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ACOUSTICAL IMPEDANCE OF A CIRCULAR MEMBRANE VIBRATING UNDER THE
INFLUENCE OF A FORCE WITH A UNIFORM SURFACE DISTRIBUTION*

WITOLD RDZANEK

Institute of Physics,
Higher Pedagogical School
35-310 Rzeszéw, ul. Rejtana 16a

The problem of acoustic impedance was analyzed for a circular mem-
brane being acted on by a time-harmonic surface force with constant density.
The membrane is innuersed in a lose-loss gaseous medium and the edges of
the membrane are assumed to be rigid and fixed. Emploing the integral Huy-
GENS-RAYLEIGH formulas the exact formulae were obtained for the acoustic
pressure and power. These formulae are especially convinient for digital com-
puter calculations in the situation where the propagation velocity of the wave
on the membrane surface is much smaller than the velocity of the acoustic
wave propagation through the surronnoling medium. The acoustic impedance
is presented as a function of an interference parameter.

1. Introduction

Although the problems connected with the acoustical field of a vibra-
ting circular membrane are clasical problems of acoustics, up to now they
‘have not been analyzed theoretically in detail with the application of ma-
thematical methods. Among others a comprehensive analysis of the acousti-
cal impedance of a circular membrane vibrating harmonically under the in-
fluence of a force with a konwn surface distribution, is lacking.
| The knowledge of the acoustical impedance of a circular piston with a
uniform distribution of the vibration wvelocity [6] and a piston with a non-
uaniform velocity distribution [5], is not sufficient to infer about the impe-
dance of a ecircular membrane.

|
k

* This investigation was carried out within the problem MR. I. 24.
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Skudrzyk [9] presented the problem of acoustical power radiated by
o membrane for a determined vibration mode, but only for small interference
parameters.

In paper [7] the author conducted an analysis of the acoustical pressuer
in the far field of a circular membrane vibrating harmonically under the in-
fluence of a force with a uniform surface distribution.

The investigation of the radiation impedance of a vibrating membrane,
done in this paper, is the next stage of the study on the acoustical proper-
ties of a vibrating membrane. The expression for the vibration velocity [2],
[7], obtained by solving the non-uniform vibration equation for not damped
and harmonic in time effects, was used. It was assumed, that a membrane
is stretched on the circumference and placed in a perfeetly rigid and flat acou-
stical baffle, and the gascous medium, in which it radiates, is non-dissipative.
The exact expression for the radiation impedane was reached here on the
grounds of the integral HUYGENS-RAYLEIGH equation. Obtained equations
were given a thorough analysis in the domain of small interference parame-
ters. Calculation resuls have been also presented graphically.

Notation
@ — membrane radius,
b — radius of the central membrane surface, effected by a non-zero normal component
of the exciting force,
¢ — propagation velocity of a wave in a fluid medium,
¢jyr — propagation velocity of a wave in the membrane,
f  — surface density of the force exciting vibrations (1),
f, — time independent constant density of the force forcing vibrations,
Jy — m-order BESSEL function,
n
k wl/i ,

kg — 2nfi,

M — characteristic function of the source (A7),

N — acoustical power radiated by the membrane (A3),

N, — m-order NrEumMaNN function,

p — acoustical pressure (Ad4),

7, — radial variable of the membrane surface point in a polar coordinate system,

S, — n-order STRUVE funection,

T — force stretching the membrane, related to a unit length,

t — time,

U — function described by formula (A22),

v — normal component of the vibration velocity of the points on the surface of the mem-
brane,

<{|¢|2> — value of the quadratic mean of the vibration velocity (A2),

% — mechanical impedance (Al),
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a — function described by formula (17),
¢ — normalized relative impedance (AS8),

n  — surface density of the membrane,

@ — normalized relative resistance (AS8),

42— wave length in a fluid medium,

& — transverse displacement of the membrane surface points,

o, — rest denisty of the fluid medium,

¢, — membrane surface,

¥ — normalized relative reactance (A8),

@ — angular frequency of the force forcing vibrations.

2. Analysis assumptions

A ecircular membrane, stretched with an equal force on circumference
of a raduis a, is placed on a plane forming a rigid acoustical baffle, in an un-
limited, ideal fluid medium with a rest density g,. The membrane is excited
to vibrate transversally by an axially-symmetrical force (e. g. with the aid
of two flat circular electrodes with @ raduis, b parallel to the membrane sur-
face), having the surface density equal to:

T b s’ SR R i
r =
' 0 or b < p=u,
where f, is a constant, r — radial variable in a polar coordinate system, ¢ —
time, o — angular frequency of the force forcing vibrations, b — radius of
the circular membrane surface, on which the non-zero normal component
of the force forcing vibrations acts. g

The equation of the circular membrane vibrations [3] is as follows:

p (r o0& (r, t))_ o2& (r, 1)

Yl
r or or ot?

