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The random noise fluctuation encountered in our living environment, such as street
noise, road traffic noise, etc. exhibits various kinds of probability distribution forms apart
from the usual Gaussian distribution due to the diversified causes of the fluctuations. From
the practical viewpoint of control and regulation of such environmental noise, several
statistics, such as median, Ls; and L,, (in general, so called L, sound level), directly
connected with the probability distribution form of random noise fluctuation are very often
used for evaluation of the human response. Thus, it is essential to establish a systematic
method for evaluating the effect of the system change of noise control on the widely-used
standard noise index such as L,. In this paper, general and fundamental considerations for
statistical evaluation of transmitted sound waves have been theoretically proposed, when
the system characteristic of the sound insulation is changed by any improvement work. The
theoretical result was experimentally confirmed not only by the result of the digital
simulation technique, but also by actually observed data obtained using reverberation room
method. The results of the experiment are in good agreement with our theory.

Praca poswiecona jest badaniu przechodzenia losowej fali akustycznej przez ekran
dzwiekochtonny pojedynczy i podwéjny. Oryginalnym wynikiem jest porownanie zjawiska
przechodzenia energii w modelu z pojedyncza $cianka z modelem z podwdjna Scianka.
Przedstawiono poréwnania wynikéw analitycznych z rezultatami doswiadczen.

Introduction

The random fluctuation of noise and vibration encountered in our living
environment, such as street noise, road traffig noise, machine or structure vibration,
etc., exhibits various kinds of probability distribution forms apart from a usual
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Gaussian distribution due to the diversie causes of the fluctuations. From the
practical viewpoint of control and regulation for such environmental noise and
vibration pollutions, several of statistics, such as median, L, and L,, (in general,
L,((100 — «) percentile) sound or vibration levels), directly connected with a whole
shape of the probability distribution of random noise and vibration fluctuations are
very important for an evaluation of the human response [1]. Thus, it must be an
essential problem to establish a systematic method for the purpose of evaluating the
effect of system change of noise or vibration controls on the standard noise index
such as L,. In this paper, general and fundamental considerations for the statistical
evaluation of noise or vibration have been theoretically proposed, when the
characteristic of the control system is changed by any improvement work. That is,
when an arbitrarily distributed random signal is passed through noise or vibration
control systems, a unified statistical treatment for the probability density function of
its output energy fluctuation has been proposed in the universal form of an
expansion series expression. Hereupon, an input random noise may have arbitrary
types of the first and higher order correlations among arbitrarily chosen samples,
and furthermore noise or vibration control systems have arbitrary linear characteris-
tics of the finite memory type. For the purpose of finding systematically and
universally the effect of the system change on the statistical evaluation quantities L,
of the output signal, the distribution function for the output energy fluctuation
observed before the system characteristic is changed, has been taken into con-
sideration as the first term of the unified expansion expression.

Furthermore, in view of the arbitrariness of possible input characteristics, the
possible variety -of noise or vibration control systems, and the complexity of the
mathematical expressions involved and its statistical treatment, a digital simulation
technique appears to be a powerful way of experimentally confirming the theoretical
expressions. That is, in the simple and basic case when a homogeneous single wall is
changed to a double wall by the improvement work as an example of a noise control
system, the probability distribution function of the output sound energy fluctuation
simulated on a digital computer has been drawn graphically for the comparison
between theory and experiment. Finally, the validity and usefulness of our theoretical
consideration have been confirmed experimentally by applying it to the actual
observed noise data obtained using the reverberation room method. The experiment
has been carried out with the single wall and double wall composed of an aluminum
panel, using road traffic noise as an arbitrary random incident wave. We have been
able to observe a good agreement between theory and experiment in the above two
cases.

1. General theory

When a general random sound pressure wave of an arbitrary non-Gaussian
distribution type X (t) (let X; be the sampled value at time point t'j of X(1);j=1,
2, ..., K) passes through the time-invariant linear system with an impulse response
function h(t) (let b;; be the sampled weighting value of h(t)), the transmitted sound
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pressure wave Y(¢) (let Y; be the sainpled value at time point t; of Y(t);i=1,2, ..., N)
can be easily given as the following equation in the discrete form [2, 37]:

K
Y= 3 b;X; (1)
j=1

where K is the order of linear system.

