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ACOUSTIC FILTERS WITH A PERFORATED TUBE

GERARD BRZOZKA
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(65-246 Zielona Gora, ul. Podgérna 50)

A method of calculating acoustic properties of a low-pass filter with a perforated side
baffle separating two wave-guides with constant cross-section areas is proposed. It is based
on the principle of segmentation of the wave-guide into a series of elementary models which
describe properties of acoustic element related to individual rows of perforation and
segments of acoustic wave-guides, and on the description of acoustic properties of these
models with the application of a transmission matrix with its properties of a chain matrix.
Also relationships are given from which acoustic properties of a perforated baffle can be
determined for a discrete parameter model at a laminar flow through orifices of the
perforation.

Moreover, a calculation model for determining generally applied measures — insertion
loss and transmission loss — was proposed on the basis of the transmission matrix of an
acoustic filter determined with the presented method.

1. Introduction

Acoustic filters with perforated tubes are generally used to attenuate noise in
systems with motion of a medium. They are constructed as analogues of low-pass
elctric wave filters which as a rule operate in misfit conditions,

During the last period a very convenient and univocal description of filters
transmission properties with the use of a chain matrix [1, 12, 16], in foreign literature
called also a transmission matrix, was introduced. The term — transmission matrix
— will be used in this paper. It is simple to determine hitherto applied attenuation
measures, such as transmission loss TL or insertion loss IL, for a given transmission
matrix at definite filter installation conditions [16, 17]. A description with a chain
matrix is the most convenient description due to general usage of a cascade
connections of individual filter elements [11].

Hitherto applied models have been developed for conditions of sound propaga-
tion in a medium at rest [7, 8]. However in practice the velocity of the motion of 1he
medium is substantial and hence measurement results stray considerably from so
obtained theoretical estimations.
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On the basis of experimental and theoretical studies performed during the last
several years [14] SuLLIVAN formulated a physical and mathematical model which
made it possible to determine elements of the transmission matrix of a filter with
perforated channel at known value of the acoustic impedance of the perforated
‘surface. In his earlier paper [2] SuLLIVAN formulated propositions of calculating this
impedance for a discrete parameter model. This would make it possible to estimate
analytically elements of the transmission matrix, as a consequence. -

This paper presents an outline of a physical model and mathematical model of
determining elements of the transmission matrix of the described above type of filter.
The impedance of the perforated surface is described in the form of a discrete
parameter model and other elements of wave-guides are described with the
application of a distributed parameter model. Because of several editorial errors in
mathematical models presented in literature, it seems advisable to present the full
model in this paper. Also relationships which enable the determination of generally
applied attenuation measures — TL and IL — are described.

2. Outline of physical model

The diagram of the physical model is presented in Fig. 1, on the assumption that
conditions of plane wave propagation are satisfied in channels. This model was
developed on the basis of Sullivan’s propositions [14]. Two channels with
cross-sections S, and S,, are connected on a segment with length L by several rows
of perforations. Acoustic impedances are arbitrarily determined at the beginning of
the segment Z, v, Z, y,, and atitsend — Z, ; and Z, ,. An individual j-row of
the perforation has a joint surface of S,; and ratio of perforations related to this
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Fig. 1. Diagram of an acoustic filter with a perforated tube
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surface o; ratio of the joint surface of orifices and the perforated surface. The flow of
the medium in channels is determined by Mach numbers M, ;, M, ;,, with relation
to wave-guide 1, M, ;7' M,, ;, , with relation to wave-guide 2, and M; with relation
to the flow between channels in terms of surface S;. It is assumed that the value of
acoustic admittance of perforations A4; is known.

The acoustic element located accordingly in wave-guide 1 and 2, connected
together by orifices of the perforation can be isolated for every row of perforations.
Every particle is connected with neighbouring acoustic element in the wave-guide.
Segments of wave-guides 1 and 2 with lengths /,_; and [; are such connections.
Taking into consideration mentioned above assumptions an analogue diagram of the
filter under consideration (Fig. 1) is presented in Fig. 2. Acoustic parameters of
individual elements of the model are described.

transformation matrices determining the relations between external parameters of model elements.
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Fig. 2. Diagram of an analogous system of acoustic wave-guides with a common perforated side baffle

3. Mathematical model

The total amplitude of linear velocity on the perforated surface So; can be
expressed by [14]

uc = MOJ c+ UOj/SOJ" (1)

where U,; — volume acoustic velocity in the perforation orifice [m?/s], ¢ — sound
velocity in the medium [m/s]. It is assumed that Mach numbers for the flow in
channels and flow between channels in rows of perforations, M oj» are known from
separate hydrodynamic calculations of these channels.

