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MUTUAL IMPEDANCE OF AXIALLY-SYMMETRIC MODES OF A CIRCULAR PLATE

WITOLD RDZANEK

Department of Physies, Higher Pedagogical School
(35-310 Rzeszéw, ul. Rejtana 16)

This paper presents an exact calculation of the mutual radiation impedance
of axially-symmetric modes of a fixed at the edge circular plate. Linear and
harmonic processes in respect to time have been considered and it has been
aceepted that the plate radiates acoustic waves into a lossless gas medium.
Included here expressions for the mutual impedance in the form of single inte-
grals have been adopted on the basis of several simplifying assumptions to
numerical calculations for low and high frequencies of radiated waves. Achieved
results are used in the analysis of the impedance and sound power radiated
by a circular plate excited to vibrate by ‘a known (from the assumption)
superficial distribution of the exciting force.

Notations

plate radius
flexural rigidity
constant quantity for m-mode (10)

— propagation velocity of a wave in a gas medium

frequency of free vibrations for mode (0, n) (4)

plate thickness

first type, m-order Hankel function

second type, m-order Hankel function

first type, m-order modified Bessel function

m-order Bessel function

wave number

m-order cylindrical MacDonald function

m-order Neumann funetion

mutual power of modes, (0,n) and (0, s), of the circular plate (6)
acoustic pressure produced by the vibrating plate through mode (0, n) and exerted
on the same plate through mode (0, s)

radial variable of point on the surface of the plate, in polar coordinates
m-order Struve funection
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i — ftime

By — vibration velocity of points on the surface of the plate for mode (0, n) (2)
Zoa — mechanical impedancé of modes, (0, n) and (0, s) of the circular plate (3)
Yn — n-root of the characteristic equation (3)

B — Kronecker delta

Eas — mnormalized mutual impedance (12)

0,5 — normalized mutual resistance (13) :

A — length of an acoustic wave in a gas medium

& — transverse dislocation of points on the surface of the plate

e — density of the material of the plate

@ — rest density of the gas medium

o — area of the plate

¥ns — normalized mutual reactance (14)

Wy — angular frequency of free vibrations, corresponding to mode (0, n)

1. Introduction

Only few published papers in the field of the generation of acoustic waves
by superficial sources are concerned with the problem of acoustic mutual
interactions of plates or circular membranes. The carried out analysis was
done for a system of two plates or circular membranes for a case of axially-
symmetric free vibrations.

Besides theoretical work on acoustic mutual interactions between two sour-
ces, research is also performed on acoustic interactions of two different vibra-
tion modes of only one source. Results of the analysis of a circular membrane
are presented in papers [6] and [7].

Hitherto the problem for a circular plate has not been solved.

This paper undertakes the problem of acoustic interactions by calculating
the mutual impedance of two different axially-symmetrie, (0, ) and (0, s),
vibration modes of a circular plate fixed at the edge, which radiates acoustie
waves into a lossless gas medium. Linear and harmonic in time processes have
been examined. :

Obtained expressions for mutual impedance can be a basis for further
investigations of the radiation impedance of a circular plate with a determined
superficial distribution of the force exciting vibrations.

2. Superficial distribution of the vibration velocity

The motion equation for free axially-symmetric vibrations of a circular
plate, made from a homogeneous material of density p, and of small in respect
to the diameter 2a thickness h, is as follows [2]:

18 9\ PE(r, 1)
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\

where £ is the transverse dislocation of points on the surface of the plate, B —
flexural rigidity of the plate.

Solving this equation for effects which are smusmdal in time, in the case
of a plate fixed at the edge leads to a formula for the vibration velocity [2]

.3 Jo(?n) r 3

V(1) = vﬂn{JO(a ?’n) 1,(7.) Iu(a ?’n)}° (2)
In paper [2], v,, denotes the maximal value of the vibration velocity of the
central point of the plate for mode (0, #). Occurring here special function I,(x)
is a zero order modified Bessel function of the first type, which can be express-
ed by a Bessel function J,(iéz) of an imaginary argument, i.e. I,, (z) = i~™J,, (i)
for m = 0,1,2, ...

From the frequency equation (2)

Lo () T2 (n) + Ly (7a)d o () = 0 : (3)

we obtain an infinite number of values &k = k,(ka = y,), which determine
frequencies of free vibrations

1 B

4
e Vn > (4)

fn=

while for n =1, 2, 3 we have (e.g. [3]): y; =3.195 ...; ¥, = 6.306 ...; y,
= 9.439 ... If » is sufficiently large, then according to relationship [3] y, ~ n=,

2
instead of ka = Tﬂa = y, We have ni = 2a.