On the other hand, an N-dimensional probability density function P, (z) for the
transmitted sound pressure wave Z (t) (let Z; be the sampled value of Z(1); i=1,
2, ..., N) after changing the system characteristic from h(t) to W(t) (with sampled
weighting value g;;) can be expressed on the basis of the N-variate joint probability
density function Py(Y) for the above transmitted sound pressure wave Y(t) of the
original system h(t) as follows
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where the above expansion coefficients are given as:
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Hereupon, #,(0, ...,0,1,0,...,0, T,0,...,0, 1,0, .., 0) denotes the I-di-
mensional correlation function of X ().

In Eq. (2), it is noteworthy that the N-dimensional probability density function
Py (z) is not directly related to Z; itself, but is given by merely substituting Z; s for
random variables Y/ s in the joint probability density PY (Y) of a transmitted sound
pressure wave Y;(i =1, 2, ..., N). In the above expression P,(z), in a specific case
when N =1, P,(z) can be dlrectly expressed as follows (The usefulness of this
probability expression is briefly discussed in Appendix 1):

sl Bw e
'Pz(z) i r;@(_l) rl oZr Y

P(2), 4)

where the expansion coefficients are simplified as follows:

B,(0) =1,
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From the above theoretical results, Egs. (2) or (4), we can find that the joint
probability density expression of Z; can be expressed in a universal expansion form
in which the joint probability density Py (Y) of random process Y; is taken into the
first term (so that it may be convenient for our purpose of research) and its successive
derivatives are taken in the second and higher expansion terms. Furthermore, the
effect of system change on the resultant distribution form of the transmitted sound
pressure fluctuation is explicitly reflected in each expansion coefficient (cf. Egs. (3) or
(3)

Now, as was reported in the previous papers [9], we can employ the following
probability density function of a statistical Hermite series-type expression as P (z)
for a transmitted sound pressure wave Z (t) of an arbitrary distribution type for the
non-changed system h(z):

1 o z
P.lz) = e T30y Ve H, (—), (6)
% o) 2n O'y ugo O-y
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i b{n(2)
n! a,

({(*)> denotes a statistical mean operation with respect to random variable ).
Substituting Eq. (6) into Eq. (4) and applying the well-known relation between the
normal Gaussian distribution function and the Hermite polynomial;

where:

e H,(n) = (—1)" v 717, %)

1
N 2n s - /
we can obtain the probability density function P,(z) of a transmitted sound wave

after changing the system from h(t) to W(t) concerning its impulse response function
as:

Pz(z) 0 o (T) A | 6*22/20: Hn o (ai) 3 (8)

won=0 T U 2o, ¥

The probability density function of the sound energy fluctuation is more
important than that of the sound presssure wave fluctuation for the purpose of
evaluation of noise pollution. By using an integral formula:

y 0 (n:odd)
— B2 x2
H,(X)dx = 9
_‘Le (X)dx {(I/B)"“(l~2BZ)"’2F((n+1}/2) (n:even)’ ©)
the moment genegating function of Laplace transformation type for transmitted
sound energy E(= z?) is derived as follows:

M(0) = (%) = i ) i (ﬁ)ﬁrr("““)
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By applying an integral formula on an associated Laguerre polynomial I'?(%):

v & 1) (p—a—py
ge_"'t“eﬁ'ﬂﬁ’(at)dt= (n:TJr )(;p_ﬂc;,.“ﬁll (11)

to the inverse Laplace transformation of Eq. (10), the probability density function
Pg(E) of the transmitted sound energy through the changed system W(t) is
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consequently given in the form of an expansion expression as follows (see Appen-

dix 2):
) w o r(r)ﬁ(\/innh n;rl(n+r)'E 3 f (- 2)(E)
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If we mtroduce a dimensionless variable n( E/s) for the purpose of obtaining
the universal expression, we can easily find the following unified expression:

- e g 1
Py = 3 (Han(1)) i 715200
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Hereupon, the relation

(13)

1
L2 (1) = (1) 5 Han(3/2)

should be observed.

