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In this paper the author proves that the propagation velocity of an acoustic velocity
wave in the near field differs from the velocity of a pressure wave, while both differ from Co
in d’Alambert’s equation. The velocity of an acoustic velocity wave was calculated for a
point source, for a cylindrical source of zero order and for a circular piston and ring in a
baffle.

1. Introduction

In accordance with papers [8, 9], an arbitrary tensor physical quantity Dijk...
which propagates in the form of a harmonic wave, can be noted as follows

Pijk... = Aijk_,_(xi)eilﬁ"-f(xe)] (1)

where A;; (x;) is the amplitude in terms of position, and f (x;,) represents the
so-called wave front. The wave propagation condition is [4, 5, 7]:

wt—f(x;) = const (2

what leads to an expression for the local velocity (velocity dependent on the position
of the point in the acoustic field)

¢ = of|gradf]. (3)
If we write (1) for an acoustic pressure wave:
p = Polax)eler /s @

which propagates with a velocity given in formula (3), then we can easily prove that
in a general case a vibration velocity wave propagates with a different velocity. As we
know [3-6], the vibration velocity, called also the acoustic velocity, is related to the
acoustic pressure by Euler’s equation, which has the following form the a harmonic
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wave

U= —l-grad p ()
Qo

where g, is the rest desity of the medium.

Both, the amplitude and the phase, are differentiated when the gradient of
expression (4) is calculated. If we convert the obtained result into a form analogic to
formula (1) we have:

u= Uo (xi) eilot— 1l (6)

Hence, when a pressure wave propagates with velocity (3) (where f(x;) will be the
value of the wave front function from formula (4)), the velocity wave propagates with
velocity

¢, = w/lgrad f,| (7

where f,(x,) is a different function — the function of the wave front of an acoustic
velocity wave from formula (6).

It will be shown below that c, differs from ¢ for all waves (except plane waves)
only at relatively small distances, when the local velocity of a pressure wave c differs
from the material velocity ¢,

M. Kwiek [3] calculated the propagation velocity of a velocity wave for
a point source, considering this as a special case and neglecting the generality of the
problem. His calculation procedure is given in paragraph 2.

2. Propagation velocity of a velocity wave in the field of a point source

This example has been chosen purposely, because as we know the acoustic
pressure wave of a point source is an elementary spherical wave, which propagates
with a constant velocity, in paper [7] called the material velocity. The behaviour of
the propagation velocity of a velocity wave in such a case is very interesting. The
acoustic pressure at a distance r from the point source [6] equals

P= (A/r)e @k ko = wfcy ®)

of course a point source is an abstract source, but it can be replaced in practice by a
very small pulsating sphere.
Applying Euler’s equation (5) in (8) we obtain the acoustic velocity

u= L 1+__1_ éei(m!_koﬂ. (9)
0Co ikgr) r

By separating the absolute value and the phase we bring formula (9) to a form

analogic to (1)
A i ko A
3 1 {0t —kor 18~ 'kgr) 10
Wi + TR (10)
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Fig. 1. c,/c, versus kyr for a point source

where tg™' denotes arctg. The condition of wave propagation requires r and ¢ to
change in such a manner so the total phase remains constant, thus
wt—kor—tg~'— = const. (11)
kor

Differentiating both sides of (11) with respect to time we have

dr ke i dr ;
e i : b S 12
o e ( 1 )z L2 e {L2)
14 =
kor
Since
dr/dt = c, (13)
thus finally
cu(kor)/co = [1+(kor)*I/(kor)?, (14)

when k,r—0, c,/c,— co. This is-not surprising, because the acoustic pressure p (8)
and the vibration velocity (10) exhibits singularity at r = 0. Therefore, it is also not
surprising that the propagation velocity c, exhibits singularity in this point as well.
Whereas, when k,r — oo we have according to expactations c, —c,. In practice there
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is always a small sphere with a finite value of k,r. It results from calculations based
on expression (14) and from Fig. 1, which presents c./co = f(kor) versus kor > 10,
that ¢, differs from c, by less then 1%. Therefore, if the radius a of the small sphere
satisfies the condition

koa > 10 (15)

then the deviation of ¢, from c, will be practically not observable. However, a small
sphere, which has to, satisfy condition

koa < 1 (16)
should be the model of a point source. The effect of the local velocity has to occur
distinctly in its field.

