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This paper presents an approximate theory of determining effective parameters
determining of surface elements of electro-acoustic transducers. It considers the distribution
of displacements of these elements due to a steady load. Furthermore, a critical analysis of
existing definitions of active surface was carried out and a new definition was proposed. It is
a generalization of hitherto applied definitions. Equivalence of these definitions was proved.
Examples of effective parameters calculations for systems with known accurate solutions are
given. High consistency of proposed approximate methods with these solutions was
demonstrated. Moreover examples of calculations of quasistatic effective parameters of
systems previously solved with approximate methods are given.

W pracy przedstawiono przyblizona teori¢ okreslania parametréw czynnych powierz-
chniowych elementoéw przetwornikéw elektroakustycznych. Opiera si¢ ona na rozpat-
rywaniu rozkladu przemieszczen tych elementow pod wplywem obciazenia statycznego.
Ponadto poddano krytycznej analizie istniejace definicje powierzchni czynnej i zapropono-
wano nowg definicje, bedaca uogdlnieniem dotychczas stosowanych. Wykazano ekwiwalen-
tnosé tych definicji. Podano przyklady obliczania parametrow czynnych dla ukladow, dla
ktorych znane sa rozwiazania $ciste i wykazano duzg zgodnos¢ zaproponowanych metod
przyblizonych z tymi rozwiazaniami.Podano rowniez przyklady obliczen quasistatycznych
parametréw czynnych uktadow, dla ktorych rozwiazania byly réwniez znalezione metodami
przyblizonymi.

1. Introduction

A standard electro-acoustic transducer consists of an electromechanical trans-
ducer which transforms an electric signal into a mechanical one or a mechanical
signal into an electric one; and a superficial element — generally a membrane which
radiates acoustic waves when it is a loudspeaker or receives them when it is
a microphone. Generally, the method of equivalent electric circuits [7], based on
analogies of mechanic, electric and acoustic systems, is used in the analysis of
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|
| loudspeaker functioning. These analogies can be applied to elements with geometric
| dimensions much smaller than wave length. This is not much of a problem in the
case of the electric part of the transducer in the range of acoustic frequencies, because
the length of an electromagnetic wave in this frequency range is equal to tens of
kilometers. The analysis of mechanic and acoustic equivalent circuits can cause
problems. Sound wave velocity in air is equal to about 340 m/s. So, the length of an
acoustic wave for frequencies of several thousand Hz is comparable with transducer’s
dimensions. And even smaller velocities of mechanical waves are found in surface
| vibrating systems, such as plates and shells. Therefore, concentrated values of these
} elements are significant in a frequency range up to several hundred Hz
| Concentrated parameters equivalent to individual mechanical and acoustic
| elements are called effective parameters. In a general case they depend on frequency,
because of the distribution variability of amplitudes of vibrations on the surface for
various activation frequencies. Such a distribution depends not only on the geometry
of the surface element, but also on the activation method. This makes the analysis
additionally complicated. This paper proposes such a definition of effective parame-
ters that their values are nearly independent from frequency for a relatively large
frequency band.

2. Definitions of effective parameters

The following effective parameters characterize a vibrating surface element:
mass, stiffness and surface. The notions of mass and stiffness are related with
Rayleigh’s method [4] consisting in checking a system with distributed parameters in
relation to a system with one degree of freedom. Elements of such a system are
calculated on the basis of a comparison of potential and kinetic energy of a real
vibrating system with these energies of a system with one degree of freedom. The
kinetic and potential energy of a real vibrating system depends on the distribution of
displacements on the shell’s surface which, in turn, depends on frequency and on the
method of activation. In a general case the equation of motion of a homogeneous
shell with — a model of a surface vibrating element of a transducer — can be
expressed with [2]:

o*u

L(“)_QhF NG P[r’ ?, Z(T, q))s t]7 (1)

where ¢ — density of material, h — shell thickness, L — differential operator
dependent on shell’s shape, u — vector of displacements of the shell’s centre surface,
P — vector of activation. ‘

