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This study considers the problem of the thermal sound generation in the air by an
unmoving solid body with a time-variable temperature. Applying the linear relations
between the thermal energy stream supplied to a thin layer of a solid body in touch with
a gaseous medium and an energy stream of the acoustic wave, and then taking advantage of
electrothermo-acoustic analogies, the phenomena of the energy transport were represented
in the form of an equivalent linear electric circuit with lumped constants, On the basis of the
equivalent circuit, both the properties of the considered thermal source of the acoustic wave
were investigated and the problem of thermo-acoustic cooling of the solid body was
discussed. It was shown that, in view of the low efficiency of the temperature —pressure
conversion, it is necessary to generate large layer temperature changes to obtain the mean
values of sound intensity, whereas the maximum of the modulus of the transmittance
function of the source occurs even for very thin layers. It was also shown that in the course of
cooling of thin layers the amounts of energy: that carried by the acoustic wave and that
supplied to the environment as a result of external conduction are comparable, so that in
the energy balance of a thin layer with varying temperature, it is necessary to take into
account the two factors which bring about an energy loss.
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¢, sound velocity, ¢; = yPy/o,
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specific heat of gas at constant pressure

specific heat of gas at constant volume

specific heat of a solid body layer

thermal capacity of a solid body layer C, = dgc,,

thickness of a solid body layer

density of a solid body layer

enthalpy of unit volume of the gaseous medium, the coefficient of the external conduction of a solid

H transmittance of the thermal source of the acoustic wave H = ;";,ffz
I efficiency of energy flux in acoustic field
I, efficiency of the controlled heat flux source

L

k  heat conduction coefficient of the solid body
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pressure level in 2-107*Pa[dB]
acoustic pressure

pressure in unperturbed gas
Prandtl number, P, = c,vox~
gas constant, R/u = ¢,—¢,
heat resistance of a solid layer, R, = d/k

heat resistance corresponding to external conduction R, = 1/h

time

variable component of the gas temperature

temperature in unperturbed gas
initial temperature of the cooling solid body

acoustic velocity

spatial coordinate distance in the gas from the solid body surface
Z,, thermal-acoustic impedance in the harmonic excitation method, Z,, = 0/f
F{-}, £ '{-} operators of the simple and inverse Laplace transformations

adiabate exponent, y = c,/c,

amplitude of the sinusoidally variable temperature of the boundary layer of the gas medium
- heat conduction coefficient of the gas

—(d/dt) In (T(1)/T,)

molar mass

kinematic viscosity coefficient

variable component of the total density of the gas medium
o density of the gas medium in an unperturbed state
¢ velocity potential v = ¢,
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@ angular frequency

() = dfdx(")
(*) complex amplitude in the harmonic excitation method
() Laplace transform of a given time function

1. Introduction

A stationary solid body with the time variable external surface temperature
generates an acoustic wave in the surrounding gas medium. The present study carries
out a quantitative analysis of the relation between a constant heat flux fed to the
body (causing changes in its temperature) and a pressure level, of the generated
acoustic wave. The results of this analysis made it possible to determine the
fundamental properties of the thermal source of the acoustic wave.

Another problem discussed in the study is related to the above effect — namely
that a solid body at a temperature higher than that of the ambient gaseous medium
cools faster than results from the classical external conduction, since it gives away
part of the energy to the generated acoustic wave (the thermo-acoustic cooling effect).
It is justified to neglect the component energy carried out by the acoustic wave for
thick layers. whose temperature varies slowly in the course of cooling. On the other
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hand, the situation changes essentially for thin layers, and the time course of the
*temperature of such a layer deviates from that expected by the classical analysis of
the problem.

To determine the fundamental relations characterizing the thermal source of an

acoustic wave, an idealized case was considered, in which a flat layer of a solid body
is in contact with a gaseous medium. A time variable heat flux with constant density
is supplied to the whole Surface of the layer (Fig. 1). Moreover, the notion of
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heat flux
gaseous medium
Fig. 1. The cross-section of the thermal source of a plane x=0
acoustic wave: d — solid layer thickness, g — solid body

density, k — conduction coefficient, ¢, — specific heat, aersib i

h — external conduction coefficient solid "layer

supplied heat flux denotes a flux penetrating into the solid body, neglecting the
problem of the reflection of part of the incident flux (if such a way of energy supply
were applied). As a result of temperature changes, the solid layer becomes a source of
a plane acoustic wave propagating in the gaseous medium.