In the above considereations we accepted the solution of a wave equation for
the acoustic pressure in the form of (8) and then we obtained the acoustic velocity in
the form of (10) with the application of Euler’s equation.

A question arises, what would happen if we would accept the solution of the
wave equation for the vibration velocity in a form analogic to (8), what is possible
from the mathematic point of view, because it is also solution of d’Alambert’s
equation. If we would repeat the above considerations for such a case we would
achieve a constant propagation velocity for a velocity wave and a variable
propagation velocity for a pressure wave.

It should be mentioned that this problem can not be solved with d’Alambert’s
and Euler’s equations solely. Formula (8) for pressure was also obtained with the
application of a different method, by differentiating Green’s function, which has a
definite physical interpretation.

3. Propagation velocity of an acoustic velocity wave in the field of a cylinder for a zero order wave

The acoustic pressure for a cylindrical wave of zero order is expressed by
formula [4-6]

p= PO[JO(kUr)—l'NO(kor)]ei“”, (17)
where P, denotes the pressure amplitude, which can be determined from the
boundary condition on the surface of the cylinder (source); Jo() and N,() are

zero order Bessel and Neuman functions, respectively; k, = w/c,. According to
Euler’s equation (5) the acoustic velocity equals [6, 2]

3
u = 2O oI ], (ko) —iN, (ko] (1)
Qo @

where J,() and N,() are first order Bessel and Neuman functions, respectively.
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Separating the absolute value in (18) we obtain

P * 3 Nikor)
u=—2 /B ko) + N, (kor)elLlo+ 7~ Tion] (19)
Qo
The condition of wave propagation has the form
~ 1Ny (kor)
ot—tg 1212 _ const. 20
: Jy(kor) -
Differentiating (20) with respect to time we have
@ d _N,(kyr) |dr
- tg 0 21
2 cod(kor)[ ; J;(knr)}dr o
where
dr/dt = c,(r). (22)

Applying known formulas for derivatives of cylindrical functions [1, 2] and for
corresponding Wronskians and differentiating we get the formula for c,/co in the
following form

Cn(k()r) =3 n
i
When kor— oo, in accordance with asymptotic formulae for cylindrical functions
[1, 2] we have

(kor)[J3(kor)+ Ni(kor)]. (23)

Ji(kor)+ Ni(kor) = 2/(nkyr) ko > 1 (24)
and then we get from (23) ‘
Gl =1 karpl. (25)
Whereas for small k,r< 1 we have
J k) =0 _kr <1, (26)
Ni(kor) = %é; 27)
and from (23)
cjeco—=>0  kor—0. (28)

Of course kyr = 0 is only a mathematical limit without physical sense and (28)
proves inly that the local velocity ¢, exhibits singularity for kor = 0.

Fig. 2 presents the function c,/c, = f(kor)c, differs from ¢y by less than 1% for
values of k,r higher than k,r = 7. Therefore, if a cylinder which radiates a zero order
wave has a radius, a, which satisfies the condition koa > 7, then the local velocity
effect of a velocity wave practically will not occur. Whereas, for koa < 7 this velocity
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Fig. 2. c/e, versus kor for a cylindrical wave of zero order

will be reduced with the distance from the source to the value c,, but this velocity
- will differ from the propagation velocity of a pressure wave. It has been shown in
paper [7] that the velocity of a pressure wave increases from 0 to c,.

