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The authors have determined shapes and amplitudes of Gaussian pulses with limit
frequencies equal to 2. 3. 10 and 20 kHz. which were reflected backwards from rigid and
steel spheres with a 0.5 m radius, immersed in water. For this purpose spectral analysis,
transmittance theorem and inverse Fourier transform were used. Reflected pulses exhibited
two maxima corresponding to a specular reflection from the face surface of the sphere and
to a creeping travelling wave around the sphere. These maxima were masked by many
resonances inside of the clastic sphere. The masking effect decreases with the decrease of the
limit frequency of the Gaussian pulse incident upon the sphere. In such a case the shape of
the reflected pulse tends to a time derivative of the incident pulse. The peak to peak pressure
of the reflected pulse remains unchanged in the range of limit frequencies under
investigation. The measurement of the time interval between the first and second maximum
of the reflected pulse makes it possible to determine the radius of the elastic sphere, if the
limit frequency is sufficiently low.

Notation

— auxiliary function

— sphere radius

— auxiliary function

— wave velocity in water

— velocity of creeping wave

— velocity of longitudinal wave in the sphere
— velocity of transverse wave in the sphere

— expansion coefficient

— auxiliary function

— auxiliary function

— auxiliary function

— limit frequency

— shape function of the sphere

— spherical Hankel function of the second type
— derivation of function h{* with respect to the argument
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L — spherical Bessel function

g — derivative of function j,, with respect to the argument
G; — spectrum of the incident wave pulse

k= wle — wave number

m — natural number

5 — spherical Neumann function

n, — derivative of function n, with respect to the argument
P, — Legendre polynomial

Pi — acoustic pressure of the incident wave

Po — acoustic pressure amplitude of the incident wave
Ps — acoustic pressure of scattered wave

q — constant

¥ — radial coordinate

s — constant

t — time

x = wajc

x*, = wajc,

X; = wgfc;

B — constant

M — auxiliary quantity

0 — azimuth

Ay = clfy — limit wave length

s — auxiliary variable

0 — water density

0 — density of the sphere

T — normalized time

@ — angular frequency

w, — limit angular frequency

1. Introduction

The reflection of ultrasonic waves from spherical objects immersed in water is of
fundamental significance to many problems of ultrasound technology, such as
hydroacoustic surveying. This problem has been undertaken in many papers. The
first one to solve this problem theoretically for elastic spheres and a continuous wave
was FARAN [4]. Later, other authors have pointed out a small mistake in FARAN’S
very complex formulae [3, 12, 16]. Experimental research in the domain of the
reflection effect, performed with the application of aluminium and brass spheres
immersed in water in the range of ka = 4.1-+57, has confirmed the theory [8].

This paper deals with the effect of backward reflection of a Gaussian pulse of an
ultrasonic wave incident upon rigid and elastic spheres immersed in water. It was
accepted that a plane wave pulse, which is a time function near to a Dirac pulse,
assumes a shape close to a Gauss pulse, due to imperfect generation and propagation
conditions in water. Such a pulse incident upon a fixed sphere, is reflected from it and
returns in the direction from which it was emited.

This paper is aimed at the determination of the shape and amplitude of the
reflected pulse. It also tries to answer the question: Can any information concerning
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the reflecting sphere be obtained on this basis? HaseGawa’s formulae [9, 10, 11]
describing the reflection of a continuous plane wave from an elastic sphere, with the
correction made by ANSON and others [1], have been applied in this paper.

The procedure introduced by RUDGERS [18] and HickLING [12] will be applied
in order to analyse the reflection of pulses.

2. Gaussian pulse of an ultrasonic wave

A system of polar coordinates is being accepted (Fig. 1A). Considering axial
symmetry we have two coordinates: r and 0. A Gaussian pulse of a plane wave
moving along the z-axis (z = rcos() is the following time function (at a fixed value
of z)

P = poexp(—p*t?). (1)
T TR vas

LA Y
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Fig. 1. A — Applied coordinate system — a plane progressive wave is incident upon sphere with radius a
along the z-axis. This system was applied by authors of papers [4, 5, 11, 18]. B — Coordinate system
applied by RsHEVKIN ([17], p. 258)

Assuming p, = 1 and applying a Fourier transform [13], we achieve the pulse
spectrum in the following form

Giw) = | pit)exp(—jotyds = %exp(—w%ﬂﬂ, 2)
where the identity [6]
Tj exp(—u?s® +gs)ds = #exp(qzﬂuz) for u>0, (3)

was applied.
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If we define the limit frequency f, (as well as the limit angular frequency ). as a
frequency at which the spectrum amplitude is equal to 1/10 of the maximum value,
then we have

B = nf;//IIn0.1] = 2.07f, = 0.3290,. 4)

The shape of the Gaussian pulse whic¢h corresponds to the limit frequency
f, =20 kHz is presented in Fig. 2, while its spectrum is shown in Fig. 3.