In this expression, the transmitted sound energy distribution through the
original system h (¢) is taken as the first expansion term and the effect of characteristic
change for the sound insulation due to changing the system. The statistical
characteristic of an incident sound wave is reflected in the expansion coefficients of
the remainder terms.

2. Step response function for single wall and double wall

2.1. Step response function for single wall

By use of the mass law, the frequency transfer function G, for a single wall is
directly given as [12]:

N et Sl LR (14)
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where m, oc and 0 denote respectively the surface mass of single wall, the
characteristic impedance of air and the incident angle. From the above equation, the
step response function S,(t) is easily derived as follows:

S;(f)=1—e"T. (15)

2.2. Step response function for double wall -

As reported in our previous paper from the viewpoint of the distributed
constant circuit theory, the frequency transfer funchon Gy for a double wall is given
as follows [13]:

1

Gy (jow) = g
WU = o T, + T+ e T, 11— 79
(16)
A m A m A2d
Tl=5élgcosﬂ, T2=ﬁcosf?, 7 = —cos0),

where m,, m, denote the surface mass of each panel, and d denotes the width of the
air gap. Hereupon, the above expression of Gy (s) can be rewritten as the following
expansion form (see Appendix 3):
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T

Using a formula on the Laplace transform of a Laguerre polynomial (see Eq.
(11)), the step response function for a double wall can be explicitly derived in the
following expansion form as one of a Laguerre filter in some sense:

Sul :);i f 1' L ( T)(n+1)(n+2} (n+7)

n+ 2
n=0r= 0 T

2n+r—1)! 2 t—nt,
Y T it ! 18
X (2n+r+2)( —ntg) e 2n+r—1 T (18)

Especially, if we focus our attention on the special case when every surface mass
is equal (ie., m; =m, =m (T, = T, = T)), the above expression of §;(t) can be
reduced to the expansion expression given by:
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—1)! el t—nt
Su(t) = Z Ffl(; _:)2 —nt)’e btin 2ohts 1( T 8)- (19)
Fig. 1 shows the step response curves for a single wall with various values of the
incident angle 0 obtained by use of Eq. (15). On the other hand, Eq. (19) has an
infinite expansion form in the form of a Laguerre filter, but in practice we must use
only the first finite term. Fig. 2 is introduced to find what number of expansion terms
in the expression of Sy(t) (see Eq. (19)) is needed to evaluate Sy(f) as exactly as
possible. In this figure a comparison between the step response curve of a single
wall S, (¢) in the specific case of m = m, +m, and the step response curves of a double
wall Sy(t) with m;, and m, is shown, where a single surface mass is taken
as m=>55Kg/m? (=m,+m,) for a single wall and two surface masses
m; = 2.75 Kg/m? (i = 1, 2) are taken by letting d = 0 and 0 = 0° for a double wall.
After confirming an agreement between the two kinds of step response curves (S, (1)
and Sy (¢)), we can find that it is sufficient to take the first 8 expansion terms of Eq.
(19) to evaluate Sy (¢). Fig. 3 shows the step response curves of a double wall with
various values of the incident angle (), where the two surface masses are equally taken
as m, = m, = 3.22 Kg/m? and the width of the air gap is set as d = 0.05 m.
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Fig. 1. Step response curves for a single wall with various values of incident angle 0, in the case with
m = 3.22 Kg/m? (cf. Eq. (15)
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Fig. 2. A comparison between S,(t) for a single wall and S (1) for a double wall, in the case with

m, =m, = 275 Kg/m? d = 0 m and 0 = 0°. Theoretical curve of §,(1) (cf. Eq. (15)) is shown by (
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Fig. 3. Step response curves for a double wall with various values of incident angle 0, in the case with
m, = m, = 322 Kg/m?, d =005 m (cf. Eq. (19))
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3. Experimental consideration

In this section, we have discussed the legitimacy of the above theory by use of
the digital simulation technique with Gaussian random numbers, and then by actual
experimental consideration by use of aluminum single and/or double walls with the
reverberation room method.

