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ACOUSTIC PROPERTIES OF TWO PARALLEL ELASTIC PLATES
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Two parallel elastic plates are submerget in gas. A plane sinusoidal wave
propagates perpendicularily to the plates. Such a gystem models a paned window.
In order to present the physical phenomenon without excessively developing
the mathematical description, the plates are modelled by rigid plane screens
suspended elastically. The displacement of the screen is proportional to the
force, and the suspension rigidity is proportional to the third power of the screen
thickness (as in a bended plate).

On the basis of motion equations and continuity equations, the displace-
ment behind both plates is determined. The attenuation coefficient depends on
the frequency, plate thickness and their spacing. Plates with different thicknesses
give a better characteristic than those with identical thicknesses. The attenuation
coefficient does not depend on the sequence of plates and it has two maximum
in the acoustical range. Frequencies corresponding to them differ from the
frequencies of free vibrations of the plates and the cavity.

1. Model

We are analysing two simple-supported elastic plates submerged in gas
(Fig. 1). These plates have equal moduli of elasticity but different thicknesses.
A plane sinusoidal wave incides perpendicularily onto the plates and passes
through them undergoing attenuation. The described system is a model of
a window closed by two panels. This paper is aimed at the determination of the
resulting displacement field with special pressure put to the analysis of the
influence of plate thickness, their distance and sequence on this field.

Let us begin with the analysis of a single circular plate. Displacement, w
(in the direction of the wx-axis, Fig. 1) satisfies equation [1]
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where ¢ is the external load and r is the distance from the centre.

(1)
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Constant coefficients of the equation were denoted by C;, C,. The load ¢
is induced by a known incident wave and by the reflected and refracted waves
of unknown intensities dependent (on plane # = 0) only on 7, 4,(r), 4,(r). Due
to motion, every plate surface element is a source of a spherical wave which
loads all plate surface elements. Therefore, the load ¢ in point » can be expressed
as integrals, over the whole plate, of the function (4,(r)—4,(r)). Substituting
them in equation (1) we obtain an integral-differential equation for quantities:
w(r,t), 4,(r), A,(r). Other, unmentioned here, equations are displacement
and velocity continuity equations. Such a system of equations can not be solved
analytically. Obviously, the situation for a rectangular plate or a system of
plates is even more complex. For this reason we are limiting our investigations
‘to an analysis of a simplified model presented in Fig. 2.
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Fig. 1. Analyzed system

Two ridig diaphragms of g, and g, thicknesses are suspended elastically
at a distance, a, and can move in the direction of the z-axis. In order to model
a system of plates in the best possible way we assume that suspension rigidities,
@, and @,, are proportional to the third power of the diaphragm thickness, @, ~ g3,
Q, ~ g} (because the rigidity of a bended plate is proportional to the third power
of its thickness). Masses of a unit diaphragm surface, m, and m,, are proportional
to their thicknesses: m, & ¢, my, &~ ¢,. It can be expected that the attenuation
properties of the system presented in Fig. 2 have a characteristic approximating
the characteristic of attenuation properties of the system presented in Fig. 1.

2. Acoustical properties of a single diaphragm

We are analysis a diaphragm of a g-thickness placed at # = Z. A plane
sinusoidal wave, moving to the right, incides onto the diaphragm (Fig. 3):

g A‘i 6‘“’(‘_5‘?’0)
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Fig. 2. Substitute model Fig. 3. System with a single diaph-
: ragm

and generates a reflected wave (moving to the left)

Ar eiw(t+a‘.fc) ,
and a transmitted wave (moving to the right) 4,¢"¢%) 4, and » are assu-
med known. Intensities 4,, A, should be determined from the motion equa-
tions and continuity equations. The calculation methodology is discussed in

papers [2] and [3]. Denoting the displacement on the left side of the dia-
phragm by u, and the right side by v, we obtain

% = Aie‘tw(l—mlc)_I_Areim(Ha:,t'c), T Ateiw(t—x!c)_ (2)

The displacement of the diaphragm is denoted by w = w(t). At # = 7 the
displacements « and v, are identical and equal w. Thus we have

(Aie—imac_I_AreimE[c)eimt A A‘e—im:?lceimt s 40 (3)

As the air elasticity modulus is = p¢?, then waves (2) interact with the
mobile diaphragm with a force (acting in the direction 4 ).

iwgo[(A;— A,) e~ _ 4 _giowlc]giot,

Also the force — Qw acts on a unit surface and it is the reaction of the
elastic suspension. Including finally the force of inertia m6 we achieve the
motion equation diaphragm for the

iw e [(A;— Ay 6™ — A _¢le] ¢ — g+ Qu. (4)
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Equations (3) and (4) give a system of three equations describing the dis-
placement w and intensities A,, 4,. Inserting (3) in (4) and repeating (3) we
obtain a system of two algebraic equation for 4,, 4,

- Q —mw* - —
A eimz{o A1t ; e—iwxlc =X e-—imx]c
f + {1 + ’MOGQ i ]

— 4,6 4 A g~V — A emto%,

Thus the equations for the intensities of the reflected and transmitted
waves are

g

5o (Q—mw?)
4, = A e, O]
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€
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po— e 2
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Further analysis does not require the formula for w, therefore we are not
giving it here. Let’s notice that for a resonance frequency «® = @/m we have,

Ar = 0, A‘ = A,‘-.
According to (B) for waves sent at Z = 0 (see Fig. 2) we obtain
4, =R 4;, 4,=TA4, (6)
where
—Mi+iM, 14iM, Qy—myw?
—_— T=— My=—
14-M; 14+ M7 2wec