4. Phase velocity of an acoustic velocity wave on the axis of symmetry of the field produced by a circular
piston in a rigid baffle

As in papers [7, 8], we will consider a circular piston with radius a vibrating
with a constant amplitude of vibration velocity u,, and situated in an infinite plane
rigid baffle. Axis z drawn from the center of the piston perpendicularily to its surface
is identical with the axis of symmetry of the obtained acoustic field. The propagation
velocity of a velocity wave (c,) was calculated with the application of a formula for
the acoustic pressure on the axis z for the field, given in a compact form by STENZEL
[, 6],

It to simplify the notation we will accept the formula given by STENZEL [5, 6] for
‘the relative acoustic pressure

n ko
B 5P y ot 28111|:£c22(,/112+z2 —z):le"[‘”'*f_f‘v ar+z2+2)] (29)

QoColUo
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where g, is the rest density of the medium, u,, is the amplitude of vibration velocity,
which is constant on the source, k, = w/c,.
In accordance to Euler’s equation (5) we have

1 ¥
_9'2@ = U dpw

g we dz Odz "

(30)

Further calculations are simplified by the fact that we only need the expression for
the phase of u in order to determine the formula for the propagation velocity c,.

After differentiating (29) with respect of z, we see that the total velocity phase
can be expressed by

ot~ o=/~ | S/ [ o

iz z

and the condition for the propagation of a velocity wave has the following form
@(z, t) = const. (32
In order to simplify formulas used in the further part of the paper we will denote
@(z, t) = wt—F(2), (33)

where

Fad 2
F(2) = %(, /a*+z%—2z) —tg'l{tg[%. /a2+zz—z]*\/-%}-' (34)

Differentiating both sides of (32) with respet to time and substituting ¢ (z, t) in the
form given in (33), we obtain
w —(dF (z)/dz)(dz/dt) = 0, (35)
where
dz/dt = c,. (36)
Therefore, from (35) we have

w

=— 7
“ = IF)dz 8%

The following notation simplifications were introduced
dF/dz = (ko/2)F,(2), (38)

hence

c(2)eo = 2/F (2), (39)



24 R. WYRZYKOWSKI

where F,(z) equals

2\ z
koa £xr 2 o a 472
e TR
2 a a z\2
1+(%)
a
For a specific case, when z/a = 0, we achieve the following expression

kqa
tg( 2 ) sin(kna)]

ko o 2[1_ koa
2P+t(2)J
and from (27) we have

a0 _ (') .
c, '1 ; ,_(koa) (ko )/k 0
e 2

At z = 0 the value of c,(0) depends on k,a. For kya = 0 (limiting case without
physical sense) we would have ¢,—oo. When kya— o, ¢,—¢,, in spite of the
periodicity of function tg(kya/2). Fig. 3 presents the dependence c,(0)/c, = f (koa).

As for the full expression (40) we can see that when z/a — oo, then from formula
(27) we obtain at the limit F,(c0) =2 and from (27).

c.(©)/co = 1. (43)

F 0 =2<1-

(41)

?"'
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In Fig. 4 we have F,(z/a) curves versus koa. The lower the value of koa the
higher the boundary value F,(z) for z = 0. If the value under the tangens function is
n/2 in the range of small z/a, then the curve has a small extremum, which is shown in
Fig. 4 for kya = 2. Already at k,a > 2 the difference between c, and c,, is very small
and practically it occurs only near the source. This leads to an 1mportant conclusion;
in the case of a piston with dimensions very small with respect to the wave length (i.e.
for relatively long waves), velocity c, can be arbitralily high near the piston source,
while the propagation velocity of a pressure wave varies here from 2c, at the piston
to ¢g [7]. It is also worth mentioning that when the value of the parameter increases,
the ¢, /c, curves are packed more and more densily.

5. Propagation velocity of an acoustic velocity wave on the axis symmetry of the field produced by a circular
ring in a baffle

We will now determine the expression for the propagation velocity of an
acoustic velocity wave, when a circular ring with internal radius a, and external
radius a,, which vibrates with a constant amplitude of vibrations velocity u, is the
field source. The ring is situated in an infinit rigid plane baffle. The propagation
velocity is calculated on the axis, perpendicular to the plane and drawn from the
center of the ring.