3.1. Simulation experiment

In order to draw the theoretical cumulative distribution curves by use of Eq.
(13), it is first necessary to consider how many expansion terms in the first term of Eq.
(13) (cf. Eq. (6)) should be employed in order to explain the experimental sample
points of the cumulative distribution for the transmitted sound energy of
a non-changed sound insulation system (i.e., single wall). Fig. 4 shows a comparison
between the theoretically predicted curves of the cumulative distribution function
and experimentally sampled points for the cumulative frequency distribution on the
transmitted sound energy distribution of a single wall. Now the single wall is
a non-changed system. From this figure, we can find that it is sufficient to take the
first 3 expansion terms to calculate the distribution curve in the case with 0 = 76.5°
(we have confirmed that it is sufficient to take the first three expansion terms to fit
the experimental sample points in other cases with various values of 0).

Figures 5, 6, 7 and 8 show a comparison between theoretical curves of the
cumulative distribution function and experimentally sampled points for the cumulative

& [P &

Il 1 1 I 1

0 1 2 3 4 .
Fig. 4. A comparison between theory and experiment for the transmitted sound energy distribution Q ()

n
{é | P(n)dn; P(y) is evaluated by use of the first terms (r = 0) in Eq. (13) corresponding to a single wall) of

0
a single wall, in the case with 8 = 76.5 and m = 3.22 Kg/m?. Experimentally sampled points are marked by
(e) and theoretical curves are shown with the degree of approximation m[m =0and 1 (——-), m=2

( ]
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Fig. 5. A comparison between theory and experiment for the transmitted sound energy distribution Q (1)

(cf. Eq. (13)) of a  double wall, in the case with 6 = 76.5°, m, =m, = 3.22 Kg/m? and d =005 m.

Experimentally sampled points are marked by (e) and theoretical curves are shown with the degree of
approximation’ r[r =0 ( yr=1,2 3 4and 5 (), r=6 (— —)]
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Fig. 6. A comparison between theory and experiment for the transmitted sound energy distribution Q ()
(cf. Eq. (13)) of a double wall, in the case with @ = 40.5°, m, = m, =322 Kg/m? and d =0.05 m.
Experimentally sampled points are marked by (e) and theoretical curves are shown with the degree of

approximation r[r =0 ( hr=12and 3 (——-), r=4and 5 (——), r=6(........ )]
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Fig. 7. A comparison between theory and experiment for the transmitted sound energy distribution Q (i)
(cf. Eq. (13)) of a double wall, in the case with 0 =22.5° m, =m, =322 Kg/m? and d =005 m.
Experimentally sampled points are marked by (e) and theoretical curves are shown with the degree of

approximation r[r =0 ( y,r=1,2and 3 (-——-) r=4and 5 (— "), r=6(........ 1]
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Fig. 8. A comparison between theory and experiment for the transmitted sound energy distribution Q ()

(cf. Eq. (13)) of a double wall, in the case with 0 =4.5°, m, =m, = 3.22 Kg/m? and d = 0.05 m.

Experimentally sampled points are marked by (e) and theoretical curves are shown with the degree of
approximation r[r =0 ( yr=1,2and 3 (~——-), r=4and 5(——), r=64(....... )]
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frequency distribution on the transmitted sound energy in the case when
the noise control system is changed from a single wall to a double wall, by setting the
incident angle respectively; 0 = 76.5°, 0 = 40.5°, 0 = 22.5° and 0 = 4.5°. It is obvious
that the above theoretical curves agree with the experimental sample points with
increasing expansion terms in the above theoretical expression (cf. Eq. (13)) (The
methods of calculation of the expansion coefficients, B, (r), and the decision of the
number of expansion terms in Eq. (13) are briefly discussed in Appendix 4).
Furthermore, we have found the same results about the above agreement in other
cases with various values of the incident angle 0. Hereupon, it must be observed that
such a situation with a specific value of the incident angle is difficult to measure
practically by using only the actual standard experiment method.

3.2. Application to actual experimental noise data

In the previous paper [1], some of us showed the following way of treating the

cumulative sound energy distribution Q () with a random incidence. By letting the ~

transmitted sound energy distribution with a specific incident angle 0 be the
conditional distribution P(n/0) with a fixed value of 0, the transmitted cumulative
sound energy distribution with a random incidence can be directly expressed as
follows (see Appendix 5):

n

2

Q) = [ Q(nl6) P(6)do, - (20)

0

where:

Qm/0) = [P('/0)dn’ (n = E'/S) and: P(0) = sin26.