Relations describing dependencies in such a model of a j-branch can be
determined from an energy and mass balance in volumes of acoustic elements in
channels 1 and 2, if we assume that there are no internal acoustic energy sources in
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these volumes and that acoustic pressure and velocity undergoe isentropic processes.
On the basis of SULLIVAN'S considerations [14] and for the above mentioned
assumptions the mathematical model of a j-branch of orifices can be presented in the
following form:

— from energy balance in tube 1

PYjii+Z M, ;. "UY i1 =PorjtZoiMo;jUg; = py;+ 2, M, ;U (2)

— from mass balance in tube 1

M M, . M,.
U* : + 1,j+1 % ; e U y 1,j U : 0j ¥
1,j+1 5 Pi,j+1 1__;"'_‘*21 Pyt o;+—Zw Po1,j )s (3)

— from energy balance in tube 2
Pg,j+1 +ZZM2,_|'+1 i 5 Ug,jfl a5 Poz.j+zojM0jU0j e pz.j+zzM2,jU2.jr 4)

— from mass balance in tube 2

M, M, ; M,;
Ug,j+1+ Z, Pf,jﬂ = Uz'j+_221p2’j_ UOJ-+Z.—0".’P02.J' , (5)

J

— from equation relating parameters in tube 1 and 2 formulated on the basis of
the definition of the acoustic admittance for the j-branch

Uo,i e Aj(Pou“Poz.j), (6)

where p, ;, p, ;. P+ P%,;+, — acoustic pressures [Pa]; in physical model of filter
(Fig. 2), Uy, Uy, Utj+y, U%jey — volume velocities [m?/s]; (of acoustic vib-
rations) in physical model of filter (Fig. 2) Z,, Z, — characteristic impedance in
channel 1 and 2, respectively, where Z, = 0,c/S,, Z, = g,¢/S, [Pa's/m]; Z,;

— characteristic impedance of perforated surface [Pa's/m®]; ¢, — density of
medium [kg/m?]; Po1,j» Po2,; — acoustic pressure [Pa]; at the boundary of the
perforation orifice in tube 1 and 2, respectively, U,; — volume velocity in

a perforation orifice [m3/s]; 4 ; — acoustic admittance of perforations (a complex
number in general [m?/(Pa-s)]).

The transmission matrix for the j-branch, expressed in the form of a chain matrix,
can be noted as follows

P*1,j+1 P1,j
U* . i ]
W O B )
P aj+1 P2,;
U*z-.f*'l Uzv.f

and elements of this (4 x4) matrix can be determined from equations (2)+(6).

Equations from which elements of this matrix can be determined are presented in
Table 1.
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Table 1

element . element .
denoltion calculation formula drntition calculation formula

G, 1-B,G, /E, GJ, G, /E,

G: | B BilIB(B,GIE| G, | (1-B(8,GJIE,

G, B,G,/E, G4 g

G, 8, C, G, /E, G, - C,G,/E,

G;, C;G,/E, G4 -G s

G, B, C;G,/E, G, -8, G,/E,

Gy; 1-C;G,/E, G, G,/E,

Gy, |(CG-C,1-GIC,-GJ)/E,| G, [1-C,(C,-G,)I/E,

Y

B,-.-M”Z, B, .-M,J/Z, B3_-M,,j,,2',

C, =M?Jf" C,= Maj/zz C3=sz‘, Z, |

E!-I-M,‘j,, Ez:"Mzhr G,-*AJ,-(I-M[,;)

note: the application of mentioned above formulge
derived by the author of this paper give
numerical values consistent with values
achiered from formulae stated by Sullivan (14],
but they have simpler form and contain less
constants.

#)  this constant was incorrectly determined
in Sullivans paper

Relationships between acoustic parameters at the beginning of the wave-guide
segment, €.g. p; ;,, U, ;,, and on its end, Pt j+1,> Ut 4, (notation as in Fig. 2) can
be expressed in the form of a transmission matrix

*
P1,j+1 Pij+1

= [H]

