ARCHIVES OF ACOUSTICS
13, 1-2, 191 202 (1988)

DETERMINATION OF CIRCULAR MEMBRANE PARAMETERS FROM ITS RESONANCE
FREQUENCIES

MARIUSZ ZIOLKO

Institute of Automatic Control, AGH (30-059 Krakow, al. Mickiewicza 30)

Circumferential forces, speed of elastic wave and dissipation of energy factor are
calculated from resonance frequencies of circular membranes made of tantalum and
nickel-chromium steel. The results obtained for a mathematical model without dissipation
are compared with the results obtained for a model with dissipation of energy. The
assignment of the coeflicient of partial differential equation is presented for this second case,
An algorithm applied to computer simulation of membrane vibrations is based on the “leap
frog” difference method.

Znajac czgstotliwosci rezonansowe membran kolowych mozna obliczy¢ ich ob-
wodowe sily napigcia, predkosci propagacji fal sprezystych i wspélczynnik dyssypacji
energii. Obliczenia przeprowadzono poslugujac si¢ danymi uzyskanymi dla membrany
tantalowej i membran ze stali niklowo-chromowej. Poréwnane sa wyniki obliczen dla
modelu matematycznego bez dyssypacji z rezultatami dla modelu uwzgledniajacego
rozpraszanie energii. Dla tego drugiego przypadku przedstawiony jest rowniez sposob
identyfikacji wspotczynnikéw réwnania rézniczkowego czastkowego na podstawie danych
eksperymentalnych. Algorytm zastosowany do komputerowego modelowania drgan mem-
bran opiera sig na metodzie réznicowej leap frog”.

1. Introduction

Euler gave a mathematical model of circular membrane vibrations [1, 4]. This is
the differential equation of the hyperbolic type for axial strain as a function of three
variables: time ¢ and polar co-ordinates, that is the distance from the centre of
membrane and angle ¢
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where the constant coefficient ¢ is the speed of elastic wave.
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It is most frequently assumed that the membrane is fixed stiff on the
circumference. This means that the boundary conditions for equation (1) are equal to
zero. Thus the solution of the homogeneous differential equation (1) presents
nondamped vibrations as a result of nonzero initial conditions. If they are well
assumed it is possible to simulate steady and symmetrical axial strains. Using the
classical method of separation of variables [1] [2] we obtain the relation
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which enables to calculate the speed of elastic wave c. R is the radius of membrane, x;
are roots of Bessel's function of first kind and zero order, w; are resonance
frequencies. Next, from the speed of elastic wave it is possible tocalculate the
circumferencial force. This well known formula enables to calculate the value of the
force which is difficult to measure. Usually we can measure a few resonance
frequencies. For each of them we obtain from (2) an estimator for the speed of an
elastic wave. Differences between these estimators usually differ at the second
decimal place. This justifies a verification of the usability of a more complex
mathematical model with dissipation of energy.

2. Mathematical model of membrane

Assuming the axial symmetry of forces which deform membrane and in-
troducing into equation (1) the term for dissipation of energy and term for forced
vibration, we obtain nonhomogeneous partial differential equation of hyperbolic

type
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where z — transverse strain of membrane [m], ¢ — speed of elastic wave travelling
along the radius of membrane [m/s], a — positive coefficient of dissipation of the
energy [s/m?], u — force vibration function of time ¢ and space variable r[m™'],
t — time [s].
To obtain a unique solution of the equation (3) we assume initial conditions

0z .
B i <Y, W
z(r,0) =0, 7l 0 4
and boundary conditions
)
% =0, z(R,H=0, 5)
ar r=0

where R[m] is the radius of membrane. The first boundary condition follows from
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the axial symmetry of strain and the second one means that the membrane is fixed
stiff on circumference.

