55) and (57) describing the
diffraction parts of the potential on the geometrical boundaries, there are com-
ponents related to the vanishing geometrical wave (40), (47) and those which, after
satisfying condition (75), can be determined by expression (73). Moreover, there are
also terms of the form

V4[R (x = n=m,v)], (88)

=0, 400825, (89)

which cannot be described by means of expressions (73) and (74) because the
singularity occurs in expression (74) for o =nn. In this case, the directional
coefficients in the form

P(x = nm,v), (90)

should be replaced by their boundary values which can be obtained from the exact
solution of the Helmholtz equation for required boundary conditions [1]

P(ax = nm,v) = —(1/2v)ctg(n/v). 91)
For the half-plane:
Plea=nm,v=2)=0 (92)

i.e., according to expression (50), this problem does not exist. In turn for the right
angle wedge,

P(o = nm,v = 3/2) = —(1/3)ctg(2n/3). (93)

This makes possible to use formula (52), (55) and (57) for determining the diffraction
parts of the potential V?(¢) on the geometrical boundaries wherever condition (75)
is satisfied for components of diﬁ'ragtion waves without singularities.

2.4. Accuracy of the approximate formulae applied — ranges of applicability

The division of an exact solution describing the acoustic potential around the half-
plane into the geometrical and diffraction part is only possible for the incident plane
wave [2]. The geometrical part of the potential is described by expansion (5). In turn,
the diffraction part in the exact solution consists of two diffraction waves, which, in
keeping with the notation adapted here, have the form

V![R()] = —sgn(r—a)f(w)a[R,, R()] V' [R()], (94)
where for the plane wave interacting with the half-plane
a=f,p, (95)

a[R,,R(@)] = 1/2. (96)
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The function

F(w)
fw) = m, 97
represents the reduced Fresnel integral
F(w) = [ exp(ip*)du, (98)

where

w=/k[R,—R ()], (99)

is the square root, calculated in wavelengths, of the difference in the paths passed by
the waves to the observation point directly from the source (R (x)) and through the
edge (R,).

For the cylindrical and spherical waves interacting with the half-plane, the
solution in the form of the sum of the geometrical part of the acoustic potential (5)
and the diffraction part (10) whose component diffraction waves are given by
expression (94) is the approximate form of the solution which is valid if condition (58)
is satisfied.

— for cylindrical wave:

[ R@
a[R,R(a)] = IR, +R@] (100)

— for spherical wave

[ R®
i \/ 2R, [R, + R@)]

On the geometrical boundaries (12) and (15) ¢g = ¢gc, Pgp for diffraction waves
related to the vanishing geometrical waves for all the three types of waves, one
obtains the equalities:

R(¢ = ¢¢) =R, w[R,,R(¢ = ¢¢)] = 0. (102)

Hence, after substituting expressions (102) successively in formulae (100), (97) and
(94) it can be seen that equality (47) is valid on the geometrical boundaries.
If condition (75) is satisfied,

wlR,,R(@] = /k[R,—R@)] > 1, (103)

the reduced Fresnel integral (97) can be replaced by the first term of a series
expansion:

(101)

. m @j-1)
_explitw+ma[, @ 0,
fw) = T[I + ngl WJ (104)
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Then, the expression for the diffraction part of the acoustic potential is obtained in
the form of (79). This can be done for

w| >3 (105)

when the error is of the order of the absolute value of the first omitted term, i.e.
@2 /aw*)~! ~001.

For a plane wave interacting with a half-plane, the angular width A can be
determined for the regions around the geometrical boundaries ¢ for |w| = 3 inside
which expression (79) is not valid

Ppg—A< P <¢gt4, (106)

oo Zarcsin( \/5‘3) (107)
ke

koinhS (108)

For cylindrical and spherical waves, if condition (58) is initially satisfied, the
angular width 4 of the regions around the geometrical boundaries (for |w| = 3) where
formula (79) is not valid, is

4 4.5(kR, —4.5)
A =2arcsin| |————— ), 109
(\/ koo ke (9

kR, > 4.5. (110)

For plane and cylindrical waves, and also a spherical one (for z = z,), Table
1 shows the angular widths 4 of the regions, around the geometrical boundaries,
inside which expression (79) cannot be applied for preset parameters kg and kg,.
Also, Table 1 shows the approximate values of the absolute distances of the
observation point and the source from the edge for two chosen frequencies /= 500
and 1000 Hz as typical of noise in urban area.