*
Ul.j+l 1.j+1

A distributed parameter model in the form of an equation of plane wave propagation
in a wave-guide [7, 16] can be used to determine calculation formulae for elements of
this matrix. Acoustic pressure and velocity are ‘equal to:
—ikx Pl —ik.
Pi(x)=Pe”™, U (x)= Z¢
]
where: P, — pressure amplitude of acoustic wave in wave-guide 1, [Pa], Z,
— characteristic impedance of wave-guide, [Pa-s/m*], k — wave number, [m~17];
k = w/c, @ — angular velocity (pulsation), [rad/s]; w = 2nf, f — frequency, [Hz],
¢ — velocity of sound propagation in the medium at rest, [m/s], x — coordinate of
the reference system along the wave-guide axis (as in Fig. 1).
Taking the motion of the medium into consideration, the velocity of sound
propagation in terms of coordinate x will change by a value equal to the velocity of
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the motion of the medium — v (convection of the acoustic wave in the medium).
Thus, sound velocity of a progressive wave ¢* and reflected wave ¢~ can be
determined from relationships:

¢t =ctv=c(l+v/c)=c(1+M, ;)
¢ =c—v=c(l—vfc)=c(1=M, ;).

In consequence wave numbers and wave impedances will change also:
— for a progressive wave

o ® E k
¢t e(l+My ;) 1+M1,j+1,

+
Qo€ @oC
zZ{ = ;1 =—§1_(1+M1,j+1)=Zl(1+M1.j+1),

k* =

for a reflected wave

k- g w s k
gl | bk Pl I—Ml.jﬂ’

— _ Qo1 _ Qo¢
Ly = (,]S'l =SL(1—M1J+1)=Zl(l_M1J+1)'
1 1

Then acoustic wave propagation in the wave-guide segment (taking the reflected
wave into consideration) can be expressed as follows:
pi() = Ple WEEP ¥,
1

£ Yt ittt ;| oty © RS 0 Ml Y. O | ol il
1( ) Zl(l-'M§.j+1)[( 1‘J+1) 1 ( 1;3+1 1
where: P; — amplitude of progressive wave, [Pa], P — amplitude of reflected
wave, [Pa].

Including parameters at the begining and the end of a considered wave-guide
segment in given above formulae, we achieve the following system of equations:

Py,j+1 = P1(Xj+1)s Uyjrr = U410,

ij+1 : pl(xj)9 UT.j+1 = Ul(xj)'
When constants P; and P are eliminated and several simple algebraic conversions
are performed, then formulae for elements of the transmission matrix [H] are

obtained. According to the author’s considerations [6] these formulae have the
following form:

H,, = F,(cosa, +iM, ;,, sina,)

H12 - iFlz1{1 —M%’j.'. l)sinax
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Fy

HZI Z1

i—sina,

H,, = F(cosa; —iM, ;,, sina,)
where: «, — phase shift, [rad],

k-1, .
oy o
1-M1 ;.4

k — wave number of the medium at rest (v = 0), [m™'], [, ; — length of considered
wave-guide segment, [m], F, — auxiliary function related to the motion of the
medium

F, = cos(M, ;,,-ay)—isin(M, ;,,a,).

There is a necessity of introducing a notation in the form of a (4 x 4) matrix which
would take parameters in both wave-guides into consideration in the muffler model
(Fig. 2):

P1,j+1 Pf,j+1
Ujj+1 = [H]] D:f,ju 8)
P2,j+1 Pi,j+1
Ujj+1 U1

considered segments of wave-guides 1 and 2 are not connected (this does not concern
connections between acoustic elements in rows of perforations), acoustic parameters
at the beginning of wave-guide 1: p, ;.,, U, ;., are independent from parameters on
the end of wave-guide 2: p¥ ;. ,, U% ;.. Thus, it can be noted:

HlS =H,, =H23 =H24=0-

Other elements of the [H,] matrix are obtained by assigning derived relation-
ships to parameters describing acoustic wave propagation in wave-guide 2. Table
2 presents these formulae.

The transmission matrix for the whole filter (which describes the relationship
between acoustic parameters in the last, N + 1, and first row of orifices) can be noted as:

Pi,N+1 P11
Uinei =T} Ui 9)
Pan+1 P21
Usn+t Uz

Taking advantage of properties of a chain matrix, the transmission matrix for the
filter can be determined from successive multiplications of transmission matrices
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Table 2
element ; element | ;
Henkaton calculation formula Seroin calculation formula
Hy |FlcosaiM, sina,) Ha, i g— sin @,
5 *d . . .
H,, ik Zy(1-My,,) sin a, H;, f (cos a;-iM;,sina)
His 0 Hzs 0
Hy, 0 ; Ha, 0
Hs 0 H,y 0
H,, 0 H;» 0
Hyy |Flcos asiM,; sin a,) Hies i% sin @, *!
Hy | iEZ{1-M,,)sina, H, | Klcosa,-iMy,sina.,)
where :
a,a, -phase shifts, [rad]
kely ; kely;
a,= —+ 1 —-}J—
. ?“My,j.‘r y F'Mz,j.l

k -wave number, [m™]; k=w/c ; w=2rf
w -angular velocity, (rad/s]; f-frequency, [Hz],

