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In this paper the author investigated energetic properties of rectangular sound sources
with the following amplitude distributions of the vibration velocity: uniform, HAMMINGS,
HannING’s and BLAackmans. The frequency characteristics of the active power, reactive
power and apparent power of these sources was determined, as well as their power factor. It
was found that sources under investigations effectively radiate vibration energy into the far
field (i.e. with the power factor equal to one) in the wave length range, in which they exhibit
large directionality. The energy of vibrations radiated by a source into the far field in a unit
of time is by an order of magnitude smaller in the case of HammING's, HANNING’s and
BLACKMAN’S distributions than in the case of a uniform distribution. Therefore, an increase
of the directivity of radiation of the vibration energy into the far field by rectangular sound
sources is accompanied by a decrease of the value of radiated energy.

1. Introduction

There is a need for sound sources with large directionality of vibration energy
radiated into the far field in many domains: metrology, diagnostics, hydrolocation
and ultrasonic technology. They are applied to obtain an adequate beam of
ultrasonic waves or to obtain a required concentration of energy in a certain area of
the medium. In these applications sound sources have to radiate energy of vibrations
effectively. The far field of a rectangular sound source with uniform, HANNING’s and
Brackman’s amplitude distributions of the vibration velocity have been investigated
in paper [5]. It was stated that the directional characteristic of such a source with
HANNING’s distribution has a relatively narrow main maximum (much more narrow
than for a Gaussian distribution [10]) and sufficiently strongly damped side maxima.
It was also found that a sound source, which radiates energy of vibrations into the
far field with a sufficiently large directionality, can be in practice realized by a mosaic
system of plane sound sources with discrete HANNING’S distributions of their
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relative bulk efficiencies. This paper analyses energetic properties of rectangular
sound sources with large directionality of energy radiate into the far field.
A developed by the author new method of determining frequency characteristics of
the reactive power of sound sources with the application of a fast Fourier transform
was used in investigations.

2. Acoustic field of plane sound sources

Let us accept (Fig. 1) that a plane sound source o, which vibrates with a simple
periodic motion with frequency f,, is situated in plane z = 0, which is a perfectly
rigid baffle S,. It was also assumed that the distribution of the normal component of
the amplitude of vibration velocity produced by source o, in the baffle S, is defined
by the following function

%#(xg, ¥o) # 0  for surface of the source a; M
#(Xg, ¥o) = 0  for the rest of the surface of the baffle S,.
Let us assume that source o, radiates the energy of vibrations into the half-space
z > 0 filled with a lossless and homogeneous fluid medium with density g, in which a
sound wave propagates with velocity ¢. The amplitude distribution of the acoustic
potential in this half-space is determined by the solution of Helmholtz’s equation

[2, 6]
AD(x, y, z)+4n2v2d(x, y,2) =0 2)

which satisfies Neumann’s boundary condition

0
E¢(xa Vs Z)z=0 = _“(xm yo) 3)
and Sommerfeld’s condition of finity
lim @(x, y,z) =0 4)
and radiation
g 0 ;
lim r adi(x, ¥, Z)+j2nv@(x, y, z) | =0 (5)

where 4 is a Laplacian, v = f,/c — spatial frequency of a sound wave with frequency
fo» which propagates with velocity ¢ in the direction of radius r (Fig. 1).

Let us consider an arbitrary plane S, situated in half-space z > 0 and parallel
to the baffle S, (Fig. 1). The distance between these two planes is denoted by z.
Function @(x, y, z) defines the amplitude distribution of the acoustic potential
produced by source o, in plane S,. Now we will define components of the spatial
frequency of a plane sound wave propagating in the direction of radius r:
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Fig. 1. Plane sound source o, located in baffle S,, which radiates energy of vibrations into a medium,
which fills the half-space above the baffle

v, = veos(x, r), (6)
v, = veos(y, 1), (7
v, = vcos(z, r). (8)

The spatial spectrum of the amplitude distribution of the acoustic potential in plane
S, is determined with the application of a simple two-dimensional Fourier transform
[1]. Namely,