We use STENZEL’S formula for the acoustlc pressure on the z axis (in the near
field) [5, 6]

k 3 n ko —7 T_z
P, = . :u = 2sin|:30( /2 + a3 — /zz_f_a%):le;[mwzgj(‘/z t+az+Yz2+a1)] (44)
oColo

In accordance with Euler’s equation we obtain the component of the vibration
velocity along the axis z in the following form

i dp dp
SR P 45
= wQ,dz dz #3)
where U, is the amplitude of the acoustic velocity. This quantity does not occur in
further calculations.
Differentiating (44) in terms of z and separating the summaric phase we can find
that the total phase of the acoustic velocity equals

wt—%(\/zz+a§+ \/z2+a%)—tg‘1{tg[k—;(\ﬁz+a%—\/zz +a§):| X

\/z +az+\/z +a }=const. (46)
\/z +a3 +\/z +a?

The constancy of the total phase of acoustic velocity is the condition for wave
propagation.
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Now we differentiate both sides of (46) with respect to time, knowing that
ko = w/cq 47

and that
dz/dt = c,(2) (48)

is the local propagation velocity of an acoustic velocity wave, we write in a short
form: :

Cu(z)/co = Z/FI(Z)! (49)

EeEzeiizarze

In formula (50) we denoted

a,=na, n<l. (51)

For n = 0 the ring‘ changes into a circular piston and formula (50) is transformed
into formula (40).
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Before we discuss the full formula we will consider a specific case, when
z/a, = 0. Here we have

F,(00=0 (52)
and from formula (49)

¢,(0) = oo. (53)
Whereas, when z— o0 we have

F(0)=2 (54)
and

c,(0) = cq.

Figs. 5, 6 and 7 present c,/c, versus z/a, for various values of k,a and n. Forksa < 1
the scattering of curves depending on ka is quite large. While for a given k,a, values
of n nearly do not influence the shape of curves, so they are even not marked in Fig. 5
(the influence of n is observable from z/a, < 0.2, what does not have practical
application). :

With the increase of k,a (Fig. 6, koa = 1) the dependence on n is observable
very clearly for small values of z/a (here z/a < 1). For koa = 5 (Fig. 7) the differences
between the oridinates of curves for n = 0 and n = 0.4 are even greater, but also only
up to z/a = 1. Hence, the effect of the local velocity of a wave occurs here only at
distances of the same order as the external radius of the ring, from the surface. But
this effect is much smaller than in the case of a pressure wave. For an infinitely thin
ring we have [7, 8]

ei(an —kov/ z2+a?)

p =P, (55)

were a is the radius of the ring.
When the derivative dp/dz is calculated and the full phase angle is separated,
then the condition of acoustic velocity wave propagation has the following form

wt —kor/7* +a* +1g ™1 (ko~/ 2% + ) = const. (56)
Differentiating both sides of (56) with respect to time we achieve the relative
propagation velocity:

@) _ 1+(koa)’[1+(z/a)’ (57

¢ (z/a)(koa)/1+(z/a)

For z/a =0 we have

o) = (58)
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and for z/a
c,(o0) = c,. (59)

The quantity k,a is parameter in formula (57). It results from expression (57) that for
koa—0 we have

i 00 (60)

koa— o cu

and for kya— o

3 c,,(z)_ 1+ (z/a)*
IRt T

This formula resembles exactly formula (16) given in paper [8] for the local velocity
of a pressure wave. An interesting conclusion arises: the local velocity of the
vibration velocity wave is equal to the local velocity of then pressure wave for large
values of parameter k,a. Fig. 8 presents c,(z)/c, versus (z/a) for various values of k,a.
A very high value of c,/c, is obtained for small values of kya and the value c, is
achieved in practice for the value of z/a of some scores. With the increase of kya the
value of c¢,/c, decreases, approaches unity more rapidly and the curves are packed
more densily. As it can be seen in the figure, it is not purposeful to draw curves for
koa > 1, because it would only complicate the picture and large differences between
¢, and ¢, would only for z/a < 1.

(61)
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