4 y"z, j -length of wave-guide segments between rows
of perforations in wave-guide ! and 2, respecti -
vely, [m1,

Z,,Z, -wave impedance in wave -guide 1 and 2, respecti-
vely, [Pa-s/m’],

Nf,M,NéN—Mach number behind the j-row of perforations
/Fig.1and 2/ in wave -guides ! and 2, respectively,
£ -auxiliary functions,
F =cos (M, a,)-isin(M,;,a,) =6 Mhint®1
F =cos (M, a,)-isin (M, a,)=e "2
note:Sullivan [ 141 introduced simplifications in his formulae
which do not influence significantly calculation results

for low Mach numbers (less than 01); besides, the formu-
la for element H,, marked * is given incorrectly.

[G;] and [H;]

[Ti.= 1_7 [H] [G], . (10
where:
[Hy] = [11,

[1] — unit matrix.

It is necessary to know the value of the acoustic admittance of perforations in
order to calculate dependencies given in Table 1. As it was done by SULLIVAN [15] it
can be calculated from formula (13) on the basis of specific acoustic resistance 6,
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and specific acoustic admittance y,, of perforations determined from investigations. If
we do not have mentioned above experimental data, then these quantities be
estimated from known theoretical models. :

4. The determination of the admittance of a perforated surface for a discrete parameter model

The acoustic impedance of a single orifice in a perforated baffle can be
determined from formulae describing the discrete parameter model of a perforated

plate [18]
& 490 h o d2 ? (1)
z.,—ﬁ{z 2wv[z+(l— - b_z)]wwhef}, (11)

where d < 0.06-4; @ — angular velocity (pulsation) [rad/s]; » = 2z [, f — frequency,
[Hz]; 4 — length of acoustic wave, [m], 4 = c/f; @o — density of medium [kg/m3];
v — kinematic viscosity of medium, [m?/s], in order to consider losses due to heat
exchange between condensed and rarefied places in the medium it is suggested that
this coefficient should be increased by 114% [9]; d — diameter of orifices [m],
b — scale of perforation orifices, [m], h — thickness of perforated plate (baffle), [m];
h,; — effective length of orifices of the perforation, including the mass of the medium
adjoining the orifice; according to source material [18]

d
hy =h+085(1——)-d.
4 +085( Zb)d

Applying the above formula to the j-row of perforations and considering dimension-
less specific resistance and reactance of perforations, we have

Zj = Zo;(@oj+ixoj)/ffj,

where: ©,; — specific acoustic resistance of perforation, Xo; — specific acoustic
reactance of perforations.

Substituting formulae for characteristic impedance of the perforated surface Z,;
and for the ratio of perforation o;

00C ndz) .
o A N T 1 i /b ;
¢ pickated 4 ( 4

in above relationships, comparing both sides of the relationships and after several
algebraic conversions we reach the following notation of the specific acoustic

) The denotation of the coefficient of dynamic viscosity which does not satisfy dimensional
relationships was given mistakenly in source materials in [18].
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resistance and reactance of perforations

4. /nfvl h
@Oj = = f l:E'i"(I—O'f ],

2nf (12)
e Sy

Xoj

On the basis of considerations presented in paper [2] the author suggests that the
formula including the Fok function for effective length of an orifice of the perforation
should be applied

I
"B e
ot =M @)
where: ¢(d/b;) — Fok function which according to the author’s approximation can
be expressed by the following formula

_ 1.5d/b,+048
0@/ = ~55—apm,

e(d/b) =0 for  d/b; > 09.

According to author’s own computational verifications, given above formulae for
specific acoustic resistance and reactance of the perforation (12) present good
consistence with results of empirical research [10, 13, 15] which were within author’s
means, within the range of applicability of the theory of propagation of acoustic
waves with infinitely small amplitudes, i.e. for acoustic pressure levels practically
below 120 dB.

The acoustic admittance of the j-row of perforations, 4;, can be determined from
the definition of admittance as the inverse of impedance:

for d/b; <09,

A_=i=i_@0j—i10j
1 Z, Z, 0315

(13)

5. The influence of flow on the specific acoustic resistance of perforation orifices

On the basis of IN(.}ARD'S and IsiNG’s papers [10] Garrison et al. [15]
formulated a mathematical model of the specific acoustic resistance of perforation
orifices at flow conditions of the medium

where: #, — average velocity at laminar flow of medium in the orifice, [m/s],
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K, — numerical constant.