It can be said in general (Table 1) that for decreasing values of the parameters
ko and kg,, the region in which the approximate expression (79) is valid becomes
narrower. Thus for small parameters k¢ and kg, effective use of the approxirhate
expressions is impossible.

In the case of the wedge, for the exact solution to be divided into the geometrical
and diffraction parts, assumptions (62) and (63) must be satisfied. At the same time if
condition (75) is fulfilled the diffraction waves can be described by formula (73). It is
more difficult to determine the angular width of the regions where these conditions
are not met as in the case of a single half-plane. On the other hand, it is possible to
estimate them as being of the same order as those in the case of interaction between
the chosen wave types and the half-plane.
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Table 1. The angular width of regions 4 (107), (109), around the
geometrical boundaries, inside which for given parameters kg and kg,
expression (79) is invalid, and the distances g, g,, for two frequencies f

ke keo AL °1 | e[m] | @o[m] | e[m] | go[m]
S=500 | f=500 |f= 1000 | f= 1000

[Hz] [Hz] [Hz] [Hz]
1000 co* 8 100 o0 50 o0
1000 1000 3 100 100 50 50

500 0 P 50 [o's) 25

500 1000 14 50 100 25 50
500 500 15 50 50 25 25
250 o 15 25 © 12.5 o
250 1000 17 25 100 12.5 50
250 500 19 25 50 12.5 25

250 250 22 25 25 125 12,5
125 Ivo) 22 12.5 00 6.3 v’}
50 o 34 5 o) 2.5 o0
25 o) 50 2.5 a0 1.3 Ive)
10 ve) 84 1 le'e} 0.5 0

* denotes a plane wave

3. Efficiency of the half-plane and wedge as obstacles disturbing the acoustic field

Comparative analysis of the interaction between the three chosen wave types
and a half-plane and a wedge can be carried on only for the systems in which the
source and the observation point are far from the diffraction edges. Exactly, such
situations are met in urban systems. In these systems, if the observation point is far
enough (75) from the geometrical boundaries, the diffraction part of the acoustic
potential can be determined for a half-plane from expression (79), for a wedge from
expression (86). .

Knowing the geometrical parts of potentials (5), (19) and the diffraction parts
(10), (24), it is possible to determine the acoustic field on the geometrical
boundaries. The diffraction wave related to the vanishing geometrical wave takes the
value according to (47). For the wedge, the diffraction wave having directional
coefficient with a singularity takes the value according to (93). The other diffraction
waves, which are not related to the disappearing geometrical wave, can be
determined according to (79) if condition (75) is satisfied.

If the widths 4 of the regions around the geometrical boundaries (Table 1) are
not too large, in keeping with the principle of continuity of the acoustic field,
extrapolation can be carried out between the value of the acoustic potential on the
geometrical boundary and the last of the values calculated according to the

12 — Arch. of Acoust. 1-2/88
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approximation conditions. In this way, a description of the field throughout the
region around the obstacle is obtained. To determine quantitatively the disturbance
caused in the free field by the presence of a half-plane or a wedge, the obstacle
efficiency is introduced:
14
IL ZOIOEI-V*I’ (111)
where Vis the total acoustic potential of the field disturbed by the obstacle and V* is
the acoustic potential of the free field (of the incident wave). With such a definition of
the efficiency of an obstacle, the fact that it takes positive values at the observation
point means a decrease in the sound pressure level caused by the presence of the
obstacle; the fact that it takes negative values represents an increase in the sound
pressure level caused by the presence of the obstacle.
The obstacle efficiency in the case of a half-plane (v = 2) and a wedge (v = 3/2),
regarded as ideally rigid, is a function of the position of the observation point
(¢,kq,2) and that of the source (¢, ko, z,) With respect to the diffraction edge,

IL= IL(¢, ¢y, ke, keo.2,2q,V)- (112)

It follows from the considerations in subsection 1.2 that the dependence of the
obstacle efficiency on particular parameters can be determined analytically only in
the shadow area: :

boc < ¢ <vm. (113)

In this area, the acoustic potential contains only the diffraction part which can be
represented in the form of one diffraction wave (79) for the half-plane, (86) for the
wedge, related to the phase and amplitude of the incident wave (V¥(R)).

In the regions where there is interference between geometrical and diffraction
waves only numerical analyse is possible. The efficiency is calculated as a function of
one parameter with the other fixed.