Our experiments corresponding to this case with a random incidence have been
done in the laboratory of Hiroshima University by use of an aluminum single wall
and/or double wall. Then, we have first recorded both the sound pressure waves in
a source room and in a reception room (which are reverberant) by use of a data
recorder. Next, we have converted these analogue waves to digital quantities by an
A-D converter and then evaluated them with use of a digital computer. We have
used road traffic noise actually recorded in Hiroshima City as one example of an
arbitrary sound input source. Fig. 9 shows a comparison between the theoretically
predicted curves and experimentally sampled points for the cumulative distribution
function on the transmitted sound energy for a single wall (m = 3.22 Kg/m?) before
our system change. As seen too evidently in this figure, we find that it is sufficient to
take the first 3 expansion terms in Eq. (13).

Figure 10 shows a comparison between the theoretically predicted curves and
experimentally sampled points for the cumulative distribution on a transmitted
sound energy for a double wall (m, = m, = 3.22 Kg/m?, d = 0.05 m) after changing
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the system from a single wall to a double wall. It is obvious that the present
theoretically predicted curves agree with the experimentally sampled points with
increasing expansion terms in our theoretical expression.

Hereupon, from the fundamental viewpoint, we have applied a new con-
sideration for a random incidence (cf. Eq. (20)) to the present case. However, in the
architectural acoustics field, the coefficient of transmission of the sound intensity
with a random incident property is usually given by use of the frequency transfer
function of « as follows:

izp(e)de, with P(0) = sin20, (21)

T =
ol

© 1

after first averaging 1/|z|> by P(0) instead of averaging Q (y|0) by P(0).

Figure 11 shows a comparison between the theoretically predicted curves and
experimentally sampled points for the cumulative distribution on a transmitted
sound energy by use of the latter simplified method. In the above case, after finding
the system characteristics due to averaging Eqgs. (15) and (19) by P (@), Eq. (13) itself
has been used instead of using Egs. (13) and (20) to draw the theoretically predicted
distribution curves. By comparing Fig. 11 with Fig. 10 evaluated by the former exact
method, though there is some difference between theory and experiment in this
figure, in practice this simplified method is still useful for the case with a rough
evaluation. Finally, a practical example of applying the proposed evaluation method
to actual design problems has been illustrated in Appendix 6.
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Fig. 9. A comparison between theory and experiment for the transmitted sound distribution Q ()
n
(é § P(n)dn; P (n) is evaluated by use of the first terms (r = 0) in Eq. (13) corresponding to a single wall and

0
the random incident property Eq. (20)) of single wall, in a case with m = 3.22 Kg/m®. Experimentally
sampled points are marked by (e) and theoretical curves are shown with the degree of approximation
mm=0 (———-), m=1, 2, 3 and 4 ( |
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Fig. 10. A comparison between theory and experiment for the transmitted sound energy distribution Q ()

(cf. Eqgs. (13) and (20)) of a double wall, in the case with m;, = m, =322 Kg/m? and d = 0.05 m.

Experimentally sampled points are marked by (e) and theoretical curves are shown with the degree of
approximation r[r =0 ( ), r=1,2, 3 and 4 (——-), r=5and 6 (—-—)]
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Fig. 11. A comparison between theory and experiment for the transmitted sound energy distribution Q (1)
of a double wall by use of a simplified method (cf. Egs. (21) and (13)), in the case with
m; =m, = 3.22 Kg/m? and d = 0.05 m. Experimentally sampled points are marked by (e) and theoretical
curves are shown with the degree of approximation r [r= 0 ( yr=1,23and4(-——-),r= 5 and
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4. Conclusions

" The content of this paper is characterized in the following three points:

(1) The general and fundamental considerations on the statistical evaluation of
noise or vibration controls have been theoretically proposed without any special
assumptions of the internal structure of the system and the distribution type of the
input fluctuation, when the characteristic of the control system is changed by some
kind of improvement work for noise control. The effect of the system change on the
statistical evaluation quantities has been quantitatively calculated in the expansion
form of a probability distribution function, by taking the probability distribution
function of the transmitted sound wave through the original system ‘into con-
sideration as the first expansion term.