2,2
pt)=e#"

10
i f, =20 kHz

05 + P=414:10°s"!
)..

1 1 1 1 1 1 1 1
-005 0 005 tims]
0073 ms

Fig. 2. Gaussian pulse corresponding to limit frequency f, = 20 kHz

In further analysis we will introduce a dimensionless quantity ka = wa/c in
place of the angular frequency w. Hence, we achieve the following expression, if we
include factor a/c in the exponent in expression (2) and also include (4)

z
G,(ka) = Jr exp[—(ka)2/0.433(9§3) j| (5)

03290,

3. Reflection of a continuous wave and a Gaussian pulse from rigid spheres

First of all we will determine the value of a continuous wave reflected from a
rigid sphere. The acoustic pressure of a harmonic plane wave propagating in the
direction z = rcosfl (Fig. 1) has the following form [11, 9, 10]
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Fig. 3. Spectrum of Gaussian pulse from Fig. 1

Z (2m+ 1)(—j)"j,,(kr) P,,(cosO)exp(jwt) (6)
while the acoustic pressure of a wave reflected from a sphere is expressed as

ps= Y (2m+1)(—jy"c, h? (kr) P, (cosO)exp(jwt). (7)
m=0

Coefficient ¢, is determined from boundary conditions on the surface of the
sphere. In the case of an elastic sphere this coefficient is a function of: velocity of a
longitudinal and transverse waves in the sphere, sphere density, wave velocity in the
fluid surrounding the sphere, fluid density, frequency and radius of the sphere. This
relationship becomes simpler in the case of a rigid sphere, because the velocity of

longitudinal and transverse waves tends to infinity. Hence,

(>, ;2 0)=x,-0 and x,-0, (7a, b)

and HaseGawa's formulae [8, 11, 1] for an elastic sphere can be simplified to the
form for a rigid sphere, because then

Cm = [ X X) = F i (X) Y LF B () = xH3 ()] = — fu(X)/ 1 () @)
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as
0x3(A,.—B,,)
Fo= 2¢.(D,,—E,) G ©)
where
i M) (X1) = X1 jim+1(X4)
m = 1)jne)—Xjms 1 (50) 49
2m(m+1)j,(x,)
B = 11
™ (2m? —x3 = 2)j (%) + 2% 3 jm+1(%2)’ ()
- [x22/2—m(m—1)]jm(x1)—2x1jm+1(x1), (12)

(M —1)j (1) = X jm+1(x1)

_ 2mm + D[ =m)jn52)+ a1 ()] .
= (zmz_x%"z)jm(xz)+2xzjm+1(x2) '

The limit of formula (9) is zero as x, and x, tend to zero. This could be shown
by applying the following properties of spherical Bessel functions [15]

jm +1 (é) i é
Jm(@)  2m+3
and the de 'Hospitals principle twice with respect to (9). Approximating the Hankel

function by an asymptotic expression ([17], p. 211) for a distance much greater than
the radius of the sphere, r > a

for £-0 (14)

h(kr) = lexp[—j(kr—m; ln)] (15)
including identity
(—jymexp[j(m+D)n/2] = +j, (16)
and assuming backward reflection (0 = 180°)
P,(cos0) = (—1)" (17

we achieve from formulae (7) and (8) the final form of the formula for the acoustic
pressure of a continuous wave reflected from a rigid sphere [5]

m(k ;
p, = ;_I: m}; jCm+1)(— I)MI:(Z)(,(;;):'exp[—j (kr—ot)]

bt 5= oka)exp[ =) (kr —on)]. (18)

The expression in first $quare brackets in formula (18) is called the shape
function of the backward reflection from a sphere in the far field. It is denoted by
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fw(ka). Function (a/2r)f,, (ka) can be treated as the transmittance of the sphere which
is the response of the sphere to a harmonic input signal [6]. In paper [6] the
transmittance of the sphere was accepted without the factor a/2r.