The first stage of solving the above problem is to determine the dependence
between the time variable temperature on the border of the gaseous medium and the
pressure in the generated acoustic wave. This dependence was obtained by solving
the hydrodynamics equations with the following boundary condition

T(x =0, 1) =f(), (1)
v(x =0,1)=0, (2

where all these quantities describing the state of the medium are functions of the
spatial variable x and the time ¢, v denotes the particle velocity, Tis the temperature
and f(t) a function describing temperature changes in the boundary layer of the
medium. In analysis of wave phenomena in a gas, a frequently assumed model of the
medium, is an ideal gas undergoing no dissipation processes. In the considered
problem, such a model is not appropriate, since the assumed boundary conditions (1)
and (2) would then be mutually contradictory: they can be satisfied only if one takes
into account the heat conduction of the gas and the resultant fact that all the
quantities characterizing the acoustic field are expressed by the sums of two
components. The two components are the solutions of auxiliary second-order
equations, corresponding to the so-called pressure and temperature modes of
vibration in the medium (see solutions (12) and (13)).
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The value of temperature changes in the surface in contact with the gas depends
on the quantity of the supplied heat flux, on the heat capacity of the solid layer, on
the value of the external conduction and on the quantity of the load generated by the
gaseous medium as a result of energy convection in the generated acoustic wave.
Applying electro-thermo-acoustic analogies, the considered processes of energy
transport wave represented in the form of a linear component electric circuit with
lumped constants. On the basis of the above circuit, both the properties of the
considered thermal source of the acoustic wave were investigated and the problem of
the cooling of the solid body considered, taking into account the energy convection
by the acoustic wave generated in the medium.

2. A description of the acoustic field generated by temperature changes in the stationary boundary layer
of the medium

A starting point for further considerations are linearized Navier-Stokes equations
[1, 2], which, for the uni-dimensional problem of the thermodynamically ideal gas,
having, however, heat conductions and viscosity, are in the form

¢;toyu; = 0, A3)
1 4
UI+Q_-px o vaxv (4)
0
R
QOCUT!'_TOEQr s xT;cx’ (5)
I
Kp = 0uT+ Tig, ©

where g, p and Tdenote variable components of the total quantities of the density, of
pressure and temperature; ¢,, P, and T, are the constant components of these
quantities, R is the gas constant (R/u = ¢,—c, where c, and c, denote respectively
the specific heats for constant pressure and constant volume, u is the molar mass, v is
the velocity, » is the heat conduction coefficient, v is the kinematic viscosity
coefficient. Along with the boundary conditions (1) and (2), the system of equations
(3)-(6) makes it possible to determine the relation between temperature changes in
the boundary layer of the medium and the quantities describing the generated
acoustic field.

A similarly formulated problem was considered by TRILLING [3]. Since the final
results of the Trilling study were obtained by the method of approximate
determination of the inverse Laplace transformation, there occurs a difference
between these results and those obtained by the authors of the present study.
Because of the above fact and since the present authors were aware that the
problems of the tempeature boundary conditions have quite seldom occurred in the
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acoustic literature, it was decided that the solution of the hydrodynamic equations
(3)46) along with the temperature boundary conditions (1)-(2), should be cited in
brief form.

Therefore, let all the quantities characterizing the state of the gas have the form:
a(x, t) = d(x)exp(jwt), where d(x) denotes the complex amplitude of a given
quantity, while @ is the angular frequency. After this substitution differential
equations with partial derivatives transform into the corresponding simple differen-
tial equations connecting complex amplitudes, namely:

Jjod+eg,t" =0, (7
1 4
jwb+—p = =vit’, 8)
. Qop 3
. v s R A Fotr
Jjwee c.,T—.rcoT"o;e =xT", - ©)

I} . "
§ﬁ= Tyé+o,T, (10)
where these equations introduced the denotation (-)’ = d/dx(-) The above system of
equations can be reduced to an equivalent fourth-order differential equation. As
¢ denotes the complex amplitude of the velocity potential (§ = @), this equation is in
the form

w2A+ o G +4v ., [4 wv L 5~ 0 (11)
@l : 20,3 3 Co % 3 00¢,C5  Jjwooc, § tar O

where ¢, = \/yPy/e, denotes the sound velocity and y = c,/c, is the adiabate
exponent.