(2) By considering the specific case when a homogeneous single wall is changed
to a double wall under the improvement work of noise control under a specific
incident angle, the changing pattern of the probability distribution function on the
transmitted sound energy fluctuation due to the system change has been drawn
graphically by use of the digital simulation technique. Originally, such a typical
situation with a specific incident angle is essentially difficult to be examined only
from a usual experimental method. Finally, a good agreement between theory and
experiment has been found.

(3) Finally, the validity of our theoretical consideration has been confirmed
experimentally by appling it to actually observed data obtained by using the
reverberation room method in Hiroshima University. This experiment on the system
change from a single wall to a double wall has been carried out with use of aluminum
panels, taking a recorded road traffic noise as an arbitrary random incident wave.
Consequently a fairly good agreement between theory and experiment has been
found.

The authors would like to express their cordial thanks to Dr. S. Yamaguchi and
Dr. K. Nagai for their helpful assistances especially in the concrete calculation of
probability expression in Eq. (3) and of frequency transfer function in Appendices
2 and 3.

Appendix 1. Usefulness of probability expression (see Eq. (4))

A typical case with N = 1 presented by Eq. (4) is obviously valid, if the statistics
such as L.q (equivalent sound pressure level), median, L and L,, directly connected
with a single-variate probability distribution form are employed as standard noise
indexes. But, in order to estimate the expansion coefficients B, (r) (r = 1, 2, 3, ...) (cf.
Eq. (5)), it should be observed that the statistical information on the bivariate
correlation function so-called usual auto-correlation function and higher order
multi-variate correlation functions for the input sound pressure fluctuation X, must
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be used. On the other hand, in the case when some evaluation indexes connected
with the power spectral characteristics such as, Noise Criteria Number and Noise
Rating Number and those connected with higher order spectral characteristics (such
as, bi- or poly- spectrum density are employed, needless to say, the multi-variate
joint probability density expression (2) should be used.

Appendix 2. Derivation of probability density function (see Eq. (12))

Setting p = 1—s0, t = E/s (s=262), a = —1/2, =0, a=1and n = (n+7)2,
equation (11) becomes:

n+r

n+r+1 1 W ";”' n+r '°° o
r( 2 )(1—s0)”2(1—s9) S ( )ge

T
x|:s_5E_5e 5 £.+l,f2)(E)j|dE.
s

Thus, by applying the above relationship to Eq. (10), the probability density
function P.(E) can be directly obtained as:

P,(E) = iﬂ zo : A_(\f/_:w l)nzf(n-zi-r) E ze sL("fr/z;(E)

® (\/i)n "(n) 1 E (—1/2)(E) ® B(F)An(ﬁ)"-”
8 T —1)*)1E%e *L, | = - i
"go "\/’E( ) : ; 2 8 +r=zln=0 rl oy s

n+r 1 E
x(—1)T(”_+’)gE'Ee“?L‘&z’(g)(Hr:even). (A2.2)

(A2.1)

1}

B 2

In the first e.xpansion‘ term of Eq. (A2.2), setting n=2m and using the
relationship I (n+1/2)=(2n)!ﬁ/22"n!, we can obtain the probability density
expression (12). :

Appendix 3. Derivation of Expansion Expression Eq. (17)

Using the rclafionship:

= i FESR (A3.T)
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equation (16) can be rewritten as:

1
G t——
n) I+ T, )1+ T,5)—T, T,s*°e™ ™
5 1
a : T, T, s>
14+ T, s)(1 1- L i
(Lr sl +T23)[ A+B0(1+T,9)° ]

2 1 2 T, '1'"2s2 b e
_U+ﬂﬂﬂ+ﬂm;LHJHm+Eﬂe]' s

After setting T, = T, + 4 in the above equation, and making use of the formula:
® k(k—l)..(k—r+1)ak_,xr’