Formula (18) can be also achieved on the basis of RUDGERS paper [18]. The
author introduced function sinn,,exp(jn,,) in expression (9) and (11) in his paper. It
can be proved that tgn,, (see formula (10) in the quoted paper) satisfies relationship

Jm(ka)
= . 19
tgh, nka) (19)
Then we have the following identity
’ . . Jm(ka)
Sln”mexp(ﬂ?m) = hﬁﬂz)f(ka)' (20)

Hence, we have an identical form of the shape function f, (ka) as in the first
square brackets in formula (18). A similar formula can be obtained also on the basis
of formulae (8.24), (8.26) and (9.6), which were given by Rshevkin [17]. In such a case
differently defined coordinates have to be taken into consideration (Fig. 1B).

Fig. 4 presents the modulus of the function f, (ka) for a rigid sphere (curve R).
For ka > 10 this curve oscillates around the value of 1 with decaying oscillations.

1£, (k)
G;(ka)

2F

E
1 N\ [N ‘l‘ L1 i
|I "u :I'. T
AV
Iy h
AL N
I~
J \
3 kHz
f =20 kHz
0 ] 10 5 20 25 30 ka
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Fig. 4. Shape function [, (ka) for a rigid (R) and steel (E) sphere, and spectra of a Gaussian pulse with limit
frequency f, = 20 kHz and 3 kHz (related to the maximal value). Sphere radius a = 0.5 m
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When the wave incident upon the sphere has the shape of a pulse, then two
variables, r and t, are substituted by one dimensionless variable in the following
form [18]

T = (ct—r)/a. (21)

This procedure is justifiable, because the same shape of a pulse is obtained at
a fixed time t when its shape is observed in terms of distance r, or on the contrary at
a fixed distance r when its shape is observed in time t.

The pulse of a reflected wave will be presented in the domain of time normalized
by expression (21) with the application of the linear theory of networks [14]. To this
end an inverse Fourier transform was determined from the product of the
transmittance of the sphere, a/2rf, (ka), and pulse spectrum G;(ka). Including
formulae (18) and (5) we have

1+cn

pu(0) = 5= | 5:S(ka) Gi(ka)expGkar)d(ka) (22)

- a0
or in full notation

o aite =220 wdnlka) |/
O = gy 1| 2, Jom DD hsmka)]osz%g i

x exp[—(ka)2/0.433(%)2 + jkaz}d(ka). (23)

The shape function f,, (ka) for a rigid sphere (R), also spectra of pulses G,(ka),
calculated for frequencies f, = 20 and 3 kHz have been shown in Fig. 4. The wave
velocity in water was accepted as equal to ¢ = 1500 m/s and the radius of the sphere
a=0.5m

Shapes of pulses reflected from rigid spheres were determined from the real part
[18, 2] of formula (23). They are presented in Figs. 5, 6, 7 and 8 (pulses R) for limit
frequencies equal to 2, 3, 10 and 20 kHz, respectively. Shapes of transmitted signals
T are also shown for comparative purposes, their amplitudes are relative quantities
here.

From formula (21), for value 7, at a fixed distance r,, we have

Ty = €to/a—ry/a (24)
and
To+ 41 = c(ty+ At)/a—ry/a. (25)
Hence,
At = (a/c)At. (26)

This last relationship can be used for converting the t-scale into the t-scale —
different for every radius a of the sphere.
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Fig. 5. Transmitted pulse (T), reflected from a rigid (R) and steel sphere (E) presented in terms of
normalized time 7, for f, = 2 kHz

q

Ps Ps
a
err

or r

f,=3kHz
a=05m

Fig. 6. As in Fig. 5 but for f, = 3 kHz
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Fig. 7. As in Fig. 5 but for f, = 10 kHz
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Fig. 8. As in Fig. 5 but for f, = 20 kHz
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4. Reflection of a continuous wave and a Gaussian pulse from elastic spheres

A similar calculation procedure was applied in order to determine the pulse
reflected from an elastic sphere. It was accepted that the sphere is made of steel and
has a radius a = 0.5 m, equal to the radius accepted for a rigid sphere. Also in this
case formula (22) was applied, but the form of the shape function f, (ka) for an elastic
sphere is very complex. It was determined from relationship [12, 5]

a
P, = Pig S (k) @

and formula (7), taking into consideration relationship (15). Hence, for a backward
reflection (0 = 180°) and r > a we achieve

folka) = (2j/ka) Y. 2m+1)(—1)"c,,. (28)
m=0
Coefficient c,, was determined from formulae (8)-(13). The modulus of the shape
function f, (ka) is presented in Fig. 4 (curve E).
Shapes of pulses reflected from steel spheres (pulses E), determined from formula
(22) for various limit frequencies, are presented in Figs. 5-8 in the same scale as for
rigid spheres.