The characteristic equation corresponding to the differential equation (11) has the
form of an algebraic biquadratic equation. The solution of equation (11) can be
represented as the sum of the solutions of two second-order equations, each of which
“corresponds to the pair of roots of the characteristic equation. In determining these
roots, simplifications were carried out, taking into account the real values of
Cos %5 V, 0¢, Py and T, for the air in normal conditions and neglecting very low-value
components. Despite these simplifications, the obtained final dependencies ensure
sufficient accuracy over a very broad frequency range (w < 10°). The seconed-order
equations obtained by this way and the relations between the complex amplitude of
the velocity potential and the complex amplitude of the other quantities character-
izing the acoustic field are as follows:

A R 4
¢ = —jzov3¢", (12a)

=g, (12b)
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ﬁ L _ngo(ﬁa (120)
g 1
0 = —jwey=9, (12d)
Co .
resiongbe
T= —jo—@, (12¢)
C.P
and
Art jmeﬂcpn 0, (133)
%
b= ¢ (13b)
Eeral 4 c i
p = jwo, 590" ;"—1)(;), (13¢)
- 2 cp -
6=—00—9, (13d)
X
i &y a4
T= Ty, 7 ¢- (13¢)

The values of the parameters v and x are not independent for the medium, and
even for numerical studies. it is necessary to take into account their interdependen-
cies. In particular, this interdependence is strong for gases, so that the dimensionless
Prandtl number P, = ¢, vox~ 1 takes for the most real gases values close to unity. For
the air, in normal conditions, P, = 3/4, hence, it follows that p in equation (13c) is
0 irrespective of the boundary condition and the value of the velocity potential

amplitude.
Therefore, the two systems of equations (12) and (13) correspond to two different
modes of the medium vibrations — namely, equation (12) corresponds to the

pressure mode, eauation 13 to the temperature mode.

Limiting below the considerations to the analysis of waves travelling from the
source and assuming that f(t) in equation (1) has the form: f(t) = Oexp(jwt), it is
obtained that (see [4])

2
(Ppressure(x) s Acxp(—j‘-?x) exp(—gvywz 05336), (14)
0
wEHC _
PremplX) = BCXP[— —%ff‘(l+1)'x], (15)

where the constants A and B determined from the boundary conditions (1)-2), have
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the form
" g B Rt (16)
_'E_E jwegc, Ty \ jweoc,
Jcp o b7
%
B=10 : (17)
TDQOCp

From (16), (14), (12b), the pressure wave generated in the medium as a result of forced
temperature, is described by the following relation:

p_0 2y |ov (o m\]| 2 2_;
Po—To oo\ 3 exp’: j(cox 4)] exp( vacu Cois X.); (18)

In dependence (18), the occurring factor exp [(—2/3)vyw? ¢3x] and the related
dissipation coefficient a = (2/3)vw?cg ® correspond to wave attenuation caused by
the presence of dissipation effects in the medium, namely heat conduction and
viscosity. In the literature, these two causes of wave energy dissipation were
discussed separately (see [14, 15]). Two solutions of the problem of propagation in
a viscous medium lead to the Stokes absorption coefficient «, = (2/3)vw*cq 3, and
in a heat-conducting medium, to the Kirchhoff absorption coefficient
a, = w?x(y—1)/2cdc,0,7- The total dissipation coefficient is the sum of the above
factors: a, = &, +a,. If one considers the relation between v and x resulting from
P, = c,vox ' = 3/4 it can readily be verified that «, is the same as « gained here by
another way.

It follows from dependencies (14) and (15) that velocity potentials, both in the
pressure and temperature modes, contain exponential factors corresponding to the
decay of both these quantities with increasing distance from the source. In both these
modes the dissipation coefficients are given by the dependencies:

WPy 22
Rpressure = & = $VV02€0 %,  Cemperature = /—g‘;—i Considering the values of the
parameters occurring in these two expressions (see the Appendix) it appears that
Upressure = 3-5:10 2 w?[m ], while @\ pperarure = 1554/ [m "], therefore, for a ve-

ry wide temperature frequency range o, > o,.. Hence, the components of

particular quantities characterizing the acoustic field related to the temperature °

mode rapidly decay and are essential only in a region in direct contact with the
source, namely in an area where the two modes interact; where the acoustic wave is
generated. The above remarks emphasize in addition the difference between these
two vibration modes of the medium.
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Example 1: The dependence of the the pressure level in the wave in the air on the
temperature change amplitude on the boundary