The above formula is valid for average flow velocities in the perforation orifice
which exceed half the value of the vibration velocity amplitude of an acoustic particle
in this orifice

A

60 > E'uo,

where i, is the vibration velocity amplitude of an acoustic element in the perforation.

SuLLivAN [15] proposed the value of the numerical constant to be equal
K, = 2.57. Hence, the acoustic resistance of perforations determined by the flow of
the medium can be noted as

@, = 257" My, = 2.57-M,/o, (14)

where: My, — Mach number with the consideration of the average flow velocity in
the orifice; M, = #y/c, M, — Mach number with the consideration of the average
flow velocity related to the perforated surface S, (as it is accepted in equations of
energy and mass balances and as it is denoted in Figs. 1 and 2).

Given above expressions for the specific acoustic resistance of perforations, (12)
and (14), do not include flows with small velocities in the interval

ﬁo (3 (0, %'ﬁo).

The author of this paper suggests that the following approximation of the specific
acoustic resistance of the perforation related to the j-row of perforations should be
used in practical calculations:

4./nfv| h M,
Bgp = ﬁc—f[2+(1—a,-)]+2.5771‘_’f. (15)
Formula (15) exhibits good conformity with calculation results obtained from
formula (12) for a medium at rest (7, = 0) and from formula (14) for flow velocities in
perforation orifices: v, > S5m/s. In this last case the first term in formula (15) is by an
order of magnitude smaller than the second term. The mentioned above formula
gives good conformity of calculation and measurement results of insertion loss at
flow velocities of the medium in perforation orifices v, < 5m/s (discrepancies did not
exceed 4 dB).
It should be noted that presented above calculation formulae for a case of
a medium in motion (7, > 0) are valid for small orifices which satisfy the laminar
flow condition
Re = %d < 10°.
v
Additional experimental verification is necessary for the turbulent flow range. As for
a medium at rest or for small flow velocities in perforation orifices 7, < 0.5m/s the



188 G. BRZOZKA

condition stated for formula (11) is valid. It can be expressed as the limitation of the
frequency range in terms of the diameter of the perforation orifices

f < 0.06¢/d.

6. The determination of the transmission matrix for detailed solutions of filters

Table 3 presents three basic possibility of flows in the studied filter and
corresponding to them special solutions of filters with a part of their channels closed

~ with rigid acoustically impermeable baffles. In every case considered systems have
only one inlet channel and one outlet channel. The impedance of a segment from the

Table 3. Transformation matrices determining the relations between
external (extrinsic) parameters of model elements

scheme of model example realization of filter
——a b
>———] ! Py
§‘ lZZ,Naf Zz{s . § = 'Wave_‘_Q'UIdLZ_- f‘!,f
sl il
= 4 — . o p
@ 1, Mol
L—JI % T
X Z,iZftgka  Z,,=-iZ,ctg kb
. sbao b
g T T2
u
£ ! +4___ 20
Q — B
g Sde Zw%uﬂel ;3_
S s 3 st
2 iz—| é Pyt wave-guide 2 it
RgL AR DoE] U . .
e T S r— ——
S P E LT B 6
2 : 1 : 1 3
: e ikl 1 /T"zm
g —e NS o T .
= 8| o ‘E-*?ﬁ@u_dm
E}l L_,,\%, wave -guide 1 T_
L
a
§
O| ZysiZctgka  Zy=-iZ,ctg kb
b
pZ,N-? bzf
P —— @ UZN"’\é
o T
u \ z2.ﬂ ‘ g i .
N oy by
IR A
L
2

Z,,=-iZ,ctg by Z,=-iZctg b,
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baffle to the axis of the nearest row of perforation orifices can be determined in
segments of closed channels.

The relationship between acoustic parameters at the inlet of the acoustic wave to
the investigated muffler model and the outlet from this model can be presented in the
form of a four-element transmission matrix. The conversion of the general form of
the transmission matrix [T] for extreme rows of perforations in the channel, into the
mentioned four-element matrix is also interesting. This problem will be considered
separately for individual cases of filter solutions presented in Table 3.