5. Results and discussion

Pulses reflected backwards from rigid spheres at a great distance with respect to
the radius (r > 10a = 5 m), exhibit two maxima (Figs. 5-8), when absorption in
water is neglected. These maxima occur at © = —2 and 3.2. Shapes of pulses reflected
from elastic and rigid spheres differ. Resonances of the sphere exhibit their influence
in a case of elastic spheres. This is due to the shape function f, (ka), (curve E in
Fig. 4). The inverse Fourier transform was performed on the product of this function
and the spectrum of the transmitted signal G,(ka). These resonances do not occur in a
case of rigid spheres (R). Undulations of the function f,, (ka), which distinctly occur at
ka < 10, are a result of standing waves produced in water around the sphere.

The Gaussian pulse under consideration in this paper can be considered to be a
function which approximates the Dirac distribution. The system response to a Dirac
pulse (pulse response) would contain all informations on the investigated system,
because the frequency spectrum of a Dirac pulse is a horizontal, unlimited straight
line in the range of high frequencies. Then we would have a unity instead of function
G;(ka) in formula (22).

The application of a Gaussian pulse limits high frequencies when formulating
integral (22). The longer the duration time of the pulse, the more smoothed is the
response of the system due to filtering of high frequency components with respect to
the transmittance function of the sphere.
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Maximal amplitudes of reflected pulses with respect to the limit frequency f, are
shown in Fig. 9. They are only slightly lower for steel spheres than for rigid ones.
This is due to great differences between specific acoustic impedances of water and
steel, so only a small part of the energy penetrates into steel spheres, while it does not
penetrate into rigid spheres at all. These amplitudes decrease rapidly when the limit
frequency f, is decreased. However, if we take into consideration the overshoot,
which is observed directly after the first maximum (for. —2 < 7 < 0), then we observe
that the maximal value of the reflected signal peak to peak is independent from the
limit frequency.

02}

gl [ i 1 i L

4] 3 0 flkHz] 20

Fig. 9. Maximal amplitudes (positive) of a pulse reflected from rigid (R) and elastic (E) spheres in terms of
. limit frequency f, (at © = —2)

Figs. 10 and 11 present transmitted pulses and first maxima of received pulses
placed over them for f, = 20 and 3 kHz. In the second case it is visible that the shape
of the reflected pulse approaches the shape of the time derivative of the transmitted
pulse. This can be explained by the shape of the transmittance curve (a/2rf,, (ka) for
small values of ka (at a/2r = const) (Fig. 4) similarly as for a differentiating
four-terminal network RC. for which it would be a straight inclined line.

The differentiation of the reflected pulse can be also explained by the fact that
for ka < 1 components of the waves incident upon the sphere with higher frequencies
(shorter wave lengths) are reflected from the sphere with greater amplitudes than
components with lower frequencies.

First maxima of pulses, corresponding to a specular reflection, occur always at
T = —2, because the initial time ¢t = 0 was accepted in the moment when the wave
propagating along the z-axis (Fig. 1A) would reach the origin of coordinates, r = 0.
Hence, the wave is incident upon the surface of the sphere in point r = —a in the
time t = —a/c. Substituting these in formula (21) we achieve 1 = —2.
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Fig. 10. Shape of transmitted pulse p; with the first maximum of the pulse p, reflected from a rigid sphere
drawn over it, for f, = 20 kHz

a

The second maximum of a reflected pulse was observed in all cases at t = 3.2.
Its value is much lower than that of the first maximum. Because this effect also
occurs with rigid spheres, it must be related to phenomena occuring outside the
sphere. Such an effect had been observed by RUDGERS [18] in his theoretical paper.
He related it to a creeping wave, which propagates around the sphere with a velocity
only slightly lower than that in water. The path of a creeping wave, according to this
author, is shown in Fig. 12. The first maximum is produced by a direct reflection of a
pulse from the front surface of the sphere; the second one occurs much later, when
the wave has propagated around the sphere. The difference of propagation time was
equal to At = 5.2 in all cases. This corresponds to velocity

¢ = naf(4tajc—2a/c) = 098¢, :' e o)

where the numerator denotes the path around the hemisphere travelled by the pulse
of a creeping wave, and the denominator denotes the time of thls process, calculated
from relationship (26).