+w +

F(vy, v, 2) = J .[ P(x, y, z)exp[ —j2n(xv, + yv,)]dxdy. 9)

s
In accordance to this, equation (2) and the boundary condition (3) can be written as
follows

dz
FF(V.VS Vy, Z)+4‘JT2V§F(VI, Vy, Z) = 0! (10)
where

v, =V —vi—v} (11)

z

and

i1“"(1:,:, vy, 2) = —K(v,, v)), (12)
dz z=0
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while

tw +o
K(v,, v,) = f I %(xo, J’o)exP[_jzn(xovx+J’O"y)]dxod.VO (13)

is the spatial spectrum of the amplitude distribution x(x,, y,) of the vibration
velocity in the baffle S,. The solution of equation (10) has the following from

F(v,, v,, 2) = A(v,, v,)exp(—j2nv,z)+ B(v,, v,)exp(j2nv, z). (14)

This solution will satisfy the boundary condition (3), and the conditions of finity (4)
and radiation (5), if

A(ve, v)) =0 (15)
and
K(v_, v
B(v,, v,) = % (16)

Hence the solution of (14) has the following form

exp(j2nv,z)

F(vy, vy, 2) = jK(v,, v)——

(17)
With the application of the inverse Fourier transform [1], we can determine the
interesting to us amplitude distribution of the acoustic potential in an arbitrary plane
S,, parallel to the baffle S, on the basis of dependence (17). Namely

+o +wo
exp(j2nv, z
D(x, y,2) = j _[ j K(v,, vy)%[ﬁn(xvx+ ) 1dv,dv, . (18)

3. Sound power of a plane source

The sound power of a plane source o, situated in baffle S, can be derived from
(2, 6]

+a + o

N =(1/2) f J #*(Xo, Yo) P(Xg» Yo)dxodyo, (19)

where function »*(x, y) denotes the distribution of the complex conjugate amplitude

of the vibration velocity in the baffle S, and function P(x, y) determines the
amplitude distribution of the acoustic pressure in this plane. Because [2]

P(xo, yo) = —j2mvec®(xo, Yo) (20)
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while for z = 0 from relationship (18)

4+ +a@
4| K(v,, v,) ‘
D(xg, ¥o) =]§1_t J. J. —v2 32 > > CXPDzﬂ(xo"x‘i'J’o"y)]ded"y (21)
=

thus substituting (20) and (21) in (19) we obtain

+o +o +w +oo

_vee K(vy, v,) J J .
N = 2 J. J‘ vz—vi—‘p)z’ X (xO! J”o)x
x exp[ji2n(xo v, +yov,)1dxodyedv,dv,.  (22)
For [1]
+o +o
K*(v,, v) = f f #*(xg, ¥o)expli2n(xqv,+ yov,)1dxody, (23)

is the complex conjugate spatial spectrum of the amplitude distribution of the
vibration velocity in the baffle S,, thus

+00 +o0
2
_ vee J' J |K(v,, v)| dh (24)

It results from this relationship that the acoustic power of a plane sound source o, is
a complex quantity. Let

N = Nz +jN,, (25)

_

Fig. 2. Integration regions in the determination of the active and reactive power of a plane sound source

N
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where N is the active power and N, is the reactive power of such a source. We will
consider the plane of components v, and v, of spatial frequency (Fig. 2). It results
from (24) that the active power of the sound source g, can be determined from

relationship
2 |K (v ,v 2,
R = TJ ih AL Gl dv’, (26)
Q J’
by integrating in the region €, of spatial components v, and v,, in which
vi4vZ < vi (27)
Whereas the reactive power of this source can be determined from
K(v,,v)?
e 'U K (s ) et ey ., (28)
vi4vi—v?

where the integration in done in the region 0 of spatial frequencies v, and v, in
which

V242 > 2, (29)

The active power of source g, determines its energy of vibrations, which is radiated
in a unit of time into the far field, while the reactive power determines the energy
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Fig. 3. Components of the acoustic power of a plane sound source

exchanged between this source and its near field a unit of time. From the practical
point of view it is more convenient to use the notions [2] (Fig. 3) of apparent power

of the sound source
= |N| = /N +Nt, (30)

which determines the total acoustic energy of the source related to a unit of time, and
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power factor
cos@ = Ng/P, (31)

which informs what part of this energy is radiated by the source into the far field in a
unit of time.