Fig. 1 presents the shell’s geometry. Equation

z=2z(r, 9) @
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Fig. 1. Geometry of a vibrating shell

describes its shape in the case of axial symmetry. The form of operator L depends on
various shapes of the shell.
In case of harmonic excitation

Pr, @, z(r, @), t] = p[r, @, z(r, @)]e*™ (3a)
displacement are also sinusoidal
ulr, @, z(r, ¢), t] = w[r, o, z(r, )]’ (3b)
then equation (1) has the following form:
L(w)+w’ohw = p[r, ¢, z(r, 9)]. (4)

When p(r, @, z) = 0, then the equation of motion is reduced to a eigen problem.
Equations (1) and (4) are equations of equilibrium of forces. The first term on the left
side describes elastic forces acting on the shell. They are ‘a result of own elasticity.
These forces cause a displacement of the shell’s elements in relation to the state of
equilibrium and impart a certain potential energy to the shell

U= %_[L(w)-wdS. (5)

Effective stiffness is achieved on the basis of comparison between this energy and
the potential energy of a system with one degree of freedom

U = 2k Whas (©

s
where k. — effective stiffness, w,,,, — a certain, discriminated displacement of the
shell, most frequently equal to the maximum axial deflection, to the displacement of
its geometrical centre in the case of activation by a uniformly distributed acoustic
pressure, or a displacement at the point of activation by an axial concentrated force.
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In order to calculate the potential energy from equation (5), the shell’s
distribution of displacements has to be achieved from equation (4). This equation is
most frequently solved with numerical methods and the solution is frequency
dependent. Z. Zyszkowski [7] accepts a distribution of deflections achieved for the
first resonance frequency in calculations of effective parameters. Unfortunately this
assumption can be applied in a very narrow frequency range. In this paper
a distribution of displacements achieved with a static force, ie. for @ =0, was
accepted. Equation (3) becomes simpler then. Effective parameters calculated from
this equation model the shell’s parameters very well in a relatively wide frequency
range — from zero to the frequcncy of fundamental resonance.

Neglecting the dynamic term in equation (4) we obtain:

L(w) = p[r, @, z(r, ¢)]. (7

Then, equation (5) can be noted as:

1
U=§jp[r5 (,D,Z(P',(D)]st. (8)
S

We have to do with an interesting case when the shell is activated by a force
concentrated in the medium and acting along the z-axis

p(r, ¢, 2) = P.o[r, ¢, z(r, 9)], (9)
where 8[r, ¢, z(r, ¢)] is the 5-Dirac function. Then the potential energy is equal to

U= %P,wm,. (10)

From comparison of equations (6) and (10) an expression for effective rigidity we see
that

foite By (11)

c

Wmax

The second term in equation (4) defines the inertial force related with the kinetic

‘energy of shell’s motion.

Kinetic energy of the shell is given by expression
1
T= ighwzjlwlzdS (12)
s

where

w(r, 9)l, = W, ®)lo=o-
The effectlve mass is achieved from a comparison of the kinetic energy determined
from expression (12) and the kinetic energy of a system with one degree of freedom

{
T=5m 0> wi,,. (13)

c
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Thus, effective mass is equal to

oh

m, = —; jlﬁrlz ds. (14)
max § g
Because:
w=wi+w,i,, (15)

where i,, i, are unit vectors along the r — and z — axis, respectively.
Then, we have

h X
m, =20 wras+ 22 [wads. (16)
wmaxS max §

The first term in equation (16) determines the effective mass related to the
displacements of the shell in the radial direction, and the second with displacements
in the axial direction.

The effective surface is the last among effective parameters which characterize
surface systems. Definitions of this quantity given in [5, 7] are not general
definitions. According to Zyszkowski the definition refers to plane systems only,
while the definition of Makarewicz and Konieczny concerns a specific method of
activating the shell, namely — with a plane wave. Therefore, it can not be used for
a different activation method i.e. with a spherical wave or by force concentrated in
a point. A definition without these shortcomings is presented below.