The idea of a wave travelling around the sphere seems justfiable by the fact that
the curve f, (ka) exhibits an oscillatory behaviour for a rigid sphere. For, this testifies
to the existence of waves around the sphere, which cause inteferences in the steady
state (see curve R in Fig. 4).
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Fig. 11. S.hape of transmitted pulse p; with the derivative dp,/dt and first maximum of the pulse p, reflected
from a rigid sphere drawn over it, for Jy = 3 kHz in order to compare more casily these functions, they
have been shifted in time and their maximal positive values have been equalized

Therefore, it is possible to determine the unknown radius of the sphere on the
basis of the time interval At,_, measurement, from formula

a=cAt_yn+2d/c)" =~ cdt,_y(n+2)7 L. 30)
‘ 1-nl

However, it may be difficult to determine the second maximum for a case of real
(elastic) spheres. It can be seen from comparison between Figs. 5-8 that the shape of
a pulse reflected from an elastic sphere becomes similar to a pulse reflected from
a rigid sphere at lower limit frequencies. This effect can be explained on the basis of
Fig. 4. The spectrum of a Gaussian pulse at a limit frequency of 3 kHz includes such
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I

Fig. 12. Pulse (T) incident upon the sphere, pulse reflected from the front surface of the sphere (I) and pulse
of a creeping wave circulating around the sphere (II) according to RUDGERs [18]

parts of the shape function f, (ka) of an elastic and rigid sphere, which have similar
shape. While at a limit frequency of f, = 20 kHz the spectrum of this pulse includes
curve E with all its maxima and minima, which are absent in curve R. Hence, we
have a complex shape of a pulse reflected from an elastic sphere (Fig. 8E).

It results from a comparison between Figs. 5-8 that the second maximum can be
determined at limit frequencies equal to f, = 2 and 3 kHz. Or more general in the
case when

Aa=1-15. | | - G1)

Besides a creeping wave which circulates the sphere once, also cases of repeated
circulation can take place, but amplitudes of these waves are two orders of
magnitude smaller [18]. Therefore, they can be neglected

6. Conclusions

a) A Gaussian pulse of a plane ultrasonic wave incident upon a sphere produces
a reflected pulse, which exhibits two maxima for a rigid sphere model. The first
maximum is formed due to a direct specular reflection of a wave from the front
surface of a sphere (at t = —2, see curves R in Figs. 5-8), while the second one
(at T = 3.2) is formed due to a creeping wave which circulates the sphere.

b) The second maximum in the case of an elastic sphere (steel) is masked by
many maxima and minima, produced by internal resonances of the sphere (see curve
E in Figs. 5-8).

¢) The second maximum can be determined ‘when relationship (31) is satisfied.
The masking effect decays then. |

d) The lower the limit frequency f, the higher the value of the second maximum,
equally for a rigid and elastic sphere. The second maximum becomes more easily
detectable then.

e) At a limit frequency of f, = 20 kHz, the shape of the first maximum is very
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much like the transmitted pulse (Fig. 10). Whereas it approaches the shape of the
time derivative of the transmitted pulse when frequency [, decreases (Fig. 11).

f) The amplitude of the first maximum of the reflected pulse decreases with the
decrease of the limit frequency (Fig. 9). However, if the oveshoot is taken into
account, then the height of the pulse measured peak to peak, remains constant in the
frequency range under consideration.

g) The radius of the sphere can be determined from formula (30) on the basis of
the measurement of the time interval between the first and second maximum.

The above conclusions have been formulated on the basis of calculations carried
out in frequency range f, = 2-20 kHz on models of a rigid and steel sphere with a
radius of @ = 0.5 m, It was found that at low frequencies the incident Gaussian pulse
does not “see” the interior of the sphere — is unresponsible to its internal structure.
While at the same time the magnitude of the echo is independent from frequency,
because of the overshoot in the reflected pulse.
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