6.1. Filter with through flow

This case can be characterised by the following form of the transmission matrix:
PiN+1 v P11
’ = I:T ] ’» 3
|: Ul.N +1 ] Ul.l

Panv+1 =Zoni1'Usness

Py = 22,1'U2.1-

Besides, relationships

(17)

are valid. When these formulae are included in expressions for elements of the (4 x 4)
transmission matrix [T] and parameters p,, and U, are eliminated from
equations, then we reach the following formulae which describe elements of a (2 x 2)
transmission matrix [T']
i ab : ac
I, =T, +T’ Ty, = le'l'—e-,
b-d d (15
4 g . c
Ty =T, +7, T, =1, +7,

where: _
a=Tu+Z,,' T3, b=T)-Z,5T,,

c=T—2Z, 5T, d= Tz4+zz.1'Tzss(2) (19)
e=(Ty+2Z,, T)Z,xs—(Ty+2Z,, T;,).

6.2. Filter with cross flow

The relation between parameters at the entry of an acoustic wave to the muffler
model under consideration and at its exit from this model is

p P2
1,N+1 = [TI] U ; (20)
Ul.N+1 2,1
@ The transmission matrix element T,, was mistakenly given instead of T,, in SULLIVAN'S
paper [14].

3 — Arch. of Acoust. 3-4/87
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Formulae for closed segments of the channel can be written in the following form:

Pan+1 = Zz,N+1'U2.N+1a
Pi i 21.1'U1,1- (21)

The following expressions for elements of matrix [T'] are achieved as a result of
transformations similar to those performed previously:

g ab ; ac
Ty, =T, +?, T, = T14+:’

bd d @
; : c
T =T, +?’ Ty = Tz4+—ejv
where:
a=T,+Z,, T, b=Ty3—2Z,5 T,
c=T—2Z, 5 T, d=Ty+Z,, T,,, (23)

e=(Ty+2Z,, T,)Z,n—(Thy+2Z,, T;y)-

6.3. Filter with reverse flow

In this case the transmission matrix has the following form:

PiN+1 — TP Pan+1 1 24
[ Uin+i :| [T'] I: U v+t } e
and formulae for closed channels are:

Pia=21:1 U

P2y =23, U,,. @3)

As a result of certain transformations, elements of the matrix [T'] can be noted as

-+ de—ef o Xop M —=be
L 12 " ad=bec
(26)
T _dg—ch , _ah—bg
21 Tadape! 227 ad—bc’
where:
a=T+Z,, T3y, b=Ty+Z,, Ty,
c=Tnu+Z,, Ty, d=Ty+Z,, Tys, 27)

e=T,+Z,, T;, [=T,+Z,, T,s,
g=Ty+Z,, T,,, h=THu+2Z,, T;5.
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7. The determination of values of basic filter loss measures

Transmission loss TL and insertion loss IL are generally applied attenuation
measures in acoustic filters. Properties, significant differences and inaccuracies of
these attenuation measures are discussed in WYRZYKOWSKI'S, PucH’s and
SNAKOWSKI'S papers [12, 16], and papers written by the author [3, 5].

7.1. Insertion loss

Figure 3 presents two diagrams of electric analogues which consist of substitute
four-terminal networks. Their acoustic properties are described with a transmission
matrix for a case before and after the insertion of the investigated filter (acoustic
element or system) for which the insertion loss is to be determined. The studied filter
is represented by a four-terminal network determined by a transmission matrix [T].
A four-terminal network with transmission matrix [A] substitutes the inlet system

a)
Z U_?.. Eﬂ’__ %f._
. oL
A #1 (AJ l %131 @lz,( (c1
oL
7 Yo Uil "4) b
- | s o
O A | w e [ ©
et =1 " [1] <

Fig 3. Diagrams of analogue systems reflecting conditions corresponding to the definition of insertion loss
a — system before insertion of filter (element of acoustic system), b — system after insertion of filter

through which the acoustic wave is supplied to the studied filter and a four-terminal
network with transmission matrix [C] and outlet load impedance Z, represent the
outlet system which carried away the acoustic wave. According to the definition of
insertion loss, in both considered cases the inlet system and outlet system are
identical. They are denoted by the same matrices, [A] and [C], and by impedance Z,,
in both diagrams (Fig. 3a and 3b).

Also a frequently encountered case of diversified cross- sectlons of the inlet and
outlet wave-guide is included in the diagram. It is modelled in Fig. 3a by
a four-terminal network. Its transmission matrix [B] describes the relationship for
a sudden change of the cross-section, typical for expansion chamber mufflers [4].