These formulas are also true for waves propagating in the direction —a.
For a second diaphragm situated at & = @ we have

Biow (n

Ar = R,A4,, A, =T, A, (8Y
where :
M%—I_‘iMz 2iwale 1+"'-M2 Qa—mawz
=3 — 210 e o 9
Rz 1+M2 t H Tz 1+M§ ! 2 2(090 ( )

3. Two diaphragms

We will utilize previous results in this paragraph. The wave A4exp
[iw(t —/c)] inciding onto the first diaphragm produces a reflected wave AR, exp
[iw(t+x/c)] and a transmitted wave AT, exp[iw(t—x/c)]. In regard to the
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second diaphragm the wave AT, exp[iw(t—x/e)] is an incident wave, which
generates a reflected wave AT,exp[iw(t+x/c)] and transmitted wave
AT, T,expliw(t—x/c)]. Next, the wave AT, R,exp[iw(l+a/c)] is an incident
wave for the first diaphragm. The diagram of succeeding reflections is given
in Fig. 4. For greater clarity, reflected waves are denoted by askew lines instead
of lines perpendicular to diaphragms.

Displacement fields in regions 1, 2, 3 are denoted by u,, %,, 43, respectively.
- According to Fig. 4 we have

wy, = A L 4 (R + TER,[14 By By + (B By +.. Jefo4200),
uy = AT, [1+ R R, + (B R;)* +...]¢"l-=10) (10)
ug = AT, T,[1+ R, R, + (B, R,)* +...]e-=00),
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Fig. 4. Diagram of succeeding reflections from two diaphragms

Terms in square brackets are the sums of infinite geometrical progressions.
On the basis of formulas for the sums of such progressions we achieve

TiR,
1 . 'Rl Rz

T, e LS

S m(i-x[c) A 1-g
1-—- .RIRg + 1_R1R2
1 g Rle
From the point of view of noise control the formula for ug is the most

~ important. Having numeric caleulations in mind we will express the coefficients
T,, T,, R,, R, in the exponential form

Uy = Ae‘u(i—ﬂd ol (R1+ ) efw(l+m]c)’
6"“’(""‘1’!@)’ (11)

uy = A glolt—zie)

T, = Ky, T,=E,%, B =ILd%, R =ILe%  (12)
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where K,, K,, L,, L, are non-negative constants. In complience with formulas (7)
and (9) we have

3, 1, :
;S —l_/Ir{——Tf, -Kﬂ = L1 = Kx]Mlls Lz 0 Klezh (13)

K
Vigm:'

@, = arctgM,, ¢, =arctgM,, vy, =arctg(1/M,) +=,
yy = arctg(1/M,)+m,

where M,, M, are described by fromulas (7) and (9).
Applying (12), (13) we obtain from formula (11)

- KK,
1—L,L.exp[i(p;+ys—2wale)]

[ ]
The expression following the fraction describes the incident wave. Denoting

Uy Agteli-zle) (14).

1—L, Lyexp[i(p,+vs —2wajc) = Pé*, P>0 (15)
(14) can be replaced by a simple formula
Uy = HA -0~ [ = K K,|P. (16)

The real number H is the attenuation coefficient. The term exp(—ix)
represents the phase shift. It results from the symmetry L,L, = L,L, and
@1+ 9, = v, + vy, that neither P or the attenuation coefficient H depends on
the sequence of diaphragms. However, it is significantly influenced by their
thickness.

4. Attenuation

Diagrams of the functions K,, K, and H in terms of frequence o, will be
given here. We will introduce dimensionless thicknesses

G =gila, G, =gsla (17)

and the following frequencies

oc¢ [ A Qs ¢
0o = g —=, @y = —, @;=T—. (18)
0: @ my My a

Frequencies, o, and w,, are the frequencies of free vibrations of diaphragms
1 and 2. The frequency w, is the free frequency of the space between the diaph-
ragms. It is proportional to the number of distances, @, which the wave
travels during a unit of time.
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In accordance with the assumptlon that @, ~ gim, ~ g, and in accordance
with (18) we have

o, = 0@, oy, =CG0, (19)

where € is a certain factor of proportionality.
Further calculations are conducted for typical values equivalent for a win-
dow in a building, namely:

diaphragm spacing e =01m \
wave velocity in air ¢ = 330 mjs

vave velocity in glass ¢, = ¢, = 4000 m/s

air density g =1kg/m?

glass density ps = 3300 kg /m?

We assume that a 3-mm-thick diaphragm has a free vibration frequency
of 30 s~1. Since @ = 0.03, then in accordance with (19) we accept ¢ = 1000 s~
We establish G, +@, = 0.3, what is equivalent with the assumption about
a constant mass of the diaphragms. K,, K, and H are given as frequency func-
tions. In Fig. 5, G, = @, = 0.15. K, = K, achieves a maximum of 1 for the

K H)

1 1
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Fig. 5. K, = K, and H versus the frequency for G; = 0.15

frequency @ = 150 s, Also H achieves a maximum equal to 1 for this frequency.
For o = 250 s~! function H achieves next maximum, lower than 1. In Fig. 6,

G, = 0.1, G, = 0.2. The maximal values of the attenuatmn coefficient are
lower than 1. Maxima are shifted in regards to the maxima of coefficients K, , K.

Fig. 7 presents K,, K,and H for G, = 0.5, G, = 25. Also in this case H is every-
where lower than 1.
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Fig. 6. Ky, K, and H versus the frequency for G, = 0.1 and G, = 0.2
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Fig. 7. K,, K, and H versus the frequency for G, = 50 and G, = 25
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