3.1. Efficiency of the half-plane and wedge in the shadow area

The shadow area occurs at the same time in the case of both obstacles
a half-plane (v = 2) and a wedge (v = 3/2) if the source is situated in the angular
interval (0, n/2) (Fig. 5 (IT)). Then, the obstacle efficiency according to (79) and (86)
has the form

- ~/ 2nkg
IL = ZOiogm—mlog [d(R)]. (114)

Taking into acount expressions (81)83), the obstacle efficiency for the three chosen
wave types can be given by:
— for a plane wave

IL, = 10log (2mkg)—2010g|P (¢, ¢4, V), (115)
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— for a cylindrical wave
IL, = IL,—10log(R/g,), (116)

— for a spherical wave
IL, = IL,—10log(R*/R, g,). (117)

It follows from formula (115) that the obstacle efficiency for a plane wave in the
shadow area is the greater the farther from the diffraction edge the observation
points and the farther it is from the shadow boundary. In the first case the value of
the parameter kg defining the relative position of the observation point (calculated in
wave lenghts) is large. In the second case the absolute value of the directional
coefficient P (¢, ¢,, v) [5] is small. The fact that the obstacle efficiency in the shadow
area for cylindrical and spherical waves is greater or smaller than the efficiency for
a plane wave depends on whether the quotients in the second terms of formulae (116)
and (117) are greater or smaller than unity. Moreover, for each of the three wave
types the inequality occurs:

IL;(¢, do, ko, koo, klz—2o|,v = 2)—IL;(¢, Po, k@, k@o, klz—2zo|,v = 3/2) > 0,
Jj=p.c,s, (118)

meaning that for the same positions of the source and the observation point the
efficiency of a half-plane in the shadow area is always greater than that of a right
angle wedge. At the same time, the shadow area for the half-plane is always greater
than that for the wedge, since part of the shadow area which occurs in the case of the
half-plane is occupied by the wedge itself.

3.2. Numerical examples

The calculations were made for two types of obstacle, a half-plane (v = 2) and
a right angle wedge (v = 3/2). Three types of incident waves were assumed: plane,
cylindrical and spherical (for z = z,). For cylindrical and spherical waves, a symme-
trical system (kg, ke, = 250, 500, 1000) and nonsymmetrical one (kg # ko,) were
taken, with kg and kg, occurring in three combinations of values used in the
symmetrical system. Four positions of the source were chosen, belonging to
successive regions distinguished in Fig. 5:
¢o = 10° with the source in region I (32),
¢, = 55° with the source in region I (32),
¢o =90° with the source on the boundary between region I (32) and region
I (37),
¢o = 135°  with the source in region III (40) and, at the same time, in region
IV (43). :
Table 2 lists the parameters for which the calculations were made.
The positions of the source in region I:

¢, = 10°,55°
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Table 2. The values of parameters and wave types for which the obstacle
efficiences were calculated

angular

obstacle wave
source : kgo | ke |kelkeo=m

position kind e

¢ =10°,755°, Vi=i211372 plane o0 250 0

- 90°, 135° 0 500 0

' oo | 1000 0

cylindrical | 250 | 250 1

500 | 500 1

1000 | 1000 1

1000 | 250 1/4
1000 | 500 12
500 | 250 12

spherical 250 | 250 1
500 | 500 1
1000 | 1000 1

1000 | 250 1/4
1000 | 500 12
500 | 250 1/2

are related to the presence of the shadow area for both of the obstacle. With the
position of the source:

¢O 5% 900)

the shadow area occurs only for the half-plane and it disappears for the wedge. The
position of the source:

b = 135°

causes the appearance of the shadow for the half-plane. In the case of the wedge,
there is no shadow, on the other hand, there is a wave reflected from the half-plane
¢ = 3m/2 = 270°. Table 3 shows the appropriate geometrical boundaries ¢sc, Pgp
¢ep» and in view of this, it is possible to distinguish four areas (Fig. 6):

— area A:
0< ¢ <dgp (119)
(which always occurs for the numerical examples)
— area B:
¢gc (for all the positions of the source in the case
of the half-plane and for the wedge for the source
pep<¢ <

position ¢, = 10°, 55°, 90°),
dgp (for the wedge, for ¢, = 135°), (120)
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Table 3. The positions of the geometrical boundaries for the
numerical examples for the given angular position of the source

b
bound f
lwa:: reaﬂr:ctgd boundary, of
shadow R wave reflected
" boundary from half-plane
BT loc=nrdo| "B | g 302 = 2700
© - = 2 -
[ ] ¢GD - ¢0 ¢Gb [u]”r ¢0
L]
10 2 190 170 -
32 190 170 -
55 2 235 125 -
3/2 235 125 -
90 2 270 90 -
32 — 90 270
135 2 315 45 —
32 - 45 225
.a)