Substitution in formula (18) of the values of the constants characteristic of the air
in normal conditions (see the juxtaposition of the constants in the Appendix) gives

p=638-10"3 8\/5 exp [—j(g)—x-—g)]exp(—ls 1073 w?x) [Pa]. (19)
0

It can be seen that the pressure wave is weakly attenuated, and even for x = 0 it is
shifted in phase by n/4 with respect to the temperature on the boundary. Neglecting
the attenuation and expressing the pressure in decibels with espect to 2-107° Pa, it
follows directly from dependence (19) that

N, = 58+20log(+/f0)dB. (20)

To illustrate the value of the pressure level for a given amplitude of temperature
changes it was assumed that for f= 1000 Hz and 6 = 1K. Then, N, = 88dB.

3. The thermo-acoustic impedance

In the case of negligible dissipation effects, the energy flux density in the acoustic ‘
field, is given by the dependence [1]:

I =gv (P2—2+h), 21)

where h is the enthalpy of unit volume of the medium. The dissipation effects in a gas
with properties close to those of the air are small (see (19)). Because of this, use will be
made of dependence (21) and the relation between the pressure and enthalpy of a gas
unit volume subject to adiabatic transformation, and also the relation between the
pressure and the acoustic velocity of an ordinary plane wave [1, 2], namely

(y—1)y
(2
0

(r—1)/2y ]
0= fi’][(upﬁ) —1]. @)
i % ;

From relations (21), (22) and (23), with an accuracy up to components of the second
order of smallness, it is obtained that

Co (3'}’—1) 2
I= 14 ! (24
y—1"  4(r—1)eoco :
Considering the p/P, < 1 and applying (18) it is possible to determine the ratio
between the complex amplitude of the boundary layer temperature of the gaseous
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medium and the complex amphtudc of the flux energy in the acoustic wave, namely
the thermo-acoustic impedance, i.e.,

1
Zmd_fgi:y To ff —J?__e n, (25)
a)

Zy = [(r=1)/20](To/Po)\/3)v.

The determination of the impedance as a ratio between the temperature amplitude
temperature surplus and the energy flux is typical of an electric modelling of heat
transport processes. The impedance determined in this way has all the properties of
the complex electric impedance; in particular, it is subject to the same rules of series
and parallel connections.

It can be seen from the obtained dependence that as the frequency increases, the
impedance Z,, decreases, therefore, for a given amplitude of temperature changes at
the solid body surface, for increasing frequency, there is an increase in the energy flux
carried by the acoustic wave.

where

4. The electric equivalent circuit of the thermal source of the acoustic wave. The frequency properties
of the thermal wave source

The following assignments were made:

— a difference in the potentials in the electric equivalent circuit corresponds to
the increase in temperature (i.c., the variable component T of the total temperature),
and — the heat flux density corresponds to the electric voltage intensity.

Assuming that the thickness of the solid layer is much thinner than the
temperature wavelength in this layer, the electric equivalent circuit of the thermal
wave source has the form shown in Fig. 2.

The lumped elements of the circuit are connected with the physical parameters of
a solid body and the gaseous medium in the following way:

R, = d/k is the heat resistance of a solid layer, where k is the heat conduction
coefficient of the solid body, and d is the layer thickness; C, = dgc,, is the thermal
capacity of the solid body, g is the density of the solid body, c,, is the specific heat of

| |
| I
I | | Zi
l |
I |
+ =
* - e
controlled |  solid layer | gaseous
Fig. 2. An electric equivalent circuit of a thermal source of heat medium

source working in a steady state at harmonic forcing flux
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the solid body: R, = 1/h is a resistance corresponding to the external conduction,
and h is the external conduction coefficient; Z,, is the thermo-acoustic impedance,
given by dependence (25): I. is the efficiency of the controlled heat flux source.

The above lumped elements were determined for a solid layer with unit surface.

It can be noted that a consequence of the assumption of the small thickness of the
solid layer is the lack of the influence of the heat resistance R, on the properties of
the considered wave source.