= —f(r, 1), (2)

where £ is the distribution of the transverse vibrations of the membrane sur-
face, T = ¢%n — force stretching the membrane, related to a unit length,
n — membrane surface density, ¢;; — wave propagation velocity on the mem-
brane, f — surface density of the axially-symmetrical force forcing vibra-
tions.

The solution of equation (2) for a membrane excited to vibrate by force
(1) has the form [2], [7]

o (kb [ Ny(ka) Loyt
b, ) =L [T [ St 0| ) @
for 0 < r<b,
kb N, (ka) 5 e
- ALl o AR AL ()
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for b <r < a, where k= w V9T, J, — the Bessel function, N,, — Neumann

function, both (m-order). The solution presented here satisfies the boundary
condition &,(a, t) =0 and the conformity conditions & (b, f) = & (b, #) and

8&i(r, 1) Ok(r, 1)
& e

The normal component of the vibration velocity is obtained after ta-
king into account, that

for » = b.

i o&(r, 1)

ofr, 1) =—2—, ®)

while
&(ry 1) = &(r)e™.

3. Exact calculation of the radiation impedance

The characteristic function (A7) for a circular membrane which vibrates
according to dependences (3) and (4), is equal to:

b a
M(8) = [ vy(r0) To(orosind) rydry + [ v3(re) o (legrosind) rodr,. (6)
0 b
We use the formula for a indefinite integral [11]
1
f o (ne) Zo (10) dw = —=— (o] (haw) Zo (1) — Ty (o) Z ()], [(7)

where Z, is a cylindrical m-order function. We obtain

ifyb®
mm=ﬁ) e
3 (?f’) sin?d

taking into account the Wronskian [11]

1 [Jl(kb) Jo(kpasind Jl(kabsinﬁ)] -

kb Jo(ka) kobsind )

T1(0) Nol@)—Io@) Ko@) = = (9)

The value of the quadratic mean of the vibration velocity, {|v|3>, occur-
ing in the formulas for the relative impedance, is determined for a case, when
the distribution of the force forcing vibrations is not equal zero (uniform)
on the whole membrane surface, so 0 < r < a. This also means, that the re-
lative impedance is normalized in such a way, that its real component tends
to one when the wave number k, = 2x/4 tends to an infinitelly great value
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~ and the whole membrane surface is excited to vibrate. In formulas (3) and
(4) we accept @ = b and apply the definition (5), and then v,(7y, )| =0
and

ify [ Jolkro) "
03(7as Dlpma = 20(70; 8) = ;i[ 7 (ka) —1] el (10)
On the basis of definition (A2) we achieve
. fo \ [T Jolhre) ]ﬂ
N ey 228 !
s = (L2 | (7 ay =] (1)
Taking into account formulas [11] for indefinite integrals
f T, (hao) w daw =% 7, (w), (12)
[Ty =5 w(73000) + 3 (o)), (13)
we obtain
LY 1 Ji(ka) 2 J,(ka)
gy ] 0 e SR S 14
3o (nw) Lty S i

Exact expressions for the relative impedance will be reached by placing
the calculation results of the characteristic function M(#'), M(¥") and the
quadratic mean of the vibration velocity {[v,|2) in formulas (A9) and (A12). So

/2

2 : ;
) =(kob)z(ﬁ) a_lf { 1512 [Jlgb) Jo(ioazmﬁ)_
; ; 1_(_0) sin® 9’ o(ka)
k
J(kobsind) V2. ., ..,
——%W]} sind’dd, (15)
0
J ( kya )
2 i ' r—
kb
x=(k0b)z(3) ,x_lf L [Jx( ) P\siny)
Mo gl i K Jo(ka)
k| sin*y

2
8in k.b
S Jl( o )] ; ]dy, (16)
"0 Slny Slny

. Where
1 Ji(ka) 2 Ji(ka)

BV 20 s Gk bt
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4. Radiation impedance at resonance frequencies

In a particular case, when the frequency of radiated waves is equal to
the frequency of free vibrations of the membrane, the resonance effect occurs.
At resonance frequencies ka = w,, where quantities z,, x,, #; = 2.4048 ey
5.5201 ..., 8.6557 ... are the not of equation Jy(w,) =0. If ka —x,, kb =
(bla)ka — (bla)x,,

1 J73 ()
li = lim 18
kal-l?:na kal—-::nz Ji(ka)’ e
then the radiation impedance (15), (16) are of the form
; kot \2[b T (kb)Y T J2(koasin®’)sin o'
im0 <a(Sf[1 O] [ ety
a—>x, Z, 4
ka—z, n 1isbn) 1 & [1M( : )sm’“’i‘}’]
s mn
koo
" JE|—=
E ' koa\[ b Jy(kD) P 7 "(Bfn?/) dy
im y = 7, =2 o f (20)
ka—z, xn a Jl(wn) o

1 ka)* 1 T sin?y’
x, [ siny

The obtained expressions present the radiation resistance and radiation
reactance of a circular membrane of a radius a, excited by a force with uni-
form distribution on its central circular surface of a radius b.