FiG. 6. Areas A, B, C, and D around the half-plane (a) and around the wedge (b), (c) distinguished in terms
of the character of the function IL (¢) describing the efficiency of the obstacle
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— area C:

360° (for the half-plane),
270° (for the wedge),

— area D (which occurs only for the wedge for ¢, = 135°)
Pip < O <20, (122)

In the numerical examples large values of the parameters k¢ and kg, describing
the relative positions of the observation point and the source we assumed, therefore
outside of the direct vicinity of the geometrical boundaries the amplitudes of the
diffraction waves are small [5]. This explains the structure of the acoustic fields in
the distinguished areas A, B, C and D and the resultant shape of the function IL (¢)
describing the obstacle efficiency in these areas.

Area C — the shadow area — is one where only diffraction waves occur. In this
area the obstacle efficiency is positive and increases while deepening into it.

In areas A and D the acoustic field has the same structure since in the areas the
direct wave (V'(R)) and one of the reflected waves (V*(R) or V*(R")) occur as the
dominating component waves.

The total field forms as a result of interference between geometrical and
diffraction waves. The effect of diffraction waves is visible only close to the
geometrical boundaries. Where the dominating component waves (the direct and
reflected ones) interfere in antiphases the amplitude of the total field is close to zero,
therefore the obstacle efficiency containing the logarithm of the field amplitude (111)
can take the large positive values. In turn, where the phases of the dominating
component waves coincide approximately, the field amplitude doubles and the
obstacle efficiency takes negative values close to — 6 dB. The latter fact confirms the
dominance of the direct and reflected waves in areas A and D, and simultaneously
the small influence of diffraction waves outside of the direct vicinity of - the
geometrical boundaries.

Area B is the one contained between two geometrical boundaries: the boundary
¢p of the wave reflected from the half-plane ¢ = 0 and the shadow boundary ¢g.
For the wedge, area B can be contained between the boundary ¢, of the wave
reflected from the half-plane ¢ = 0 and the boundary ¢, of the wave reflected from
the half-plane ¢ = 270°. In this area, except the direct vicinity of the geometrical
boundaries, the direct wave dominates. This means that, except the direct vicinity of
the geometrical boundaries, in area B there is an almost undisturbed field of the
incident wave. Therefore, in this area, the obstacle efficiency is equal to zero.

Passing to a more detailed discussion of the obstacle efficiency in the areas
distinguished, in the shadow area from formula (116), the difference between the
obstacle efficiencies for plane and cylindrical waves can be calculated:

AIL, = IL,—IL. = 10log(R/g,). (123)

For a given angular position of the source (¢,) the difference between the obstacle

Poc <P < { - (121)
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efficiencies for plane and cylindrical waves, as a function of the angular position of
the observation point (¢), depends only on the parameter

m = ko/kgo, (124)
then
AIL,.(¢) = Slog[1 +m?—2mcos (¢ —,)]. (125)

As a function of the angle ¢, 4IL, (¢) is at first positive, then deeper into the
shadow area it takes negative values. This means that deeper into the shadow the
obstacle efficiency for cylindrical wave becomes greater than that for a plane wave:

AL, (§) >0 for e < ¢ < ¢, (m),
AIL,(¢) <0 for ¢ > ¢,(m).

Table 4 gives the approximate values of the angles ¢, (m) for which AIL,, changes its

(126)

Table 4. The values of the angles ¢, (m) for which in the shadow

area the difference between the obstacle efficiency for plane and

cylindrical waves (4IL, and that for plane and spherical waves
AIL,, changes its sign)

Examples from Table 2 | ¢, (m)[ °1 | ¢ (m) [ °]

" corresponding to m values| for AIL, for AIL,

1 | ko = koo = 250, 500, 1000 300+¢, | 270+,

1/2 | kg =250, koo = 500 285+¢, | 254+,
ko = 500, kg, = 1000

1/4 | kg = 250, kgo = 1000 263+¢, | 248+¢,

sign, for three values of the parameter m used in the numerical examples (Table 2).
The plots of the function AIL, (¢) for ¢, = 55° for three values of m:

m=1, @/2 and 1/4,

are shown in Fig. 7. Since AIL, does not depend on v for the two obstacles
considered (v = 2, v = 3/2), the plots are the same, except that for the wedge they end
for ¢ = 270°. :