On the basis of the equivalent circuit and dependences (18) and (25), it is easy to
determine the transmittance H = p/I., namely

/o _
14 (h+jwdge)Z,,

Jopiso
H-g (26)

Example 2: The frequency properties of the thermal source working in the air

After including in dependencies (25) and (26) the values of the constants (see the
Apppendix), the dependence of |H| on the frequency and thickness of the layer is
given by the expression

1.51-10"*e**
|H

~ /1009202 +52-10*dw! 5 +0.1350 + 0.520°5 + 1

The following conclusions follow from dependence (27):
— for low values of |H| ~\/c; (H increases proportionally to \/5),
— for large values of w|H|~ 1/\/5 (H decreases proportionally to 1/\/5);
— the maximum value |H|,,, is proportional to 1/\/;1, and — w,,, ~ 1/d, namely
the frequency for which there occurs a maximum modulus of the transmittance
function, increases in proportion to the inverse of the layer thickness.

Fig. 3 represents the plot of |H| against frequency for a few thickness of the solid
layer d.

27

TH(w)!
[ms]

_70'5 - 1 B L B 1 - 1 1 1
10 0 0 107! 10° 10 107 wis 10°

Fig. 3. The transmittance |H| from dependence (27) for d = 1075, 1075, 1074, 107% m.
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5. The thermoacoustic cooling effect

Let the heated solid body be in contact with an unbounded gaseous medium, and
let the loss of thermal energy be compensated by the external source of energy, so
that the temperature of the solid body may be constant at the time of the
observation. From the energy balance, it is possible to determine directly the power
carried off to the ambient medium by unit surface area for the temperature difference
between the solid body and the gaseous medium, namely 1K, ie. the thermal
coefficient of external conduction. If at a certain moment there is a break in the
energy supply to the solid body, its temperature begins to decrease. A classical
analysis of the phenomenon leads to the conclusion that the surplus of the
temperature over the ambient temperature T depends on time in the following way:

T(t) = TICXP(_V;_WM)’
where Vgc,, is the thermal capacity of the solid body, while S is the surface area of the
contact with the gaseous medium; moreover, this analysis neglects the ther-
mo-acoustic effect.

Below, the time course of the temperature of the cooling body will be determined,
including the effect of energy convection in the form of an acoustic wave. For this
purpose, it is more convenient to apply the solutions of the system of equations
(3)-(6) obtained by the Laplace transformation method.

If zero-value initial conditions are assumed in the gaseous medium, without any
changes it is possible to apply the solutions gained by the method of harmonic input
signal; moreover, jo will be now replaced by the complex variable s. To distinguish
between the operator quantities and the complex amplitudes of quantities which are
functions of time, two types of overhead indexes were introduced: (*) denotes the
complex amplitude occurring in the harmonic excitation method, and () represents
the Laplace transform of a given quantity.

Connecting equations (24), (28) and (32) it is possible to determine the operator
thermo-acoustic impedance an equivalent to the impedance given by formula (25),
namely

=

S

(s

Z,(s)=

(34)

—~

1
Z°$’

—

where
supebl Ty [3
O LaQyiPf

Considering the dependence between the heat flux received by the solid layer and
changes in its temperature

I, = gdc, dTydt, (35)
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where I, denotes a heat flux assimilated by unit surface area of the solid body, while
the operator equivalent circuit for energy transport processes in the thermal source
has the form shown in Fig. 4. The additional current source in this diagram with the
efficiency gdc,, T, corresponds to the initial condition related to the initial tempera-
ture 7, of the solid body at the time ¢ = 0.

@ “’“’T"JTS#CW H

An analysis of the electric diagram shown in Fig. 4 makes it possible to determine
the operator dependence corresponding to the time course of the temperature of the
solid body during cooling after switching off the external source of the heat flux
(I, = 0), namely

=
Al

Fig. 4. The operator equivalent circuit of the
thermal source of an acoustic wave

= I
T(s) = = : 36
O ¥ T5/Zogde.) +hligde,) ot
The irrational form of the right side of dependence (36) causes the fact that the
methods applied to determine the inverse transform which are usually used in the
analysis of electric circuits are here useless.
Certainly, neglecting the energy transport in the form of an acoustic wave
(corresponding to the impedance Z, taking an infinitely large value), the problem
becomes simplified, leading to the well-known solution

T(t) = T;exp(—g;c :). 37)

