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In the paper the time constants of the aerosol particles transport process under the
influence of drift forces appearing in the standing wave field have been estimated. The
transport phenomenon which causes particle concentration in the neighbourhood of the
minimum of drift force potential significantly supports the coagulation microprocesses by
reducing the distances between particles. It has been demonstrated that the growth of
particle concentration around the points of stable equilibrium is exponential. The time
constant of this growth was estimated and the formulae which precisely determine the time
needed to obtain the assumed concentration increase have been derived. Parameters of
spatial particle distribution in the equilibrium state and time necessary for reaching such
distribution have been estimated under an assumption of lack of interactions between
particles.

Basic notation

x spatial coordinate in the direction of wave propagation
t time,

[ frequency,
o angular frequency,

A wave-length,

k wave-number,

¢, gas density,

¢, density of the aerosol particle,
r radius of the particle,

m particle mass,

1 gas viscosity,

kg Boltzmann constant,

T temperature.

1. Introduction

In the field a standing wave defined by the deflection function of particles of the
medium

& = ¢,sinkxsinot, ' (1.1)
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the particles of aerosol, in the first approximation, exhibit a harmonic motion with
amplitude and phase depending on the particle magnitude, frequency and other
quantities characteristic for the particle, the medium and the acoustic wave. If the
second order effects are taken into consideration, such as radiation pressure,
asymmetry of medium oscillations resulting from the.standing wave amplitude
dependence on the position or periodical changes of viscosity then it can be
concluded that the real motion of a particle is a superposition of the oscillating and
translatory motion [1]. Averaging of the second-order-approximation solutions of
the equations of motion indicates that the motion of instantaneous equilibrium
position of a particle is induced by the resistance force and a certain force F,, which
depends on the position according to the formula [1]

Fp(x) = Fysin2kx. (1.2)

irrespectively of the considered mechanism of the phenomenon.

Such forces are called the drift forces. Depending on the sign of the constant F,
which denotes the maximum value of the force, these forces cause the constant
movement of aerosol particles towards the nodes (given by an equation kx = nn or

1
loops kx = (n+§) ,n=0 +1 +42,... )of the standing wave. In the case F, > 0

the minimum of the force potential given with the formula
Up(x) = F,(2k)~ 'cos2kx + const, (1.3)

are in the loops of the wave. On the contrary, if F, < 0, the drift forces make the
aerosol particles move towards the nodes.
In approximation which is valid for small Reynolds numbers the equation of
motion of the average position of the particle is [1]
2

X dx
my 3 + 6mnr—

il —Fysin2kx = 0, (1.4)

where the second summand represents the resistance force in the Stokes ap-
proximation. By dividing this equation by the particle mass we obtain

d*x ldx

FTORpT
where © = m_/(6nnr) = 2r’g,/(9n) is the relaxation time and A, = F o/m, denotes the
maximum value of acceleration induced by the drift force. This value which, by
analogy to other force fields can be considered as the intensity of the drift force field,
depends strongly on the particle size and the nature of drift. In our previous paper
[2] we have presented the qualitative analysis of the intensity of several drift types.
We have demonstrated that the drift connected with the radiation pressure called the
radiation drift (abbrev.: R drift) dominates in the case of relatively large particles with
radii about 10~ *m. The order of magnitude of the value of field intensity for this drift

—Apsin2kx = 0, (1.5)
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is 10m/s* and decreases rapidly with the decrease of radius of particles. Because this
value is near to the value of gravity acceleration, the motion of large particles under
the influence of R drift forces with simultaneous settling is frequently investigated [3,
4]. The L drift concerned with periodical temperature changes and appropriate
viscosity changes in the standing wave dominates in the range of radii between 10~°
and 10™°m, where it attains maximum of intensity. For the frequency 10 kHz and
wave energy density 100 J/m? this maximum is greater than 103>m/s2. Similar values
characterize the A drift, concerned with the phenomenon of asymmetry of the
particle motion in the standing wave field, when the influence of the wave on the
particle changes according to the decrease of vibration amplitude of particles of the
medium together with the decrease of distance to the wave node. Maximum of
intensity of this drift appears for the particles of radii slightly smaller than 10~ ®m.