Using the classical method we assume that the solution of initial boundary
value problem (3), (4), (5) can be described as an infinite series

M8

z(r,t) =

T.(t) Ry (6)
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A function forcing the vibration of membrane with frequency w can also be written
as an infinite series with separable variables

u(r,t) = i p; R;(r)sinwt, 7

i=1

where p, are constant coefficients.
Computing the partial derivatives of function (6) and substituting them into (3)
we obtain conditions
LTV Ti p K 1K
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where the upper indexes denote the differentiation with respect to time for the left
side of (8) and differentiation with respect to the space variable for the right side of
(8). Denoting the value of both sides by —k? we- obtain two sets of ordinary
differential equations

1
R;—’+;R§+k,- R; =0, 9

1
C—Z'I"’;’-i—a Ti+k? T, = p;sinowt. (10)

The boundary condition for equation (9) is obtained from (5)
Ri(0)=0, R,(R)=0. ' (11)

In this way we improve the constrains for basis functions R,. It follows that function
u must fulfil conditions

0z
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for convergence of series (7).
From (4) we obtain the initial conditions for equation (10)

T,(0=0, Ti(0)=0. (12)

The solution of differential equation (9) is Bessel’s function of first kind and zero
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order which can be defined either by

R,(r) = 2 (—1y 5(5) (13)

or‘ in an equivalent form
R,(r) = Z aj(ki")ﬁ,
(14)
a;
ap=1, a;,,= _zlj_Jz'
From (13) we find that the first condition of (11) is always satisfied. The second
condition requires

k, =

, (15)
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where x; are roots of Bessel’s function.
The solution of equation (10) with the initial conditions (12) has the form

T, = A;e”“sin(w;t + ¢;)+ B;sin (ot + ). (16)

The frequency of damping vibrations is given by
;= k’——. (17)
Introducing auxiliary variable

X2
si=ﬂk2—%) +a?w? (18)

we obtain initial amplitude for damping vibrations

g Sl (19)

Lo

The phase displacement of these vibrations is obtained from formula

¢; = arcsin = (20)
and the damping coefficient from
ac?
=— 1
- (21)
The amplitude of steady vibration with forced frequency is given by
By 2t 22)

S;
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and its phase displacement

W, = —arcsin —, (23)
S

i

The greatest amplitudes of the steady vibrations occur for resonance frequencies

e a’c?
r=— (k- 24
P=i - 24
and are given by
B =L, (29)
aw

where w; is defined by (17). The coefficient of dissipation must be small enough for
the i-th resonance vibrations to occur, that is

a< @ (26)

3. Determination of membrane parameters

The formula which connects resonance frequencies with the parameters of
membrane is obtained from (15) and (24). Assuming that we have managed to
measure N first resonance frequencies, which we denote now by w,, we obtain the set

of equations
2 2 A2
o} = c? [(xi) e ; ] @7)

This means that the resonance frequencies are the functions of three parameters:
speed of elastic wave, coefficient of dissipation and radius of membrane. The
Jacobian determinant of function (27) has the form

2 202 x2
20(%) g - 1% e gl

= . (28)

......................
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Only two columns of determinant (28) are linearly independent, therefore only two
parameters can be calculated from resonance frequencies. As it is easy to measure the
radius of membrane, so we will calculate, from (27), the speed of elastic wave and
coefficient of dissipation. :

From two arbitrary equations (27) we obtain

1<i, j<N, i#], (29)

where ¢;; is one of the estimates of the speed of elastic wave. For N resonance
frequencies, the average value of estimates is equal to

S 2
c= (—‘—) b S ™ (30)
N! 5 =i
Next we can calculate the force stretching the membrane [N/m]
F = qdc?, (31)

where g — mass density of material of membrane [kg/m?], d — membrane thickness
[m].

From (27) we can calculate estimates for the coefficient of dissipation

ﬁ x5 o
=R @ G2
and obtain finally
N
a= %;Z a;.

1

il

If it is possible to measure the amplitudes B} of vibrations of the centre of membrane,
we can calculate additionally the amplitudes of forced vibrations [1/m]

xpilahe?

p,-=BEac Ez'- 4 ;

(33)

4. Measurement of resonance frequencies

The vibrations of circular membrane, stretched with the same force on the whole
circumference, can be stimulated by a sonic waves. In this way, the resonance
frequencies of membrane were assigned. A variable frequency generator supplied
a loudspeaker and was connected with frequency meter. The sonic waves from the
loudspeaker reached microphone through the membrane fixed between the stret-
ching rings. The signal from the microphone was amplified and next measured by the
digital voltage meter. Experiments were started from the possible lowest frequency
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and afterward it was increased gradually. The first resonance frequency was found
when the sound intensity indicated by the microphone had the well-marked greatest
value. Next, by increasing the frequency of generator once again, the other resonance
vibrations were found.