Effective surface is the surface of a flat piston shifted perpendicularily to its
plane by a force of the value equal to the value of a characteristic virtual
displacement of the shell due to a uniformly distributed pressure of such a value that
performed by it work is equal to the work of forces acting on the shell.

This definition is based on the principle of virtual work [4] and introduces the
notion of pressure equivalent to forces really acting on the shell. This pressure does
not have to be acoustic pressure; it can also be static pressure.

When the distribution of static displacements achieved from equation (7) is
accepted, then a quasistatic effective surface is obtained. Virtual work performed in
order to virtually displace the shell by dw is equal to

W= (p[r, @, z(r, p)]owdS. (17)
5
Substituting
W = W ——s (18)
we have
5wmax
ow = fplr. @, z(r, p)Jwds. (19)

max §
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The work performed by an uniformly distributed pressure resulting in the same
displacement of the shell is equal to

W= pj"éw ds = pé —=2 (w,dS (20)
max §
where w,, is the displacement normal to the surface S. We have normal displacement
in formula (20), because the force acting on the shell due to an uniformly distributed
pressure is perpendicular to the shell’s surface. On the basis of a comparison between
relationships (19) and (20) we reach an expression for pressure corresponding to force
actually acting on the shelll:

{plr, @, z(r, @)JwdS
o
y {w,dS
S

(21

If such a pressure is exerted on a flat piston with surface equal to the effective
surface S, and shifts it by dwy,, then work equal to

W = pS, 0 Wmax (22)
- is performed.
On the basis of relationships (20), (21) and (22) the effectwe surface is equal to
S. = _[ w,ds. (23)
wmax S

The following new definition of the effective surface is thus equivalent to the
definition given above:

The effective surface is such a surface of a flat piston which ensures a volumetric
displacement of the piston equal to the volumetric displacement of the shell.

This definition does not include a direct dependence on the shell activation
method. Therefore, it is of more general character than the definition based on the
principle of virtual work. It is a well-known fact [6] that the power radiated by the
source in the range of low frequencies depends on the volumetric velocity of the
source and, on the other hand, it does not depend on its shape. The definition of the
effective surface based on the equivalence of volumetric deflections leads to the
substitution of a real source by a flat piston which radiated the same power as the
source under consideration in an infinitely great baffle. The normal displacement in
the equation for effective surface (23) can be expressed with two components — axial
and radial:

S;= fw,dS =
max § wmax

[j w,cos(n, z dS+jw cos(n, r)dS] (24)

1 r(p) 2n r(p) 2n

[j jwrdrdrp+j jwd rdrdg].

wmax
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In a case of an axial activation of the shell the second component of the sum in
expression (24) is very small and can be neglected. If the shell’s motion is purely axial,
then it is equal to zero exactly. If additionally w,(r) = const, i.e. the shell vibrates like
a rigid piston, then we reach a well known result — the effective surface is equal to
the surface of the shell’s orthogonal projection onto the plane perpendicular to the
z — axis. The second term of the sum appearing in Eq. (24) is decisive in the case of
radial vibrations of a cylindrical shell. The Zyszkowski and Makarewicz definitions
did not take into account the possibility of evaluation of the active surface of such
a system.

3. Effective parameters of circular plates

The equation of the circular plate has been solved analytically. Therefore,
strictly theoretical results can be compared with results of the theory based on
quasistatic displacements of the shell.

Frequently the circular plate is the vibrating element in electroacoustic
transducers. It is a planar system.

The equation for vibrations of a plate has the following form

oh &*u _P(r,,1)

AR B A
u+Bﬁr2 8

(25)

Eh?
12(1=v?)
— flexural rigidity, ¢ — density of material, E — Young’s modulus, v — Poisson ratio,
P(r, ¢, t) = p(r, p)e’* — force acting on an unit surface, 4 — Laplace operator.