From formula (117), the difference in obstacle efficiency between the plane and
spherical waves in the shadow area can be calculated from the formula

AIL,, = IL,—IL, = 10log(R*/R, g,). (127)

As a function of the angular position of the observation point ¢, for z = 20, with
given values of ¢,, AIL,(¢) depends only on the parameter m:

va B am [(d—¢, 2
AIL,,,(¢)_101og[m+1 m+1..aos( : )] (128)
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AL, lo=270°

2]

5

FiG. 7. The difference AIL, (¢) 125 between the obstacle efficiencies for plane and cylindrical waves for
different values of the parameter m =1, 1/2 and 1/4

Bl 4, = 55°) = 235°

The difference in the obstacle efficiency between the plane and spherical waves in the
shadow area changes its sign for the angles ¢,(m) (Table 4):

AIL,,($) >0 for ¢gc < ¢ < P, (m),

AIL, () <0 for ¢ > ¢, (m). (12

The plots of AIL, (¢) for ¢, =55 are shown in Fig. 8.

AIL
[dBiy

FiG. 8. The difference AIL,,(¢) (128) between the obstacle efficiencies for plane and spherical waves for
different values of the parameter m =1, 1/2 and 1/4



HALF-PLANE EDGE AND RIGHT ANGLE WEDGE 185

From formula (118) the efficiency of the half-plane in the shadow area is always
greater than that of the right angle wedge:

= - P g [P (¢, o, v = 3/2)|
AIL, = IL(v = 2)—IL(v = 3/2) ZOlog[iP(¢,¢o,v=2)l:|>0. (130)

The plot of difference (130) as a function of the angular position of the observation
point ¢ for ¢, = 10°, 55° is shown in Fig. 9.

AIL,(¢)=IL(v=2)-IL(v =3/2)

=1 | 9509, 10°) =190°
| /
4t | )
|
I
3r |
5
2o |
|
il |
|
1 I 1 Il 1
120 80 | 220 2601°]
|
|
|

[
I
|
|
|
|
[
|
[
t
I
|

¢ -($,=55°)=235°

FiG. 9. The difference AIL () (130) between the efficiencies of the half-plane and the right angle wedge in
the shadow area for two source positions ¢, = 10°, 55°

Analyzing the obstacle efficiencies in areas A and D for the chosen range of
parameters (Table 2), it can be said that for a given wave type, the same position of
the source (¢,, ko,) and the observation point (¢, kg) the efficiency of the half-plane
and the right angle wedge does not show differences with an accuracy up to
hundreths of a decibel:

IL(v=2=IL,(v=3/2), j=p.c,s. (131)

It follows from comparison of the efficiency for the cylindrical wave IL, and that of
the spherical wave I, in areas 4 and D, that for the same positions of the source and
the observation point the positions of the maxima and minima of the efficiency are
the same. On the other hand the absolute values of the efficiency |IL,| for the
cylindrical wave are almost always greater than those of the efficiency |IL| for the
spherical wave:

AL, = |IL|—|IL) > 0. (132)
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I/, f=4alL],dB]

360 (°]

m=1

$50( 8, =55°) = 125° $,c (4, =55°) =235°

F1G. 10. The difference A|IL), (¢) between the absolute values of the obstacle efficiency for cylindrical and-
spherical waves for the source position ¢ = 55°, in a symmetrical system kg = kg,

111 =1

-

; | ‘ 0755
4 et s i | |
& ,f\ I p = kg, =500, kg =250, m=1/2
ril ) } t——— kQo =1000, kg =250, m=1/4
P N
2 “ r ‘\ | o kg, =1000,kg =500, m=1/2
! |

T

Popld,=55°) = 125°

b5 ($,=55°)=235°

FiG. 11. The difference A|IL|, (¢) between the absolute values of the obstacle efficiency for cylindrical and
spherical waves for the source position ¢, = 55°, in a nonsymmetrical system kg # kg,