If we then put b =a, we reach expressions:

(2 2 : B2 ’
o, =2(I:a)2f J,;(k‘,:s;n:ﬁ)smﬁz PPy (21)
d [ —( : )sinw]
wﬂ
and
koa
siny dy

(22)

] ey

which are known from paper [8] and are the formulae for the radiation im-
pedance of a circular membrane, excited to vibrate axially-symmetrically,
so for a(0,n) vibration mode.
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5. Radiation resistance in a particular case

The radiation resistance is easier to analyze, when %,/k <1 and b = a.
In suech a case approximate formulae can be used.
For (ky/k)® <1, a reduction can be applied

R N ko\* .
1— = sin ' ~142 - sin?d’ (23)
and including b =a
/2

ko \* . o o | 1(Eka) Jy(kyasin §’)
f[l"'“?‘(??) g ’9][ T I8

(ko)

& ‘=
0

Jy(kpasind) P .
*—W] sin &' dd’. (24)

The obtained expression for the radiation resistance is expressed by a
sum of intefrals calculated from formulas (A17), (A19), (A20), (A21) and (A22).
After integrating

J1(2x) 2 Ji(y) J1(y)
260" =1— <8t 1—d,(22)]+ (2¢)
» x . Ll ~yhm Ot
1 Ji(y)
+[ + g )][Jo( w) iU e )J}, (25)
where

z =ka,y =ka, e=ualy="hklk Ulx)= —[J1(22)8(22)—J,(22)8,(2x)].

T
2

In formula (25) only the small terms of second order with respect to &
have been taken into account.

6. Example and conclusions

The diagrams of the radiation resistance and reactance of a circular mem-
brane excited to vibrate by a force with a uniform surface distribution are
shown in Fig. 1. ky/k = ¢y /¢ = 1 was taken, so the propagation velocity of
a wave in a fluid medium is equal to the wave propagation velocity on the
membrane.

Fig. 2 presents diagrams of radiation resistance fo rky/k =1,2 and 4,
while Fig. 3 for k,/k =1/2.
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In the analyzed example it was supposed that a non zero uniform dis-
tribution of the force forcing vibrations occurs on the whole surface of the
membrane.

j /
) B R
T A

S ETATE N =
e Al e

iy ]

Fig. 1. Normalized impedance (15), (16) ver- Fig. 2. Normalized resistance (15) versus
sus interference parameter kja, for ky/k = 1, interference parameter kya, for b= a;
b = a; 1 — resistance, 2 — reactance I-Ikyk =1, 2 —k/k=2, 3 —k/k=4

The radiation impedance of a circular membrane depends above all on
the interference parameters
ka =ia, k,a = —m~a
Oar ¢
and at fixed dimensions of the membrane (fixed diameter a) on the frequency
of the radiated waves, the propagation velocity in the fluid medium and the
propagation velocity of a wave on the membrane.

Unfavourable radiation conditions take place for ¢, /¢, <1. Maximum
values of the real component of the radiation impedance are lower from the
corresponding resistance values for k,/k = 1. Also such values of the Iya
parameter occur, for which radiation with the employment of the real impe-
dance imponent is not present (Fig. 3).
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It results from the above analysis that the radiation impedance is of a
finite value for every quantity of the interference parameter k,a. The acou-
stical radiation power and vibration velocity for the analyzed membrane were
infinitely high for resonance frequencies.
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Fig. 3. Normalized resistance (15) versus interference parameter k,a, for Kok =1{2,b=a

Appendix A

The calculation of the mechanical impedance of a vibrating membrane
is calculated in accordance to definition [10]

N
2 o Al)
o> ;
where
ol = o [ v*0)ao (A2)
20 Y
is the quadratic mean value of the vibration velocity, while
1k B i
=-§-fp(r)v'(r)dcr (A3)

8 the expression for the acoustical power radiated by the membrane »* marks
the value conjugated to the complex quantity of the vibration velocity v.
The acoustical pressure [6]

ikyooe [ - e~ hlT =T
258 fV 7)) ———=— do, (A4)
2r [r —7,|

p(r) =

%
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— radiated by the membrane — is rearranged with the application of the
Fourier expansion [8]

m/2+1i-00

f exp {— ikysin # [(z — 2,) cOS @+ (¥ — ¥,) sin ]} sin & dd dep.