Equation (1.5) is analogical to the equation of motion of a pendulum in a viscous
medium. Despite the simplicity of the phenomenon it represents, this equation does
not have an elementary solution. The small displacements approximation which is
applied in the case of a pendulum can not be applied, because here the motion of
particles at the points far from equilibrium position is of special interest. Analogy
with the pendulum allows to expect the quasiperiodical solutions with amplitude
damping and the monotonic (aperiodical) solutions, if the damping is large enough,
the driving force is small, and the particle inertia is negligible. Analysis of the
solution type, carried out by means of graphical and numerical methods in the paper
[2], allowed for finding the relation between the constants of Eq. (1.5) (i.e. relaxation
time 7, drift forces field intensity 4, and wavenumber k), which constitutes the
monotonicity criterion of solutions. This relation is

=y

T 1QkAy) > 2, (1.6)

what, after some transformations and after substituting the equation parameters
expressed by basic quantities characterising the particle and the’ wave gives the
conditions

Ap < 81nc/(64nr gk f). (1.7)

For fixed values of viscosity, wave velocity and frequency and density of
a particle, the above condition relates the drift force field intensity to the particle
radius. As it has been demonstrated in the paper [2], this condition is fulfilled for all
drift types, if the particles radii are restricted to the values smaller than 10~ Sm.

The motion of aerosol particles consists then in monotonically approaching the
stable equilibrium point. From the physical viewpoint this is the evidence of the
negligible inertia of a particle. Hence, in the analysis of the motion in the range of
applicability of the condition (1.7), we shall consider the differential equation

ldx

Cy fia Apsin2kx, (1.8)
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obtained from eq. (1.5) by neglecting the inertial component. This equation, called
the King— St. Claire equation for the names of the scientists who for the first time
applied it in the theory of drift (cf. [4], [S]), can be integrated by separation of
variables. Simple calculations lead to the solution

tgkx = tgkx,exp(2tApkt), (1.9

where x = x, is put for t = 0. The solution (1.9) does not depend on the initial
velocity of particles, being integral of a first order equation. Usefulness of this
approximation in the range of drift force intensities and particle radii defined by the
condition (1.7) has been confirmed by numerical calculations [1].

2. Estimation of the time constants of the motion

The solution (1.9) anticipates that for positive values of constant A, which
represents the drift forces field intensity the aerosol particles will move towards the
points in which kx = (n +3)m, i.e. to the standing wave loops. On the other hand, the
wave nodes are the points of unstable equilibrium and particles which initial
positions satisfy the equation kx, = nn will remain in the nodes infinitely long,
putting aside the random forces which can throw them off such points. For the
negative values of the constant 4, the roles of loops and modes exchange; anyway,
this does not change the kinematics of the transport process, because the change of
sign of the exponent in Eq. (1.9) is equivalent to the linear change of variables

T ¥ 2 i e .
kx—»kx—E. In practice the sign of the constant A, is positive only in the case of

radiation drift, and only for relatively heavy particles, for which ¢ /o, > 5/2 [4]. For
lighter particles the sign of A, for the R drift, as well as for the L and A drifts, is
negative in the whole range of particle density. Hence as a rule aerosols are
concentrated around the nodes.

A particle, the motion of which is described by Eq. (1.9), tends to the equilibrium
position asymptotically and reaches if after a theoretically infinite period. The
concentration of particles increases then around such a point and decreases in the
region between a loop and a node. Hence, calculation of the period needed for
attaining the equilibrium position is aimless. Instead of this, we shall investigate the
changes of particle concentration as a function of time and position.

Let us assume that at instant ¢ = 0 all the particles are in rest and that their
distribution along the x axis perpendicular to the nodes and loops plane is uniform.
Let us denote the number of particles present in a unit interval of this axis at the
point x and at the time ¢ as N(x, t). We have then

N(x, t),=o = No = const. (2.1)

The type of the approximation of the equation of motion as well as the form of the
solution indicate that particles tending to a loop or a mode do not overtake each
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other (it could have been so in the case when. in contradiction to our assumption,
particles were placed farther from the points of balance had and larger initial
velocity). If all particles start their motion at the time ¢t = 0, then those from a point
x, will be at a point x, at the time ¢ and those from a point x,+dx,, at the same time
will be at a point x+dx (cf. Fig. 1). It can be seen at once that if the velocity of
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Fig. 1. Concentration of aerosol as the effect of an /
asymptotic travel of aerosol particles towards the
loop planes Xo  Xordd, X xedx N4 X

NN

particles drops while approaching the equilibrium point, then their concentration
grows. Relative concentration (with respect to the initial one) is then equal to

N(x,t) ﬁ

N 5150w Ao

The value of the derivative in the above equation can be found by taking differential
of both sides of (1.9):

sec’kxdx = sec®kx,exp(2t Apkt)dx,. (2.3)

2.2)

Eliminating x, by means of eq. (1.9) we obtain
N(x, t) = Ngy(cos?kxexp(at)+sin’kxexp(—at)) "', (2.4)

where o = 2t Apk.