This is shown in Figs. 10 and 11 for symmetrical and nonsymmetrical positions of
the source and the observation point with respect to the diffraction edge, for
¢, = 55°. The fact that for the cylindrical wave in areas 4 and D the absolute values
of the efficiency |IL | are greater than those of |IL,| for the spherical wave, can be
explained by the existence of a greater degree of spatial correlation between the
dominating component waves which form the field in the case of a cylindrical wave.
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For the numerical examples, area D, where the dominating components are the
direct wave (V*(R)) and the geometrical wave reflected from the half-plane ¢ = 270°
(V(R")) occurs for ¢, = 135°, ie., for the position of the source on the axis of
symmetry of the wedge. Hence, the acoustic fields, and, thus, the efficiencies, in areas
D and A are the same (see Fig. 12). For comparison, Fig. 13 shows the efficiency of
the half-plane for ¢, = 135°. It can be seen from these figures that the efficiencies of
the half-plane and the wedge in area A are the same. Moreover, it can be seen that in
the case of the half-plane, area D does not occur, and is replaced by the shadow

area C.
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FiG. 12. The efficiency of the right angle wedge for spherical waves for ¢, = 135°
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#c( 8, =135°) = 3159
FiG. 13. The efficiency of the hali-plane for spherical waves for ¢ = 135°
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4. Conclusion

For the presented six cases of interaction between successively plane, cylindrical
and spherical waves, and the edges of an ideal rigid half-plane and an ideal rigid
wedge a uniform description of the acoustic field structure is achieved. It consists of
the geometrical part (5), (19) and the diffraction part (10), (24) of the acoustic
potential. It applies to systems in which, from conditions (58), (62) and (63), both the
source and the observation point are far from the diffraction edge.

In the diffraction part of the potential, diffraction waves defined by formulae (73)
and (74) and tied up to the appropriate geometrical waves were found. This made it
possible to determine the values taken by the diffraction waves on the geometrical
boundaries (47), (91). Far from the boundaries, where inequality (75) is met for all the
diffraction waves, the total effect of the interaction with the edge can be determined
from formulae (79) and (86).

If the areas A around the geometrical boundaries (Table 1) where expressions
(79) and (86) are not valid, are not too large, it is possible to obtain a continuous
description of the acoustic field throughout the region around the obstacle by
extrapolation from the value of the potential in the area where the approximation is
valid to the value on the geometrical boundary.

Describing the disturbance of the acoustic field caused by the presence of an
obstacle by introducing the obstacle efficiency (111) in the shadow area it is possible
to determine the analytical relations between the efficiencies of the half-plane and the
right angle wedge for the chosen types of waves.

Independently of the kind of the obstacle and the type of the wave, the obstacle
efficiency IL in the shadow area (114) is the greater the farther from the diffraction
edge the observation point and the source are, and the deeper into the shadow area
the farther from the .shadow boundary the observation point lies.

For the same positions of the observation point and the source, the efficiency of
the half-plane IL (v = 2) in the shadow area is always greater (118), (130) than that of
the right angle wedge IL(v = 3/2). At the same time, the shadow area for the wedge is
smaller, since the wedge occupies a part of the shadow area occurring for the
half-plane.

As a function of the angular distance from the shadow boundary, the efficiency
of a given obstacle is initially greater for the plane wave than for the cylindrical and
spherical ones (126), (129). Then, beginning with some values of the angles ¢, (m)
(Table 4), the efficiency for cylindrical and spherical waves is greater than that for
a plane wave.

On the basis of data resulting from calculations carried out for range of the
parameters ko and kg, (Table 2) typical of urban systems, around obstacle in
addition to the shadow area (C(121)) it is possible to find two other characteristic
regions: the area where reflected waves are present (4 (119), D(122)), and the area
where an almost undisturbed free field occurs (B(120)) and the obstacle efficiency is
zZero.
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In areas where reflected waves occur (4, D) the obstacle efficiency can take large
values at points where the dominating component waves (direct and reflected)
interfere in antiphases. At points where they interfere in the same phases, the barrier
efficiency takes negative values of about —6 dB.

The comparative analysis performed makes it possible to draw conclusions
about the structure of the acoustic fields around the obstacle in question. In real
urban system where the dominating phenomenon forming the acoustic field, is the-
diffraction at an edge, or a right angle wedge, from the formulae here it is possible to
determine the obstacle efficiency in regions where the approximation conditions are
satisfied. In areas for which it is necessary to consider interaction with additional
planes present, the given way of describing diffraction is a starting point for
calculations of the distributions of the acoustic fields.
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