The calculation of the inverse Laplace transform from (36) is made easier by a certain
conclusion from Efros theorem [5] which can be written in the following form:

f”{\% A(\/é)} = ﬁ Ta(z)exp(—g)dr, (38)

where A(s) = Z{a(t)} and & and £~ ' denote respectively the operators of the
ordinary and inverse Laplace transformations.
Using (38), it can readily be shown that

_ff"‘{\/;_l_a} = ﬁ+aexp(a2t) [¢(a-/0)—1], 39)
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where

z

b0) = % ! e dx,

is the so-called probability integral.
Therefore, representing (36) in the form

T(s)/Tp = 1/[(\/‘;"'“1)(\/‘;'*'“2)] =
(40)
= 1/[(“2_‘11)(\/‘;"*'“1)]_ 1/ [(“2 —ai)(\/;-f-az)]
and applying formula (39), the following formula of T(t)/ T, is obtained:

Z(t_)=

1" iiyra,

{a, exp(a}t)[¢p(a,/1)— 1]—a,exp(@n[(a/0—1]}  (41)

in a special case if

4= [l/(andc,,)]z-—4h/ (gdc,) =0, (42)
the equivalent of dependence (40) becomes
TE)/T, = 1/(/s+a), 3)
and the time course is as follows:
T/ T, = 2a./t//n+Q2a*t+ Nexp(@*t)[1 - &(a\/1)]. (44)

The time course T(t) essentially depends on the layer thickness d; for a certain
characteristic thickness d = d,, the discriminent 4 given by dependence (42) takes
a zero value and T(f) is given by formula (44). For greater thickness, a, and a,
occurring in (40) and (41) are complex conjugate quantities, and for smaller
thickness, a, and a,, are real.

Example 3. The temperature of the solid layer during cooling in the air

Substitution in dependences (41) or (44) of parameters characterizing the air and
the solid layer (see the Appendix) gives dependences describing the analyzed relation.
For these parameters, the characteristic thickness is d, = 3.35-10" "m. Figs. 5 and
6 represent the temperature T'(t) for two layer thicknesses. Each of these figures
shows three curves: T'(t) from dependence (41) or (44), T,,(t) from dependence (37) and
the logarithmic decrement of attenuation 4 = —(d/dt) In (T 1;) In the case of the
exponential decrease of the temperature takes a constant value independent of time.
Therefore, the respective curves obtained from dependences taking into account the
thermo-acoustic effect illustrate the quantity of deviation of the temperature of a thin
layer on the curve resulting from the classical analysis.

6 — Arch. of Acoust. 3-4/87
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T/ 4 A layer thickness: d=336-107 m

logarithmic attenuation decrement

051

classic cooling

L thermoacoustic cooling

|

a oo 002 003 004 005 006 007 008 009  tlsl

Fig. 5. The plots of T(t) from (41), of T, from (37) and of A for d = 3.36:10 °m

The following conclusions can be drawn from the results obtained in this case:
(i) \/ t. > 0, that A t€(0, t,), T(t) < T,(t),
and At > 1, T(t) > T,(0),

meaning that initially the thermo-acoustic cooling is faster than classical in view of
the convection of part of the energy in the form of an acoustic wave, and then, as
a result of heating the medium, and at the same time, of a considerable decrease in
the velocity of temperature changes and, hence, a considerable decrease in the

classic cooling

thermoacoustic cooling

layer thickness :d=610"°m
0515
logarithmic attenuation decrement

1 1 L i 1 1 L 1 1 1
9] oor 002 0a3 004 005 006 007 008 009 tlsl
Fig. 6. The plots of T(t), T,(t) and A for d =6:10"°m
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pressure component in the wave, the thermo-acoustic cooling, from a certain time
moment (., proceeds more slowly than the classical cooling;

(ii) T(0) = T,(0) = T,, lim T(z) = lim T,,(t) = 0
t—+ t=w
(iii) lim A = oo, lim A = 0
t— a0 t—* oo

(iv) for greater layer thicknesses T'(t) and T,,(t) decrease more slowly and so does the
difference between these curves

(v) ford>1a,,= , and dependence (41) becomes (37).

h
gdc
The theory of cooling presented in this chapter is an extention of the classical
theory and, as follows from quantitative analysis, the introduced complementation
(i.e., considering the energy convection by the acoustic wave) must be included in the
analysis of cooling of thin layers. Certainly, the presented problem is nqt only
concerned with the question of cooling of bodies. Additional energy load should be
considered for all processes in which the temperature of a solid body immersed in
a gaseous medium varies in time.

w

6. Final conclusions

An inspiration to undertake the analysis presented in this study was an interest in
the problem of sound generation by means of nonmechanical methods, i.e., by
sources which do not contain moving mechanical elements (see [1, 6, 7, 8]).