4. Energetic characteristics of a sound source

It should be noticed that the acoustic power of the sound source o, (and hence
its active power, reactive power, apparent power and power factor) depend on the
vibration frequency f, of its surface through the spatial frequency v. Functions
presenting the relationship between the spatial frequency v and these quantities are
called energetic characteristics of sound source o, [2]. It is more convenient to use
normalized energetic characteristics when comparing energetic properties of sound
source. We have

lim N(v) = %C-Dz N, (32)
where
+ o + oo
= f J K (vy, v, 2dv,dv,. (33)

With the application of Parseval’s theorem [1] the above expression can be written
as

+wo +om

D* = J f #*(Xo, Yo)dxodY,. (34)

It results that D? it the meon square value [11] of the amplitude of the vibration

velocity distribution in the baffle S,. Therefore, normalized frequency characteristics
of the active and reactive power of the source o, can be defined as

Nx() = Nx)N,, = ” LS v"ﬁ 5 (35)
where as
i) = NyOYN., = Di” BT N e (36)

Vi vi—v?
0
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while

lim Nz(v) =1 (37)
and

lim N,(v) = 0. (38)

y=o0

5. Methods of determining energetic characteristics of sound sources

Energetic characteristics of sound sources are most frequently determined
directly form relationships (35), (36) and (30), (31) (e.g. [6, 7]). It was proved in papers
[9] and [10] that the characteristics of the reactive power of a sound source can be
determined on the basis of its frequency characteristic of the active power, with the
application of a simple Hilbert transformation. Namely,

+ o

o T 1
N;(v) = 'E;*NR(") i j

=

N‘R—(")dq. (39)
Bty

Now we will prove that the frequency characteristic of the reactive power of a sound
source can be determined on the basis of its frequency characteristic of the active
power, with the application of a simple and inverse Fourier transform. Fourier
transform of both sides of the relationship (39) were determined. Taking advantage
[11] of the theorem about the Fourier transform of a convolution and the theorem
about the Fourier transform of function 1/(nv) we obtain

N 1 = —jsgn() N g(n), (40)
where distribution
Lo for .5 0,
sgn(u) = 0 for u=0, (41)
—1 for p<O.

Hence, on the basis of the inverse Fourier transform [11] we can note

+

N, () = '( N r(wexp(2nvp)dp, (42)

— a0

where

N (p) = —jsgn(p) A g(p), 43)
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while

+ 0

F ) = f N(v)exp(—j2nuv)dy. (44)

-0
The resulting from above considerations algorithm of determining the frequency
characteristic of the reactive power of a sound source on the basis of its frequency

characteristic of the active power with the application of the Fourier transform is
presented in Fig. 4.

Ny(v) ¥ N, (p)
» - sgn(u)
o
N, tv) . N, (u)

Fig. 4. Algorithms of determining the frequency characteristic of the reactive power of a sound source:
# — Hilbert’s transform, % — Fourier transform, # ~' — inverse Fourier transform

The frequency characteristics of the active power of sound sources with large
directionality have been determined in this paper from relationship (35) with the
application of the trapezoid method of calculating the values of definite integrals.
While frequency characteristics of the reactive power of these sources were
determined in accordance with the algorithm presented in Fig. 4 with the application
of a simple and inverse discrete Fourier transform [3, 4]. The Cooley-Tukey
algorithm of the fast Fourier transform [3, 4] was used in the course of calculations.
Calculations were performed on a minicomputer.

6. Rectangular sound sources with large directionality

Let us accept that a sound source o, has a shape of a rectangular with sides a
and b (Fig. 1). We will analyse the following amplitude distributions of the vibration
velocity in the baffle S, uniform, HAMMING’S, HANNING’S and BLACKMAN'S. It was
proved in paper [5] that for HAMMING’S, HANNING’S and BLACKMAN’S distributions,
the directional characteristic of a rectangular sound has a relatively narrow main



62 _ A. PUCH

a)

10

* (x/a)
%]
—— e ——— v —

x/a 10

Q
o
wn

1K (av,)!