(@a+x)=Y - (A3.3)
r=0 3
we have:
s (T, + 4)"s*" red
GH(S)"' "§0(1+T13)"+1(1+TIS+AS)"+1
t ] Tln(Tl'i"A)”Sz" As _("+1)e_ms
_"=0 (1+T1s)21’t+2 1+TjS
<R (=1)(n+1)(n+2)..(n+r) Argintr u
- { An nts
;Eoz'oTl A r! (I+Tls)2"+'+ze
= = 1 + Tz X 2n+r 1
=n§0r§0r—!n ; (1—?1) (n+1)(n+2)...(n+r)mwe
o v 1 T o\ 2n+r -
=y X —,_n'zl—z(l——z) m+D)@+2).. 47— -
n=or=or! T} T, ( 1)
St —
T,
(A3.4)

Appendix 4. Evaluation of expansion coefficient and the number of expansion terms in Eq. (13)

First, the value of finite order K in Eq. (1) should be chosen (In our experiment
related to Figs. 10 and 11, we have set K = 10). The sampled weighting values b; and
a,(i=1,2, ..., K) are concretely calculated by using step response curves of the
original and the altered systems as:

b= S,(t)—=5i(ti-1), @ = Sy(td—Sulti-y), t,=ix T, (A4.1)
where T is the sampling period (in the present experiment, T is set to 0.003 s.). On
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the other hand, the statistical properties related to the lower order cumulant
functions on the input sound pressure fluctuation can be experimentally evaluated as
follows:

Py
%51 (0,0,...,0, 1,0,....0) = (X,.>,

Py
%y200,0,...,001,0,.:.,09 1,0,..,0 = (X, -~ <X, )X —{Xp, 0P
(A4.2)
P2 P3 4
a0, Brsis Dbl cobe Biruifhs & SBELB.i04.0)

i <(XP, - <X'p1>) (X.nl i <Xp2>) (XP3 i <XP3>)>’
by using experimentally sampled data X, (i = 1, 2, ...) on the input sound pressure
waves X (t). Thus, substituting the concrete values of b;, a;(i=1, 2, ..., K) and Eq.
(A4.2) into Eq. (5), the expansion coefficients, B,(r) (r =1, 2, ...), can be concretely
calculated.

Next, let us discuss the decision problem on the number of expansion terms for
the probability density expression (13). From the arbitrariness of the weighting
functions, h(t) and W(t), for the original and the altered noise control systems, the
probability density distribution and correlation functions of input signal X (¢), and
the functional form of P,(y) in Eq. (4), we can not find generally and systematically
any conclusion for the above decision problem only from the mathematical
viewpoint. Principally, this problem must be considered by taking both sides on the
theoretical convergency property of the expansion expression and the experimental
reliability in an estimation of the expansion coefficients B, (r) (especially related to the
higher order cumulants). In this paper, we have only pointed out in the conclusion
section that this problem will have to be considered as future study. However, for the
purpose of examining partly the legitimacy of the proposed expression Eq. (4), it can
be shown in the following that the well-known Gram-Charlier A type series
expansion [8] on the arbitrary type probability expression is contained as a special
case in Eq. (4).

Let us especially choose the Gdl.lSSldIl distribution as an arbitrary probablllty
density function, P,(z), in Eq. (4), a

1 (zmpa)? :
P,(2) = e 20, , (g,=(2), 0 =LE-{D)D), (A4.3)

by setting x,, (1) = %, (1)3— Ko %, (2) = x,2(2)-é- o7 (%, (I) = 0, [ = 3). At this time,
the probability density expression (4) can be easily rewritten as follows (see Eq. (7)):

1 (z .ﬂz}z ©
P.(z) = e CH( ). (A4.4)
+/ 2n ag. ,20 g,
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Hereupon, the expansion coefficient, C,, is given as:

r

a 1 i il
C,2 =B, = T =rexp {z rIERUEERU) 0}\

r r
rlol rlo}

0=0

e 1 ar 1 2 02
o rl 0':, aor[<exp(20)> exp( .uzg o 0 )]