One of the possibilities of nonmechanical sound generation is thermal generation.
The idea of thermal generation has repeatedly been discussed in the literature [2, 3,
6], and practical examples of the implementation of this method can be: e.g., the
pistophone, and the parametric source of the acoustic wave using coherent light
absorption ([9], see also [10, 11]). ;

One of the imaginable models of thermal source of the acoustic wave in a gaseous
medium is a solid layer immersed in this medium in which the temperature is
a function of time. A separate problem is the question of the implementation of
temperature changes. As an example, control of temperature can be performed by
using absorption in this layer of light with variable intensity, or the emission of Joule
heat by electric current with variable intensity (analogously to the pistophone). In
these two cases, energy is supplied by an external source, while cooling is effected by
removing energy to the ambient medium.

Another possibility is ensured by the use of the Peltier effect in the metal-semi-
conductor junction (see, e.g. [12]). Since in this effect, depending on the direction of
the flowing currents, the thermal energy is absorbed or emitted, the metal-semicon-
ductor junction is a practical implementation of the source of a heat flux with
a variable sign, and the metal layer which forms a connection of two semiconductor
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elements of types n and p is heated and cooled in an active way. Moreover, the
quantity of the heat flux emitted or absorbed is linearly dependent on the density of
the current flowing through the junction for a relatively wide range of this density.

The detailed analysis of the operation of the thermal source, presented in the first
part of this study, led to the conclusion that the transmission band of such
a transducer was limited by two factors: for low frequencies — by the low efficiency
of the temperature-pressure conversion, and for high frequencies — by the heat
capacity of the layer. As a consequence of the common effect of these two factors,
even for thin layers with thickness of about 10~ °m, the transmittance function
modulus of the transducer has a maximum for @ = 10s™!, decreasing for both
increasing and decreasing frequencies.

It is difficult to implement practically the electro-thermo-acoustic using the
thermo-acoustic effect described above, for the following reasons:

— the unfavourable course of the transmittance of the transducer:

— the necessity of causing large temperature changes of the layer, to gain the
mean levels of sound intensity (the low efficiency of the temperature-pressure
conversion, resulting from the effect of the stationary boundary condition) and

— the limitation of the current density range for which it is possible to observe
the Peltier cooling effect, and also the necessity of using a thin metal cramp linking -
two semiconductor elements, for which there arises the problem of the surface
nonuniformity of the current density distribution in the p-n junction.

The essential result of this study is the construction of a model of the
phenomenon of the thermal energy transport in a metal layer, considering the energy
carried by the acoustic wave generated in the gaseous medium. In the form of an
electric equivalent circuit for harmonic cases, such a model is shown in Fig. 2, and
that for pulsed courses and for initial problems, in Fig. 4. In these diagrams, the
introduced thermo-acoustic impedance Z,, connects the surplus layer temperature
exceeding the ambient témperature with the energy carried by the acoustic wave.

The layer thickness range which can be analyzed within the presented theory is
limited. Over the range of greater thickness, this limitation results from the assumed
model of the solid body for the heat transport phenomenon in the form of the
lumped elements of capacity and resistance. Such a model is valid if the temperature
wavelength in the body is much greater than the layer thickness. For pulsed
excitation, this limits the maximum variability rate for the analyzed courses. There
are no principal barriers against which one could not generalize the results by
assuming a solid body model in the form of an adequate system with distributed
constants. The low-thickness range is limited by the possibility of applying
a macroscopic description of the heat transport in thin layers with atomic thickness.

The above model made it possible to carry out analysis both for the thermal
source of the acoustic wave and the other problem discussed in this study, namely
the thermo-acoustic cooling effect. The obtained results show that as the thin layer
cools the amount of energy carried by the acoustic wave and given away to the
ambient medium, as a result of external conduction, are comparable, so that in the
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energy balance of a thin layer with variable temperature, it is necessary to include
the two factors causing the loss of energy.