Measurements were carried out for membranes made of tantalum and ni-
ckel-chromium steel. The first five resonance frequencies were found for every
membrane. The results are presented in Table 1.

Table 1. Measurement results

Membrane No 1 2 3

Material tanta- | steel steel

‘ lum

Radius [mm] 278 | 278 40

Thickness [mm] |0.025 |0.127 0.127

Roots of Bessel’s Resonance Amplitude
function frequencies [Hz] [mm]
240483 434 | 1043 | 695 1.25
5.52008 1050 | 2594 | 1940 0.54
8.65373 1658 | 4115 | 3130 0.34
11.79153 2264 | 5630 | 4285 025
14.93092 2870 | 7141 | 5428 0.19

Sometimes the vibrations of the center of membrane have amplitude great
enough to be measured. For this purpose the measuring position was equipped
additionally with a micrometer screw. Its end was placed above the center of the
membrane. The junction of micrometer screw with the metal membrane was
signalled by an ohmmeter as an electric short circuit. After putting the membrane
into resonance vibrations, the micrometer screw was dropped until the junction of
the micrometer screw with the membrane during its greatest deflection. Next, the
generator was switched off and the micrometer screw was dropped once again until it
reached the membrane. The difference between the positions of micrometer screw in
both these cases was equal to the amplitude of membrane vibrations. These
measurements were made only for the third membrane which had the greatest
amplitudes of vibration.

Substituting the values of the resonance frequencies into (2) we obtain for Euler
equation (1) the estimates of coefficient ¢. The results of these calculations for data
from Table 1 are presented in Table 2. For every membrane there were measured five
resonance frequencies, therefore we obtained five estimates of parameter c. The last
line of Table 2 presents the mean values of wave speeds.

From formula (29) we obtain for each membrane ten estimates of the speed of
elastic wave. The results are presented in Table 3 and their mean values are written
in the last line. The circumferencial forces were calculated in accordance with (31).
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Table. 2. Speeds of elastic waves calculated from
Euler’s model [m/s]

No of resonance Membrane No

frequency 1 2 3
1 31.52 75.76 72.63
2 33.23 82.08 88.33
3 3347 83.06 90.90
4 33.54 83.40 91.33
5 33.58 83.54 91.37
average 33.07 81.57 86.91

Table 3. Speeds of elastic waves [m/s] and circumferencial forces [N/m] calculated
from the model with dissipation

. Membrane
Estimate No 1 2 3
speed force speed force speed force
1 33.61 469 83.49 7120 91.62 8580
2 33.62 469 83.64 7150 9227 8700
3 33.62 469 83.72 7160 92.06 8660
4 33.63 469 83.74 7160 91.81 8610
5 33.63 469 83.72 7160 92.63 8770
6 33.62 469 83.77 7170 92.16 8680
7 33.63 469 83.77 7170 91.84 8620
8 33.62 469 83.79 7170° | 9183 8620
9 33.63 469 83.78 7170 91.60 8570
10 33.64 470 83.77 7170 91.43 8540
average 33.63 469 83.72 7160 91.93 8640

Table 4. Values of dissipation coefficients [s/m*]

No of resonance Membrane No

frequency 1 2 3
1 1.27 0.622 0.567
2 1.29 0.660 0.588
3 1.27 0.659 0.495
4 1.29 0.626 0.514
5 1.24 0.594 0.631

average 1.27 0.632 0.559
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The mass density for tantalum was assumed q = 16.6 [g/cm®], while for nic-
kel-chromium steel g = 8.045 [g/cm?].

Table 4 presents the values of the dissipation coefficient calculated from (32) for
five resonance frequencies and their mean values. We obtain the damping coefficient
by putting mean values of ¢ and a into formula (21). For data presented in Tables
3 and 4 we obtain values

a, = TI8[1/s], @, =2215[1/s], a,=2362[1/s].