We will consider a case of p(r, @) = p = const. The system are axi-symmetrical.
Operator L from equation (1) has the following form

Bd( d|1d/ du

The equation of quasistatic displacements of the plate — equivalent to equation (7)

has the following form:
1df( d|1d{ dw P
;a{’a[;a("a?)]} =B iy

The solution of this equation depends on boundary conditions. Two typical
boundary conditions will be considered:

where u = we/® — displacement of the plate, h — plate’s thickness, B =
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1. Plate’s edge simple-supported

w(a) =0,
(28)
d2w+de =01 Jof"r=g
dr® " rdr "
where a — plate’s radius.
This equation has the following solution
r\? 1+v
= o I=——1=1 29
e[ =500 ] o
where
= pa* 5+v
max = 4B 1+ v o
The potential energy equivalent to this displacement is equal to:
1 1 64nB(1+v)(7+v)
U== dS =-w} : 31
2£Wp 2wmax {12 3(5+V)2 ( )
Thus, the effective stiffness corresponding to this potential energy equals:
4nB (1 7
K =6 nB(14v)(7+v) (32)

" 30t Bt

The following equation expresses the kinetic energy corresponding to the quasistatic
distribution of velocity on the plate’s surface

i r\* |2 1+v/(r\?]? 1 (113+36v+3v2)
T=oho? wio | 1=(L) [|1-2E2 P T e b o
e £[ (a)] [ 5+v(a)] S=a Moo 55 0 )

where vy, = @Wn,, — plate’s velocity in the geometrical centre, M , = 0hmna*
— geometrical mass of the plate. The effective mass equivalent to this energy is equal
to:

3¢ o 3v24+36v+113
£ 2 1505 +9)

The resonance frequency calculated on the basis of effective parameters is equal

B 320(1+v)(7+v
fra = ) (39)

m, 271:a Qh 3vi436v+113°
The accurate solution, corresponding to the dynamic equation of plate’s
vibrations, contains ordinary and modified Bessel functions [1]. For v = 0.3 the

M (34)

g

to
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fundamental frequency of plate’s vibrations, calculated from accurate considerations,

is expressed by:
1 (koya* [B
Jfor = % o | (36)

where ko; a =2.221 is the first eigenvalue.

The value corresponding to it in formula (35) is equal to 2.224. Hence, the
relative error is equal to 0.15%. It is worth mentioning that active parameters
depend on the Poisson ratio which occurs explicitly in boundary conditions.
Therefore, the Poisson ratio can be measured indirectly on this basis.

And lastly the effective surface of a supported plate was calculated

T+v
S)= (wdSi=:mnag® :
) gw na 3Gy (37)
For v =0.3 its value is equal to 0.459 of the geometrical surface.
2. Plate’s edge clamped
In this case boundary conditions have the following form:
dw
- - 0, A == 0, 38
w(a) e (38)

The solution of equation (27) is as follows

W(r) = Wmax |:1 _(:)2]2’ : (39)
a

where
pa*
Whax = m (40)
The effective stiffness of this plate equals
64 B
ko (41)
whereas, effective mass:
I 3
me= <M, “2)

The resonance frequency, calculated on the basis of these parameters, is equal to

32 |B
Sl g iy 4
Jr 2na® \ oh )
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In this case, the coefficient corresponding to the first eigen value is equal to 3.21,
while its value determined from the accurate solution is equal to 3.19. This coefficient
does not depend on the Poisson ratio. The Poisson ratio is not present in the
boundary conditions.

Therefore, the effective surface:

S, = %naz (44)

is smaller than the analogic surface of a simple-supported plate.

4. Effective parameters of loudspeaker suspension of the voice-coil

Calculation results of effective parameters of non-planar systems will be
presented in this paragraph. Apart from simple cases, the form of the Loperator for
such systems remains unknown. The distribution of displacements for a quasistatic
activation was determined with an approximate method of finite elements [3]. In
order to study the influence of chosen geometrical features on active parameters the
shape of typical loudspeaker suspension of the voice-coil and of certain model shells
was considered in calculations. An unit-value concentrated force, acting on the
internal rim of the shell under consideration, was accepted as the activating factor.
Fig. 2 presents the shape of the model.