A

5 1 1 L 1 I 1
s 0 £ 4 6 8 av, 10

Fig. 5. Amplitude distributions of the vibration velocity on the surface of a rectangular sound source a)
and their spatial spectra b): 1 — uniform, 2 — HAMMING’S, 3 — HANNING’S, 4 — BLACKMAN's distribution

maximum and sufficiently strongly damped side maxima, if the dimensions of the
source are sufficiently large in relation to the wave length.

a) Uniform distribution. Let us accept that the amplitude distribution in the
baffle S, is determined as follows (Fig. 5)

%(Xg, Yo) = %o%(X0)%(¥o)s (45)
where

1 for |x,| < a/2,
= 46
#(Xo) {0 for |xo| > a/2 9
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and

_J1 for |yl < b/2,
“Wo) =10 for Iyyl > b/2.

The mean square value of this distribution is equal to
D? = x3ab,
while its spatial spectrum (Fig. 5) is given as

K(vx’ vy) = xOK(vx)K(vy)!

where

K(v,) = asinc(av,)
and

K(v,) = bsinc(bv,),
while

sinc(z) = sin(nz)/(nz).

(47)

(48)

(49)

(50)

(51)

(52)

b) HamMMING’s distribution. Let us accept that the amplitude distribution of the

vibration velocity in the baffle is defined as follows (Fig. 5)
%(Xg5 Vo) = #o%(Xo)%(Vo),
where

s 0.54 +0.46cos(2nx,/a)  for |x,| < a/2,
uT o for |x,| > a/2

and

AR 0.54 +0.46cos(2my,/b) for |y, < b/2,
rolF e for |yl > b/2.

The mean square value of this distribution is equal to
D? = 0.158%%ab,
while its spatial spectrum (Fig. 5) is given as
K(ve vy) = % K()K(,),
where _
K(v,) = a[0.54sinc(av,)+ 0.23sinc(av, — 1) +0.23sinc(av, + 1)]

and

K(v,) = b[0.54sinc(bv,)+0.23sinc(bv,—1)+0.23sinc(bv,+ 1)].

(33)

(54)

(55)

(56)

(57)

(58)

(39)
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¢) HANNING’s distribution. Let us accept that the amplitude distribution of the
vibration velocity in the baffle is defined as follows (Fig. 5)

#(Xg, Yo) = %o %(Xo)%(yo), (60)
where
0.5+0.5cos(2nxy/a) for |xo| < a/2,
o = {0 for |x,| > a/2 (61
and
) = {g.s +0.5cos(2my,/b) g :iz: f gg )
The mean square value of this distribution is equal to
D? = 0.141x5ab, (63)
while its spatial spectrum (Fig. 5) is given as
K(v,, v,) = %, K(v)K(v,), (64)
where
K(v,) = a[0.5sinc(av,)+ 0.25sinc(av, — 1) +0.25sinc(av, + 1)] (65)
and
K(v,) = b[0.5sinc(bv,)+0.25sinc(bv, — 1)+ 0.25sinc(bv, + 1)]. (66)

d) BLACKMANs distribution. Let us accept that the amplitude distribution of the
vibration velocity in the baffle S, is defined as follows (Fig. 5)

%(xg, Vo) = ox(xg)%(¥y), (67)
where
_)0.42+40.5c0s(2nxo/a) +0.08cos(4mxy/a) - for |xo| < a/2,
(xo) = {0 P e
and
_ }0.42+0.5¢c0s(2my,/b) +0.08cos(4my,/b)  for |yol < b/2,
o) = {0 fordnyt S b2 N
The mean square value of the distribution is equal to
D? = 0.093%2ab, (70)

while its spatial spectrum (Fig. 5) is given as
K(v,, v,) = %, K(v,)K(v,), (71)
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Fig. 6. Normalized frequency characteristics of the active power a) and reactive power b) of a square
sound source with the following distributions: 1 — uniform, 2 — HAMMING'’S, 3 — HANNING'S, 4 —
BLACKMAN’S

