ARCHIVES OF ACOUSTICS
12, 2, 149-155 (1987)

INTERACTION OF A TWO-LAYERED HALF-CYLINDRICAL SHELL
WITH ACOUSTIC MEDIUM
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(836-06 Bratislava, ul. Februarového vitazstva 75)

Some numerical results of investigations into the coupling between the acoustic field
inside a two-layered half-cylindrical shell and the vibrations of the containing structure are
presented in this paper. An analytical approach has been used to find resonant frequencies
of the system as a whole.

1. Introduction

Interaction effects that exist between the structure and the enclosed acoustic
medium have been receiving increasing attention during past years. Such effects can
cause resonant frequencies of the whole structure to be considerably different from
these in vacuum.

2. Equations of motion

The differential equations of motion of a double-layered cylindrical shell were
derived by MARkUS [1]. With an internal fluid enclosed they can be written in the
following form [2]

RA,(0*u/0x?)— A,,0w/dx+ 1/2R(A, — A,,)0*u/dp* +
+(1/2)(A, + A,,)0%0/0x 09 — Rmy 0*u/dt? = 0,
[D,,/AR+(1/2)(A, + A,,)]8%u/dx ¢ + RP(%v/0x?) +
+(4,/R + B,/R¥)(0%0/09%) — A, /R (6w/09) @)
— Rmg(0%v/0t?) = 0,
Ay, 0u/0x +(1/R) A, (0v/d@)— (1/R) A, w+ D, (8*w/0x2)— RB, (0*w/dx*) +
+(2/R?)(@*w/0x? 39+ (1/R*)(@*W/0¢*) — Rmy(0*w/01?) = — Rg (8®/31), .,
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where (u,v,w) are the components of displacement of the shell in the axial,
circumferential and radial directions, respectively; r, ¢ and x are cylindri-
cal coordinates as shown in Fig. 1; h,, h, — thicknesses of separate layers; E;, v;,
i =1,2 — Young’s moduli and Poisson’s constants of the inner and outer layer,

respectively.
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Fig. 1. Geometry and co-ordinate system of a two-layered shell

S B 2 A St St A = Sy baat Sahaas
By = (1/3)(Sy b3 4 Syh3)—d (S, h3— S, h)+d>(S thy+S;hy);
By, = (1/3)(3 vy +8,h3vy)— d(S h2v, — Szh2v2)+d2(slhlv,i'szhzvz);
= (S h3v,—S,h3v,)—2d(S hyv,+8,h,v,);
i (1/2)(5 hz;'s hD/(Syhy+S,hy);
P =(1/2)(4,- An) 3Dn/4R+1/R2(B —B,);

m, — mass per unit length of the shell t — time; R — equlvalent radius of the shell;
a=R—h,+d; ¢ — density of the fluid; & — velocity potentlal of the fluid.
The ve]omty potentlal @ satisfies the wave equation

20 —(1/cg)(0*@/or*) = 0, ()
wherc V2 is the Laplacian operator in the form '
(1/r)(5/6r)[r(5/6r)]+ 1/r2)(az/a(p2)+(az/ax2)

and ¢, is the velocity of sound in the fluid. It is assumed that the shell and the fluid
remain in contact and so ; ;

ow/dt = — 0d/or|, . b #Y (3)
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3. Solution of the problem

The task is to find resonant frequencies w of the system described by equatioas
(1)—(3). The normal modes are harmonic functions in the axial and circumferential
directions, and Bessel functions in the radial direction.

Considering a simply-supported half cylindrical shell with the length [, solutions
are taken to be in the form

it

u = AcosA*xsinngpe ',

v = BsinA*xcosnpe ',

w = CsinA*xsinnpe !, (4)
@ = DJ,(Br)sin A*xsinnge ", .

where J,(fr) — Bessel function of the first kind and order n,
A¥=mn/l,m =1,2,3,... bending mode number, n = kn/p,, k =1,2,3,... circum-
ferential mode number, (¢, = n for a half-cylindrical shell). '

Substituting solutions (4) in equations (2) and (3) we have

B?+ %2 = w?/cd, (5)
iwC = DBJ,(Ba). (6)

The following relations between 4, B and C can be obtained, from equations (1),
using equation (6) to eliminate D:

AH,—Q*)+BH,+CH, =0,
AH,+B(H;—Q*)+CH, = 0, (7
AH,+BHg+C{H,—Q*[1+K/F,(&)]} = 0,
where
H, = 2+(1/2)[(A,-A)/Adn?,  H, = (1/2)[(4,+A4,,)/A,1in,
Hy=H,=(A,,/A)i, H,=in[D /44, R+(1/2)(A,+A,,)/A,],
Hy = (P/A,)2*+n*[1+B,/(4,R?)], H,=H; =n|
Hy = 1+(D,,/JA;R)A*+ B, (A, R})(A*+n?)?, Ai=A*R, Q=w’myR*(1/4,),
B = /(1/R*)(Q*A,/(myc)—4), K = gafm,, & = pa,

F,(&) = [Ja(OM,(D]E.