"Acoustic pressure P is the equivalent of voltage and volume acoustic velocity U is
the equivalent of current in mentioned diagrams. It was also accepted that in both
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cases under consideration an acoustic wave with amplitude P is supplied to the inlet
system and the impedance of the source of this wave is equal to Z.. Except for special
cases, it can be expected that values of other acoustic parameters on terminals of
individual four-terminal networks in both diagrams will vary. Parameters of
a system with an inserted filter are denoted by a star (Fig. 3b). Furthermore,
parameters on input terminals of the four-terminal network which represents the
studied muffler are denoted P,, U,, and on the outlet terminals — P, U,,.

With respect to the previously applied notation, the following substitution has to
be taken into consideration at the entry:

Pi=pin+1s Us=Uinsrs

and on the outlet — in terms of flow direction of the acoustic wave
— through flow

Pw=p1,1’ UW=U1.1’
— cross flow

Pw=P2,1’ Uu,=U,,,
— reverse flow
P,=pin+1s Uy=Uznsts

Acoustic powers of a wave which penetrates to the outlet system correspond to

active powers on input terminals of the four-terminal network characterised by

transmission matrix [C]. Including notation as in Fig. 3, these powers are equal to:
— in system before insertion (Fig. 3 a)

1
i Che L
IP " Rez) Re(Z,)’
— in a system after insertion of studied muffler (Fig. 3b)
1 1
N = _|P¥?

Outlet systems in both considered cases are 1dent1cal, so their resistances are equal
(real parts of impedance). Including above formulae in the definition of insertion loss,
we have

Nw

IL = lOlgN* = 20lg (30)

P#
Relationships between acoustic parameters for a case of an inserted filter (Fig. 3b)
can be noted by following formulae
P2 f TS P=rPt+2 UT,
Pf = T, P5+T,,Us, Uf=T,Pi+T,,Us, (31)
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where acoustic impedance of the outlet system is described by expression
057 e 3 PO B Gy
LiE Nt R L AT

The value of this impedance determines the value of the outlet load impedance Z,
and the values of elements of the transmission matrix [C] of the outlet system.
Substituting expressions (31) and performing several algebraic transformations,
a formula for the amplitude of an acoustic wave emitted by the source after a studied
filter was inserted is achieved

P={A(T\,+T,/Z)+A,,(T,,+ T,,/Z,) _
+Z,[Ay(Tyy + T5/Z,)+ Ay (T + T, /Z)1} P (33)
Similarly, expressions for a case before the insertion (Fig. 3a) can be noted

Pw=Zwa.’ P=P1+Z.'.Ul’
P, =A,,P;+4,,U,, U,=A,P,+4,,U,, (34)
P, =B|1Pw+312Uws Ud=B21Pw+B22Uw’

which have the following form as a result of substitution and algebraic transformations
P ={A,,(By1+B,/Z,)+ A,;(B,, +B,,/Z,)
+Z,[A21(Byy+B,,/Z,)+ A3,(By, + Byy/Z )1} P, (35)

A comparison of both sides of formulae (33) and (35), and further algebraic
transformations gives an expression

P,
Pt

Tia T, T i §
[ All(Tll+Z )+A12(T21+Zw)+z|: 12(T11+Z_lj)+Azz(Tz1+ZL:)] ]

L ¢ % 2 2
"‘“(B“’fz”)“‘“(’sﬂ*z‘)*z [4s(mu 2 Y C ‘+"z£)]

(36)

According to author’s derivations [4] elements of the transmission matrix for
a sudden change of the cross-section, [B], are equal to

(32)

1— M2
Byy=1, By, =ZpM, I-MiMAZ“’
{ S (37)
—Mc
By, =0, B, 1-M%

where: Zy,, Z;c — characteristic impedance of wave-guides at the entry and at the
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outlet of the investigated filter, [Pa‘s/m®], M ,, M

guides at the entry and outlet of the studied filter.

As a result of the substitution of (36) and (37) in (30), an expression for insertion

loss is achieved
L

=201g

;g vy e
AII(T}1+ZW)+A12(T +-Zz—f)+zz[Au(Tn+Zw)+A22(Tu+

B,
A, (“’zw)”'”z +z[ (1+

Expressions for insertion loss for chosen special cases are presented in Table 4.

w

B B
)]

— Mach numbers in wave-

of an acoustic wave

Table 4
description of model | assumptions mathematical model of insertion loss IL
wave-guides identical Z.=Z, g (T +1,/Z )+A [T+ Z, + eA,,
1 |at the entry and outlet e IL=20lg Anl Tyl Az’"f :’{;’ gﬁi:i{'j’/’g” fz/ Sl E/Z.l!
of the muffler B,,=0 Bl 7 wh Ly Ayt App Ly,
a reflectionless entry Zy=2p,