5 — Arch. of Acoust. 1/87
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where
K(v,) = a[0.42sinc(av,)+0.25sinc(av, — 1)+ 0.25sinc(av, + 1)+ 0.04sinc(av, —2) +
+0.04sinc(av,.+2)] (72)
and
K(v,) = b[0.42sinc(bv,)+0.25sinc(bv,— 1) +0.25sinc (bv, +1)+0.04sinc(bv, —2) +
+0.04sinc(bv, +2)]. (73)

Fig. 6 presents frequency characteristics of the active and reactive power of
investigated sound sources with large directionality and Fig. 7 presents frequency
characteristics of their apparent power and power factor.

7. Conclusions

From our considerations it follows that in the wave length range, in which
analysed rectangular sound sources with HAMMING’S, HANNING’S and BLACKMAN’S
amplitude distributions of the vibration velocity exhibit an adequately large
directionality [5], these sources radiate effectively the energy of vibrations into the
far‘field (Fraunhofer zone), i.e. with the power factor close to unity. However, the
energy of vibrations radiated into the far field by these sources in a unit of time is by
an order of magnitude smaller than for a uniform distribution. (This results from
relationships (48), (56), (65) and (70)). An increase of the directivity of radiation of the
vibration energy by a rectangular source is accompanied by decrease of the vibration
energy radiated by this source into the far field in a unit of time. In comparison with
the uniform distribution, frequency characteristics of the active, reactive and
apparent power (Figs. 6a and b, 7a) of a square sound source with the following
amplitude distributions of the vibration velocity: HamMMING’s, HANNING’S and
BLACKMAN’S have only one maximum of a similar value, very much like for a
Gaussian distribution [10]. The maximum of the frequency characteristic of the
active and apparent power for these distributions (Figs. 6a, 7a) occurs at the
frequency of vibration of the source surface, at which the length of the radiated
sound wave becomes comparable with the dimensions of the source; while the
maximum of the frequency characteristics of the reactive power (Fig. 6b) occurs at
the frequency of vibration of the source, at which the dimensions of the source are
comparable with a half of the length of the wave. It was shown in [5] that a square
sound source with HANNING’s amplitude distribution of the vibration velocity has
directivity properties required in practice, if the length of the wave radiated by this
source satisfies condition 4 < a/2. Is such a case its directional characteristic has a
relatively narrow main maximum (its width is equal to cos (26) = 1.4 1/a at the level
of —3 dB) and sufficiently strongly damped (> 32 dB) and quickly decreasing (60
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dB/decade) side maxima. At wave length A < a/2 this source radiates its whole
energy into the far field (Fig. 7b).

The method of determining energetic characteristics of plane sound sources,
which was presented in this paper, can be applied in the estimation of energetic
properties of various real plane sound sources on the basis of experimentally
determined directional characteristics. It can be proved that the directional
characteristic of a sound source is a fragment of the spatial spectrum of the
amplitude distribution of the vibration velocity, produced by a given source in the
baffle. A detailed analysis of this problem is presented in paper [5]. Measurements of
the level of the directional characteristics of a sound source at a given spatial
frequency v can be used for the calculation of its active power (26) with a chosen
method of numerical integration. The frequency characteristic of the active power of
an investigated sound source in the interesting to us range of spatial frequency v can
be achieved by repeating these calculations for following spatial frequencies. In turn,
on this basis the frequency characteristic of the reactive power of this source (42) can
be calculated with the application of a chosen algorithm of a discrete Fourier
transform. The sampling interval of the frequency characteristic of the active power
and the truncate function of this characteristic has to be adequately chosen. These
problems have been analysed in detail in papers [3] and [4].

The basic advantage of this method of determining energetic characteristics of
sound sources is the possibility of its application in investigations of energetic
properties of sources and systems of sound sources with arbitrary shape and
arbitrary amplitude distribution of the vibration velocity on their surface. The
simplicity and speed of obtaining neccessary results with the application of a
computer is another advantage.

The limited applicability of this method is the disadvantage of this method.
Namely — it can be used in investigations of energetic properties of plane sources
and systems of sound sources situated in a baffle.
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