Equations (7) are valid simultaneously, when the determinant of coefficients
vanishes. This condition can be written as

Q° — K, (Q)Q* + K, (Q)Q* — K,(®Q) = 0, )
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where
K,(2) = Hg+H,+uH,,
K,@=H,H;—H,H,+uH Hy+ HiHy—H,H,—HgHy),
Ko(Q) = pHHiHy+H,H,Hg+ H,H;H,—H,;H;H,—H,H,Hy—H,H Hy),
= F,(O/F,(&)+K).

4. Numerical results
As an example, the transcendental equation (8) has been solved for the system
with parameters as follows:
R=05m, E;=2110MPa, ‘E,=102MPa, v,=03, v,=04;
7, = 78103 kgm™3, 9, =12:103kgm 3, mg =y, h,+yh;, by =hy.

Three positive real values of frequency parameter 2 were found for any acoustic
medium enclosed, but only the lowest value Q, (corresponding to the predominant
shell bending mode) has been influenced by the interaction.
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Fig. 2. Q, versus A for different ratios h/R, n = 1 (acoustic medium — air, ¢ = 1.2 kgm~3 ¢, = 343 ms™ )
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Values of Q, versus wave number A for different ratios h/R and
for circumferential mode number n =1, with air as the acoustic medium
(@=12kgm >, ¢, =343 ms™!) are plotted in Fig. 2.

Resonant frequencies Q, plotted in Fig. 2 are significantly influenced by the
ratio h/R and they are higher for higher values of the wave number A

In the research carried out, the same shell as treated above has been analysed in
interaction with different acoustic media. Results show only a slight difference
between the values of frequency parameters for the coupled system with vacuum
(¢ = 0) and those with any gaseous acoustic medium under atmospheric pressure.
However, the lowest values of frequency parameters are considerably reduced for
any liquid medium. This is illustrated in Fig. 3 for a system with water as an acoustic
medium (¢ = 1000 kgm™3, ¢, = 1500 ms ).
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Fig. 3. Relative difference & versus A for different ratios h/R, n = 1 (acoustic medium — water,

o = 1000 kgm ™3, ¢, = 1500 ms™?)

The relative difference

X o Ql(va(:uum) _'Ql(wﬂlel')_ 100 [%]

Ql(vacuum)

versus the wave number A for different ratios h/R, n = 1 is plotted. The values of §
are lower for higher ratios h/R and they decrease with increasing wave number A.

Let us pay our attention to air as the acoustic medium, again. A question arises,
how the resonant frequency Q, of the coupled system will be influenced by an
increase of the wave impedance gc, of air.

It is well known, that the velocity of sound Co in any gaseous medium does not
depend on its pressure. The wave impedance of air may thus be increased by
pressurizing the structure (increasing the density of air 0).

6 — Arch. of Acoust, 2/87
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The resonant frequency €, is presented in Fig. 4 in dependence on the wave
number 4 for different values of g, for h/R = 0.01 and n = 1. The thick line stands for
uncompressed air (¢ = 1.2 kgm73). Compressed air tends to re-tune the enclosure in
the following way: @)s increase for A < m, then Q}s decrease and for 4 > 4 they
increase again. There is a local maximum at 4 = T, what means that an extreme of
Q, occurs when the length of the structure is set by an integer multiple of the relevant
radius R of the shell. This conclusion holds, of course, for simply supported shells
(A = mmR/]) only. ,
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Fig. 4. Q, versus A for different values of g, h/R = 0.01 and n = 1 (acoustic medium — compressed air)

5. Conclusion

The following concluding remarks can be yielded from the analysis carried out:

— eigenfrequencies of the system coupled with any gaseous medium under
atmospheric pressure enclosed do not differ from those of the structure in
vacuum; y '

_ lowest values of the frequency parameter Q, (corresponding to the predominant
shell bending mode) are considerably reduced for any liquid medium;

— by pressurizing the enclosure with air inside, the structure may be “re-tuned” to
higher, as well as to lower values of eigenfrequencies 2, (depending on the wave
number A4).
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