For the third membrane were measured the amplitudes of vibrations addition-
ally (Table 1), therefore it was possible to compute amplitudes of forced vibrations
according to (33). The results are presented in Table 5.

Table 5. Amplitudes of forced
vibrations

No of
resonance
frequency

Amplitudes
[1/m]

0.349
0.376
0.375
0.377
0.364

L S

5. Computer modelling of membrane vibrations

The “leap frog” difference method is frequently used to solve numerically the
partial differential equation of hyperbolic type. In the adequate distribution of knots
of the space-grid the “wave character” of the occurred phenomena is taken into
account. The second valuable advantage of this method is the simplicity of its
algorithm. For these reasons the leap frog method was used to solve numerically
equation (3) which is the mathematical model of vibrating membrane.

Dividing the membrane along its radius into N segments, we define the
arrangement of knots of discrete space

2R

h
4= {(r,,tk).r, =R—(=Dhty= k=2~ h=5r—i 1=1,2,... N+1;

h

where T denotes the final time. The knots are distributed in such a way that the
coefficient of derivative in equation (3).with respect to membrane radius is limited,

k=1,2,....E}, (34)
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FiG. 1. Distribution of knots in space grid

that is r, # 0. Thanks to that, the coefficients of difference equation are also limited.
The derivatives from equation (3) are approximated by difference quotients in the
following terms

0z c azz CZ
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(35)
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For the interior knots defined by (34) the approximate solution of the differential
equation (3) is calculated from formula

W g 1+1 =1
Zhi1 = Zh-qWi+2Zk  WotZi W3t WaUR-a- bk (36)

where the coefficients have values
w—-E+-1-—1 w—ﬁ——i—w
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For the boundary knots we obtain from (5)

=z, k=3,4,.. (37

The leap frog method is a three-step difference scheme. Therefore, at the
beginning we put values into the first two steps

2=e0, l=1,2....N+1. (38)

z2t=0, !

In this way we take into account the initial conditions (4).
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The mesh width results from definition (34)

2R 2R
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(39)
The number of all knots is

1= (2N2+N—1);—;. (40)

It means that the time of computations increases considerably for large N. To obtain
correct results of computer modelling of membrane vibrations with the frequency
f [Hz] it is sufficient to take

N = 40R?f. ‘ (41)

Vibrations with the fifth resonance frequency for the membrane number 3 were-
simulated taking N = 100, in other words

Ar = 402,01 [um], A4t = 4.373[ps].

For this example the time-constant of unsteady state, equal to inverse of a, is equal to
0.42 [ms]. Therefore we can assume that unsteady state vanishes after time 1.7 [ms].

6. Conclusions

In Table 2 there are presented the results of calculations for the classical
mathematical model without dissipation. The estimates for the speed of propagation
. of elastic wave were obtained for each resonance vibration. Differences between them
and their mean values are considerable, especially for low frequencies. These
differences amount from a few percents for the first and second membrane until 16%
for the third membrane. On the other hand, the estimates of speed of elastic wave
calculated for the model with dissipation (Table 3) have small deviations (less than
1%). The mean values of speed of elastic waves for the model with dissipation are
greater than the mean values for the model without dissipation. The differences are
considerable, they are equal to a few percents.

The coefficient of dissipation introduced as a new parameter into the ma-
thematical model, enable to fit better the mathematical model to the experimental
data. This.possibility exists in general, even if there is no physical justification for
such a treatment. However, we must remember that the formula (32) can be used
only if k; > wjc.

For the first membrane there are small differences between the estimates of
coefficient of dissipation (Table 4). The greatest difference between the mean value
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and the estimate, occurs for the fifth resonance frequency of third membrane. Its
value is equal to 13%.

The generator of electric sinusoidal oscillations had constant amplitude for all
frequencies. Therefore the amplitudes of forced vibrations presented in Table 5 are
not far each from the other.

The additional advantage of taking into account the dissipation of energy
consists in obtaining formulae for numerical solution of the differential equation with
better property of numerical stability.
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