2
pof e 1

S Yink! SHt R - 0__ 202
rl <a(azo)fe"p(zo u0—50:0 )9:0>

A gaappt LA S 1 z—p,
=—(— e =— B L4
r!<6t’eXp( g, 2t ),=0> r!<H'( g, )>

Here, the relationship between the exponential function and the Hermite
polynomials:

=0

(A4.5)

(A4.6)

i |
H (¢ == t—=t?
Pl A
has been used. Furthermore, we can easily find Co = 1, C; = C, = 0 from p, = {Z)
and o2 = {((Z—<Z>)*). Thus, equation (A4.4) is reduced accurately to the
well-known Gram-Charlier A type series expansion expression, as follows:

_(Z'.uz)l | 3 §L
B, (i el —liicy 368 {1+§j—,<H,(z ")>H(Z—J‘—)} (A4.7)
\EUZ r=3r' g, g,

Finally, in all figures in this paper, it should be noticed that the tendency of
converging to a certain proper cumulative probability distribution curve can be
obviously found out and so can be examined too by finding such a saturation
tendeny from an experimental viewpoint, as pointed out in section 3.

Appendix 5. Engineering background of Eq. (20)

As is well-known, by letting E(6,) be a transmitted output energy component
from the input sound energy with a specific incident angle 0;, the total energy E of the
transmitted sound wave with random incident angles can be expressed from
a deterministic viewpoint as follows:

n/2

E =Y E(0)P(0)d0— [ E(0)P(©0)do,
i 0

(AS.1)

0sin0
PO) = 75— =sin20  (0<0<mp2),

| cos@sin0d0
0
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where p(0,) d0 denotes the rate of energy component between 0, and 0,+d0. If the
above viewpoint is generalized for the statistical evaluation of the insulation system
by newly introducing any kind of probabilistic viewpoint, equation (A5.1) must be
first satisfied in the averaged form of energy fluctuation:

(E) =Y (E|0;> P(6,)d0 — T (E|0 P(0)d0, (A5.2)
i 0

by use of the well-known additive property of mean energy. Hereupon, (E|0) is the
conditional expectation of energy with a fixed incident angle . For the purpose of
establishing some kind of probabilistic law for the total energy fluctuation of the
transmitted sound wave with random incident angles, naturally we have to find it in
a unified probabilistic expression form of generalizing the above equation (A5.2)
Under the above background, equation (20) has been rationally introduced as
a unified probabilistic law of transmission with random incident angles.

Appendix 6. An example of applying the present theory te an actual design problem

As an application example of the present statistical method, let us consider
a statistical prediction method for the sound insulation effect of single and double
walls. Let E, and E,, respectively, be the (100 — o) percentage point of the output
sound energy distribution of the original noise control system with h(t) and that of
the changed system with W(¢). At this time, an improvement of the evaluation index
L, can be quantitatively given as follows:

; E
< sp-ay i 10log,q 7, (A6.1)

a

where E, is calculated from the first expansion term of Eq. (12). Now, let us consider
a prediction problem of improving the above L, in a typical case when a sound
insulation wall such as single or double walls is newly constructed. In this case, the
present theory can be directly used by setting h(f) = (¢) (Dirac’s d—function). We
have employed the following two kinds of walls as examples of noise insulation
systems:

Case A: A single wall with surface mass m = 3.22 (Kg/m?).

Case B: A double wall with two panels of surface mass 3.22 Kg/m? (ie,

my =m, = 3.22 Kg/m?) and width of air gap d = 0.05 m.

Furthermore, the Gaussian random numbers have been used as the standard
input sound pressure fluctuation to the noise control system, in the present
simulation experiment.

Figure A6.1 shows a comparison between theoretically predicted values and
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AL?O
[dBIf
. °
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incident angle
Fig. A6.l. A comparison between theoretically predicted values and experimentally sampled points for
AL, ,. Experimentally sampled points are marked by (o) and theoretical values are shown by ( ) for

Case A, Experimentally sampled points are marked by (e) and theoretical values are shown by (———-) for
Case B

experimentally sampled points for AL,, with various values of the incident angle 0,
where it is very difficult to measure by using only the actual standard experiment
method. Tt must be observed that the prediction accuracy remains within the range
less than a practically permissible error 1 dB.
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