As it can be easily seen at the standing wave nodes (kx = nr) the concentration
decreases exponentially as N, exp (—at) and at the loops it grows as N, exp (xt).
Time constant of this process, equal to ', depends on relaxation time, wavenumber
and drift force intensity, thus on the drift type. From the formula (2.4) one can
calculate the time after which the particle concentration in a given point x achieves
a specified value. However, because the solution of Eq. (2.4) leads to a complex
solution which is not very useful, we shall pass to other methods of estimating the
rate of the process of concentrating particles by the drift forces.

If we fix a time period during which the concentration of particles in a specific
neighbourhood of a stable equilibrium point should take place, then this time will
always occur to be insufficient for a certain number of particles, initially distributed
near the unstable equilibrium points. The form of the approximate solution (1.9)
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indicates that particles travel to the wave loop during an arbitrarily long period. It is
clear when we solve Eq. (1.9) with respect to time:

t = o~ 'In(tgkx/tgkx,). (2.5)

If x,—0 then t—o00. On the other hand, particles move towards an equilibrium
point asymptotically. Hence, one can not speak about their complete clustering in an
arbitrarily small neighbourhood of a wave loop after a finite time. Indeed, for
x — /4, the value of the expression (2.5) also tends to infinity.
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% Fig. 2. Cleared zone (interval [x,, A/4) and intensive

0. x i s Bel § % coagulation zone (interval [d, A/4])

Let us denote by d the coordinate of a point which a particle should surpass to
enter a “zone of intense coagulation”, where the inter-particle processes reach the
intensity high enough for an “almost immediate aggregation” (such concepts, which
are useful in considerations where the nature of microcoagulation processes is
neglected, were introduced in the paper [6]). Other particles which were initially
displaced in the range [x,, d] will reach the point d earlier (cf. Fig. 2). This means
that after the period

t, = o~ 'In(tgkd/tgkx,), (2.6)

the zone defined by dx will be reached by the fraction (4/4 —x,)/(4/4) of all particles,
provided that their distribution along the x axis was uniform at ¢t = 0. Then, the
quantity

P = (A/4—x,)/(A/4) = 1—4x,/4, (2.7)

denotes the relative number of particles which would reach the zone defined by d in
time t,, with respect to the number of all particles. This value can be called the
efficiency of the mechanism of transport of particles by the drift forces to the zone of
intense coagulation. If it is assumed that particles in this zone will undergo
coagulation for certain then p can be called simply the efficiency of coagulation. The
latter formula makes it possible to express the value x, from the initial condition of
Eq. (1.9) by this useful parameter

xo = (1=p)i/4. (2.8)
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After the period found from Eq. (2.6) almost all the particles of aerosol will be in the
zone defined by d (except for those which at ¢ = 0 were in the interval [0, Xo]). It can
be assumed- then that the average concentration of particles in this zone grew as
many times as the distance from point d to the loop is smaller than a quarter of
wave-length. Hence, we have N /N, = (1/4—d)/(1/4) = 1—4d/A, from which it
follows

d =(1—Ny/N,)i/4. (2.9)

Substituting the two latter formulae to Eq. (2.6) we obtain

t, = a“’lu(tg;(l—NO/Nk)/tgg(l—p)). (2.10)

What interests us the most are the values of efficiency p close to unity and values of
the quotient Ny/N, close to zero. In these cases we can apply the expansion of the
function tangent around zero in the denominator and around 7/2 in the numerator,
using approximations tgx ~ x and tgx = (n/2—x) ™!, respectively. Finally, we have

4N,/N,

t, = o lIn—0——
K=Y

@.11)

It should be reminded that the value
a”l = (2tApk)"! = nc/(8nr?o, fAp), (2.12)
is a time constant, characteristic for the process of exponential concentration
variations (cf. Eq. (2.4)). Expression (2.11) introduces a significant amount of
precision into the notion of coagulation time for given efficiency of the process and
specified concentration increase. In agreement with our expectations this time grows
if both these parameters increase. Note that this growth is logarithmic, so in the
estimations only the order of magnitude of the parameters 1 — p and N,/N, is
important. For example if we put 1 — p = 1072, then the value of coagulation time
given by the expression (2.11) will be 8.30-a~! for N,/N, = 10? and 17.52a"! for
N,/N, = 10°. So, the growth of assumed concentration by four orders of magnitude
gives only the doubling of time needed to obtain it. In addition, for average
wave-lengths and typical particle dimensions, the concentration growth larger than
10* is unrealistic.
For the quantitative estimation of the speed of process of gathering the particles
in the regions of around wave loops or nodes let us assume now in the formula (2.11)
some numerical values of parameters characterizing the particle, the acoustic field
and the transport process. Similarly as in the estimation of drift forces field intensities
for various types of drifts in the paper [2], we shall put: e, = 10% kg/m3, g, =12
kg/m®, n = 1.85:1075Ns/m? and ¢ = 340 m/s, what corresponds with an acoustic
wave in the air. If we also fix the frequency and energy of the wave (f = 10 kHz and
E =100 J/m*® in our example), then, according to formula (2.11), the equation
t, = const will provide a relation between the drift force field intensity 4, and the
aerosol particle radius. In the Fig. 3, where the graphs of A, for various drift types