The topical nature of the problems verging on thermal studies and acoustics was
recently confirmed by a study of Gervais [13]. This author concentrated on the
problems of the solution of the fundamental Navier-Stokes equations by the
harmonic input signal method for plane and cylindrical waves.

The model of the thermal source of the acoustic wave assumed in this study does
not always coincide with a real situation. E.g, a solid body can be contact with
a gaseous medium on both sides, or energy can be supplied to the solid body in
dlfferent ways etc. It is, therefore, necessary to modify correspondingly the substitute
circuit for the energy processes in the source where, moreover, the basic elements of
this basic remain uncharged. Therefore, if one were to consider the cooling of a thin
layer by energy radiation to both sides, in the circuit and the respective dependencies,
it is sufficient to replace the layer thickness by d/2 to obtain a correct description of
the phenomenon.

Appendix
In numerical examples illustrating the obtained results, the following values of
the constants characteristic of the air in normal conditions were applied:
Py = 1.018-10°Nm ™2, T, = 293K, g, = 1.205kgm 3
Py
Co=344ms ' y = 14, i
H o Qolp

¢, = 1009.16Jkg"'K™*, ¢, = 720.83Jkg 'K~ ', R = - 8.36J K1

p=0.029 kg mol ™!, x = 0.049mkgK !5 3 v = 1.53-10 *m?2s !

= 28833 =c,—c,

In turn for the solid body, constants close to the parameters of a metal were
assumed, namely

g =510kgm™3,k = 10*Jm~'s"'K"1, ¢, = 3-102Jkg"'K~!, h = 15 Wm 2K ",

References

[1] L. K. ZaremBo, V. A. KRASILNIKQV, Viedenie v nielinejnuju akustiku, Izd. Nauka, Moskva 1966.

[2] P. M. Morsg, K. U. INGARD, Theoretical acoustics, Mc Graw Hill Book Co. New York 1968,

[3] L. TRILLING, On thermally induced sound fields, Journ. of the Acoustic Soc. of America, 27, 3, 425-431
(1955).

[4] R. DyBa, B. Z6LTOGORSKI, Thermal boundary condition for linearized Navier-Stokes equations, 11th
ICA, Paris 1983, vol. 2, 27-30.

[5] J. Osiowsk1, An outline of operator calculus (in Polish), WNT, Warsaw 1972, p. 165.



L
l

242 R. DYBA, B. ZOLTOGORSKI

[6] H. M. MERKLINGER, On nonlinear and thermal acoustic sources, Abstract of the 7th International
Symp. on Nonlinear Acoust., Backsburg 1976.
[7] K. RaTHMAN, Influence of velocity slip and temperature jump in rarefied gas acoustic oscillations in
cylindrical tubes, Journ. of Sound and Vibr., 103 3, 448-452 (1985).
[8] J. S. ToMAR, A, K. GUPTA, Effect of thermal gradient on frequencies of an orthotropic rectangular plate
whose thickness varies in two directions, Journ. of Sound and Vibr., 98, 2, 257-262 (1985).
[9] T. G. Mum, C. R. GureerTsoN, J. R. CLyNCH, Experiments on thermoacoustic array with laser
excitation, Journ. of the Acoustic Soc. of America, 59, 4, 735-742 (1976).
[10] A. M. AinpROW, R. J. DEWHURST, D. A. HUTCHINS, S. B. PALMER, Laser-generated pluses at free
metal surfaces, J. Acoust. Soc. Am., 69, 449-455 (1981).
[11] R.J. Dewnurst, D. A. HurcHins, S. B. PaLMer, C. B. ScrUBY, Quantitative measurements of
laser-generated acoustic wave forms, J. Appl. Phys., 53, 4064-4071 ( 1982).
[12] A. F. lor¥E, Semiconductor thermoelements and thermoelectric cooling. Infosearch Ltd., London 1975.
[13] Y. GERvAs, Le generation de bruit par conduction thermique, Acustica, 59, 3, 199-205 (1986).
[14] I. MALECKI, Physical foundations of technical Acoustics, Pergamon Press, PWN, Warszawa 1969.
[15] R. WYRZYKOWSKI, Linear theory of acoustic field of gaseous media (in Polish), Rzeszow Society of the
Friends of Sciences, Rzeszow 1972.

Received December 17, 1986.