0

wie
e-ikolr -1l b1 ¢ "ko

F—rl 2w
(AB)

Integration in the plane of the complex variable ¢ = ¢’ +id"” is done
along the real axis on the interval (0, x/2) and along the (0, co) line, parallel
to the imaginary axis.

In a case of circular source of a radius r = a, with an axially-symmetri-
cal distribution of the vibration velocity, the transformation coordinates:
& = reospf, X, = 1,C08B,, Y =rsinf, y, = r,8inf,, after integrating over an-
gular variables 8, ¢, f, in the (0, 2x) limits, we obtain an expression for the
mechanical impedance of the source radiation (see [8])

ﬁkz /24100
PP, Ybiaai. M (9) M*(9)sin ddd A6
= 000 Ty ; ) M*(9) ; (A6)
‘where
M(9) =f'u(r,,)Jo(kurosin19)radro (A7)
0

is the characteristic function of the source.
The relative impedance is

Z[goeo, = £ = O+iy, (A8)

where @, y are the relative resistance and reactance, respectively, ¢ — wave
propagation velocity in a fluid medium, and ¢, = wa
The real component of the relative impedance, i. e., the relative resis-

tance, is acquired from expression (A6), when the integration in the complex
variable @ = ¢’ +i9'* is performed on the interval on the real axis ¢’ in the
(0, n/2) limits, i. e.,
nf2

M (&) M*(8")sin " dd’. (A9)

2
7k

alv® &

In order to isolate the imaginary component of the relative impedance
in formula (A6), calculations have to be limited to the calculation of the in-
tegral over a half-line parallel to the imaginary axis in the complex variable
plane, 9 = ¢ +i9”. Accepting ¢ = =/2, we obtain 4 = w/2+id9", 0 < 9" < oo,
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and then
ﬂkg - r *® e If 14
g =—0 f M(9") M*(9") coshd"" dd (A10)
o([o® J
while
(D) = [ 0(re)do(koyryCoshd”’) rydr,. (A11)

0

An integral expression in finite limits much is more convenient for nu-
merical calculations of the relative reactance.

Substituting cosh®#'’ = 1[siny, the integral (A10) in infinite limits (0, oo)
is converted to an integral in finite limits (0, =/2), i. e.,

/2
nky f‘ :
s M (y) M*(y)sin—2ydy (A12)
Bt ol | (y) M*(y )
where
¢ g
M(y) = f < 4] i aic S A13
@ = [ ot o (i) (A13)
Appendix B

In order to determine the value of the integral

72

Ay = [ do(wsint)d,(sint)dt (Al14)
0

= the product of two Bessel function is expanded into a series [4], [11]

(21 +p +9) L (Fu)" 2t

(W) o) = D (—1)"

- A1b
- nl(n+p)ln+gtn+p+g! A
and, putting p =0, ¢ =1, u = xsint we have
: Rt , (2n+1)!(Jasint)*"+
Jo(@sint)J, (zsint) = Z(—l) i (A16)

4 — Arch. of Acoust. 1/88
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The alternating series (A16) is substituted in the integral in expression
(A14). Integrating term by term we obtain

@n)Gayer T
10—2( 1) TACES TN Jsm g dt

n=0

w2ﬂ+2

1 = e
=272<*1> D) 20 [1—Jo(20)], (A1T)

where the intagrate property was applied

/2

i Tin4+1)Va _ 2"(n!)

2 T'(n+3/2) (2n+1)!

(A18)

0

In a similar way the other integrals, essential for the radiation resistance
analysis, can be calculated. Most of them is considered in papers [1] and [4]:

/2 1 2z
S =f J2 (@sint)sintdt =%f Jo (1) dt
0

0

= Jo(22) + ; [1(22) 8,(22) — J,(22) 8:(22)], (A19)

where S, is the m-order STRUVE function.

w[2 2 z
¢ 2
4 =f dEuah =%[1_ Il ”)], (A20)
0

sint @
/2

5 o f ., (wsint)J,(sint) sin®tdt =Z%[J1(2m)80(2w)~—

<

—dJy(22)8,(22)], (A21)

/2
2
B,, =f J: (zsint)sintdt = J,(22) — ud -
(1]

i % [J1(22) 8, (22) — J,(22) 8, (22)].  (A22)
It is convenient to introduce function
U () = - [J2(20) So(22) — Jo(22) 8, (20)] (A23)
which can be approximated for # <1 by the expression

Ulx) ~ e wz(l +—-m=) (A24)
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if we use the approximate formulae for the STRUVE and BESSEL functions [4]:

2 x? 2 x?
o i | S— [ T — 2 ——
o) =~ = m(l 9), 8;(x) =~ ?mm (1 15), (A25)
2 r x?
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