5 — Arch. of Acoust. 3-4/87
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taken from paper [2] are also shown, equation t, = const is represented by a straight
line. For the concentration process the following values were assumed:
1 — p = 10~2, what corresponds to the efficiency equal to 99%, and N,/N, = 10°.
The dashed line delimits the range of applicability of the King—St. Claire ap-
proximation and represents the condition (1.7). As it can be seen, for the above listed
values of wave parameters, the L type drift effectively gathers the particles around
the equilibrium positions in the time about 0,1 s. The R type drift induces the
concentration of particles with radii larger than 10~ *m in the time shorter than 1 s,
while the A type drift can provide for concentration of particles with radii about
10~ %m in the time of equal order of magnitude.
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Fig. 3. Plots of intensity of the drifts type R, L and A vs particle radius and lines of constant values of
coagulation times. The straight dashed line defines the region of application of the King-St. Claire
approximation

3. Spatial distribution of particles around the equilibrium points

While discussing the phenomenon of transport of the aerosol particles under the
influence of drift forces we have not taken into account the processes responsible for
the coagulation of particles. We have assumed however that the appropriate growth
of concentration, corresponding to the reduction of mutual distances between
particles, will cause quick coagulation in concentration zones. In the two-particle
problem a similar approach was applied by JESSEL and TiMOSHENKO [6], by
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introducing the concept of the ,,coagulation parameter” as a dimension of the zone in
which particles coagulate ,automatically and almost immediately”. The constant of
all exponential function of time which describes the decrease of concentration of
aerosol particles was expressed by them with the use of the dimensions of such
a zone, assumed to be an ellipsoid of revolution, elongated in the direction of wave
propagation.

Theoretical approach which consists in neglecting the interactions between
particles makes it possible to estimate statistically the dimensions of a zone in which
the particles will gather. The distribution of equilibrium of the particles is described
by the Boltzmann distribution

«4"(x) = const-exp (—~ I;();?), (3.1)
B

while potential is given by Eq. (1.3). In the neighbourhood of a minimum, e.g. near
the point x = A/4, the function U,(x) has approximately the following form °

\2
Up(x) = const+m,Apk (x—z) ; (3.2)

where the terms of order (x —A/4)"* are rejected. Then, in this approximation, the
spatial distribution is of gaussian type

A

iy
A"(x) = const-exp (— T ) (3.3)

Dimension of a zone of particle concentration is then of the order of magnitude

B AR
i e i 34
4 (ZmpADk) o

The above value can be considered as the dimension of the zone of concentration of
particles, if the particle interactions are neglected and the particle dimensions are not
taken into account. Such estimation can be useful if the coagulation itself is caused
by additional factors which are independent of the standing wave. A technical
arrangement proposed by SCOTT [7] can be an example here. In this arrangement the
particles are concentrated in the loop or node planes with the use of an intensive
standing wave, and the coagulation is due mainly to the ortokinetical effect caused
by a perpendicular, sawtooth progressive wave.

The time required to obtain an equilibrium distribution of particles near the
stable equilibrium points can be estimated more precisely with the use of Eq. (2.6)
which describes the time of travel of a particle from an initial point to a point of
coordinate d, i.e. to the border of a given concentration zone. Putting x, = d = o we
shall estimate the time necessary for establishing an equilibrium distribution of
nearly all the particles, excluding those which initially were placed at the distance
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from the ustable equilibrium point smaller than ¢. Here we shall use the same
expansion of the tangent function as previously:

2m, A,
_ kk,T "
For the numerical values assumed in the quantitative discussion at the end of the

previous paragraph and for T= 300 K we get t, ~ 14a~'. This is the value of the
same order of magnitude as the coagulation times obtained above.

= o ln(ke) % = (2t Apk) ' In=-2"2 (3.5)
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