The following standard data were included in calculations:

— Young’s modulus E = 10° N/m?

— Poisson ratio v=03

— density of material ¢ = 1000 kg/m?

~ — the external rigidity of the suspension of the voice-coil is rigidly clamped
while the internal rim can move freely along the z-axis only.

The following quantities varied:

— thickness of the suspension of the voice-coil h

— wave length DF

— number of waves n

— wave height A :

— internal — R, and external — R, radii, at fixed cross-section shape.

z
1 2 n-1 n
/ i A
/I \
_JLLL_ 3
Ry X 1
R,

Fig. 2. Shape of modelled suspension of the voice-coil
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Table 1. Effective parameters of suspension of the voice-coil

Geometric parameters of the suspension Effective parameters of the suspension of
of the voice-coil the voice-coil
Lp. h A 4n LDF LRy 4R, k, L m, m/M, S S/m(R2—R2)
(mm]|[mm]| |[mm]|[mm]|[mm]| [N/m] [e] [em?]

TEG03S 217 5 24 59 1289 1.262 | 0.2893 41.61 0.4235
2 o008 han bedad 3 & 832 0.929 0.2981 42.77 0.4353
I T L ) PR e 5 5 1848 1.584 0.2823 40.72 0.4144
4 1,035 1 1.1 . o % 481 0.978 0.2680 38.19 0.3969
5 ” v T ) i P S 2951 |71.621° ] 03032 45.64 0.4423
6 - L i v . 49 2219 0.835 | 0.2996 27.13 0.4304
B w 9] w69 862 | 1.762 | 0.2830 | 58.67 0.4194
8 # P b 5 SR = 52 1923 1.060 | 0.2968 32.05 0.4300
9 s T i 66 936 1.496 0.2834 5246 04185
10 " R P . 12 | 47 1669 0.853 02750 | 2875 04116

Calculation results are presented in Table 1. Effective parameters related to
shell’s displacements along the radius are not given. They are very small in
comparison to adequate effective parameters related with shell’s displacements along
the axis. For example, in the case of suspension of the voice-coil no 1 the value of the
ratio of effective mass related to radial displacement of the suspension of the
voice-coil and the geometrical mass is equal to 4.258- 10~ %, Whereas, the adequate
surface ratio is equal to 1.093-1073, A comparison between these data and results
presented in Table 1 proves the error due to the neglection of these parameters to be
insignificant.

5. Conclusions

!

A comparison between results of accurate and quasistatic solution proves that
the difference between them does not exceed 1%.

Characteristic features of the accurate solution, such as Poisson ratio-dependen-
ce or independence of parameters for example, can also be found in the approximate
solution.

Values of effective parameters calculated for a non-planar system, such as
a loudspeaker suspension of the voice-coil indicate a strong influence of geometrical
features on the value of parameters.

To the suspension of the voice-coil designer the suspension voice-coil stiffness is
the most interesting feature. It depends on thickness and increases with an increase
of thickness — more than h! (pure tension) but less than h? (pure bending). The index
is not constant and depends on thickness. The average value for considered
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suspension of the voice-coil was equal to 1.35. Hence, material work conditions are
closer to tension.

Stiffness increases with the height of the suspension of the voice-coil wave.
A plate has the lowest stiffness. Yet it is not applied in loudspeaker suspension of the
voice-coil, because of high nonlinearity. Stiffness decreases with an increase of the
suspension of the voice-coil wave length and number of waves n.

Also other effective parameters, such as mass and surface, depend on geomet-
rical parameters, but the ratio between them and geometrical mass and surface are
nearly independent from shape. Changes of absolute values are related with variable
amounts of material used to produce the suspension of the voice-coil and with
variable geometrical surface of various suspension of the voice-coil structures.
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