[A]-transmission
2| fo the muffler matrix of wave - IL=20.'g/ Ty * T/ 2yt Gl Zrala/ 2 |
quide with wave 1+(By+ZeaBoi)/Zy |
impedance Zp4
source with constant AT 4T, /2, )+ AT, +T,,/Z )[
3 Z =0 IL=20!/ (A Al I * e e ” o I sl &
i 5 . A(1+8/Zy) + Ay, B,y/Zy |
source with constant A IZ. ) A AT 1Zs)
4 | velocity Z, =0 IL:.?OIQ/ o Tist T2 /2w )+ Apd Tyt b w/

A 1281/ 2y ) + Az B22/ 2y

reflectionless entry
and outlet of an aco -
ustic wave to and from
the muffler

Zr=Zpy Zy=Zpc
[A ], [ B]-transmi-
ssion matrices
of wave -guides
with wave impedan
ces Z.,and Z. res-

pectively

T+ 1272w Zeal; FAIZZ/ZFC l

1+(By3* ZesByp)/Zee |

IL=201g / 1t

reflectionless entry and|
outlet of anacoustic wa
ve to and from the muff
fler at identical wave

as in 5
and

L=,

impedance

IL:20(’9/ Ef*ﬁz’z;'zrar*rzzl

7.2. Transmission loss

The model presented in Fig. 3b can be applied in calculations of this loss measure
on the assumption that the output of the acoustic wave from the four-terminal
network representing the studied filter is reflexionless. This condition can be noted as

Zw 53 ZFC
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Acoustic powers necessary in further calculations are derived from the following

expressions:
— for a wave inciding onto studied filter
+N: ju) _];.[+P:|2

— for a wave trasmitted from the filter to the outlet system (to a reflexionless
outlet wave-guide)
o _ LIP3
e o 28

where * P, denotes the pressure of an acoustic wave which incides into the studied
filter.

When given above expressions are substituted in the formula for transmission
loss, the following formula is obtained
- + +
N I™ Pl Zyc

= 201 +10lg—. 39

NS boinosslth noiesin iy

TL = 10lg

Using formulae (31) and following relationships between parameters at the entry to
the four-terminal network representing the studied filter

*P}—Px
@yer ’

A
where *P,, ~P, — acoustic pressures at progressive and reflected wave, respectively,

at the entry of the four-terminal network representing the studied filter, the following
expression is reached .

PRESPRI+ 17,908 = (40)

1 Z
Ty+=—T,+Z;,T,, +=FAT,
|+P:| 2 11 ZFC 12 FA *21 ZFC 22

T 2 |

as a result of substitutions and algebraic transformations. Substituting the above
expression in formula (40) we achieve the following expression for transmission loss

1 74
T11 +_T12 +ZFA Tz1 +ﬂT22

z
TL =201g Zrc re _1+101g2%. (41)
2 | A

8. Conclusions

This paper presents a calculation model of a low-pass acoustic filter with
a perforated baffle which separates two channels with constant cross-sections at the
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assumptions for the propagation conditions of a plane wave with infinitely small
amplitude. The model was built on the basis of the segmentation principle for
repeated segments of channels between individual rows of perforations. Acoustic
properties of these segments were described with a transmission matrix on the basis
of a discrete parameter model of the perforation orifice, on the assumption of
a laminar flow through these orifices. A distributed parameter model describes
wave-guide segments.

Properties of the whole filter can be described with a transmission matrix as
a result of successive multiplications of transmission matrices of individual segments.
Properties of the chain matrix were utilized as well as detailed mathematical model
of the basic flow directions of an acoustic wave through the filter.

The presented above description of properties of discussed filters is very
convenient for further computer processing and determination of acoustic character-
istics of these filters. Also numerical values of both generally applied measures
— transmission loss TL and insertion loss IL — can be calculated when entry and
source impedances are known. Calculations can be performed on widely applied
personal computers.

Unfortunately the application of presented calculation models is limited to small
orifices of the perforation, e.g. orifices which satisfy conditions of a discrete parameter
model and laminar flow of the medium through these orifices. Further studies are
aimed at the elimination of these restrictions.

The condition of plane wave propagation is another limitation. Much more
complicated calculation methods which would include spatial propagation of an
acoustic wave (such as the method of finite elements) are necessary in order to
remove this limitation.
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