3. Integral expression for mutual impedance

The mechanical mutual impedance between axially-symmetric free vibra-
tion modes, (0, #) and (0, ), of a circular plate placed in a rigid and flat acoustic
baffle is calculated on the basis of the definition (compare [7])

2§
o ———m—— ns’usd (5)
2V v, < 1v, 1% f fer

where p, is the acoustig pressure produced by the vibrating plate through mode
(0, ») and exerted on the same plate through vibration mode (0, s),

b
ng Efpﬂs'vsdo (6)
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is the mutual power of modes, (0, n) and (0, s), of the circular plate, while

1
o1y = 5= [ vh(r)da (6a)

is the mean of the square of velocity of the vibration mode (0, 7).
On the basis of paper [4] the mutual impedance (5) can be expressed by
the following formula

2 @f2-+ic0
dan b7 Mletle <ot I, (0) M, (9) sin 0d9 (7)
V{0,150, 1D
where
a J ’19” =% :
I,00) = v [ (0[5 ) = P Lo )| Fohrsinoyrar @)

¢, — propagation velocity of a wave in a gas medium of a rest density of g,, &,
= 27/h — wave number, 2 — acoustic wave length in a gas medium. Applying
the integral formula (A3) and the frequency equation (3), we achieve

% ot oy
M () = 2 vy — k“S";’ {b,,Jo(koasmﬁ)—
2 e (L) sin*s
Vn
ko . 3
- 5 smﬂJl(koasmv?)}, (9)
B

Xos Jf\ = j

b
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Fig. 1. Normalized mutual impedance of two, (0, n) and (0, 5), axially-symmetric vibrations
modes of a circular plate in terms of parameter kja
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modes of a circular plate in terms of parameter kya: I — plate resistance, 2 — plate reactance,
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Fig. 3. Normalized mutual impedance of two, (0, n) and (0, s), axially-symmetriec vibration
modes of a circular plate in terms of parameter kya
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where
_ dil)
. Jﬂ(yn)

In order to caleulate the mean value of the square of the vibration velocity
{|v,]*> we take into account the property of orthogonality (A4) for function

J,
q'n('r) = Jﬂ (‘?2_ yn) = ID::'“; ID (_:;_Vn)

(10)

and we obtain
0,1 = 15,5 (7a)- (11)

Relating the mutual mechanical impedance to the specific resistance of
the medium, g,¢, and to the area of the plate, wa? we obtain the normalized
mutual impedance

k
oiays " | BaTolloasind) — “ Sin 97, (koasin )
Cns = - Zﬂ4 % ;
Yolt d 1— (—-9-) sin‘d
Vn
. koa . .
byJ, (kyasin &) — sin 9J, (kyasin )
s L singdd  (12)

koa \*
i ( 2 ) sin'®
Vs
and after separating its real and imaginary components we attain the following

expressions

w2

Ops = [ T (#) Fy(#)sin 0'ad’ (13)
0

for the normalized mutual i;npedance between modes (0, n) and (0, s) of the
circular plate, and

2

Zos = [ Ga(y)6,(y)sin~ydy (14)

0

for the normalized mutual reactance between modes (0, n) and (0, s) of the cir-
cular plate, where

koo

b, o (koasin §') — —— sin 8'J, (koasin §')

2k qa k'yn = , (15)
a
Iy 1—( : ) sin*®’
Vn

Fn('ﬂ’) o 3
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1; - ( @ ) ko [ ko
ok ™ °\siny| y,siny '\sin
Guly) = —" LT L. (16)
Vn 1 (koa)

ypsin'y

If we accept 8 = n, then we acquire the following expressions
nf2
O = [ Fr(0')sind'ad" (17)
0
and

nf2

tn = | G(y)sin~*ydy (18)
0
known from papers [4, 5]. They express the radiation impedance of a circular
plate excited to vibrate with a resonans frequency for mode (0, n).
4. Mutual resistance for a special case
The analysis of the mutual resistance (13) is much more convenient when

kya[y, <1, or more accurately when (kw/y,)* < 1. We make the following
simplifications in formula (13)

k 4 -1 'k 4 -1
[1 - ( "a) sin‘a?’] ~1, [1 — ('La) sin‘ﬁ'] ~1 (19)
Yn Vs

and reach an expression in the form of a summation of integrals

/2

9%,a)?

g {b,,b,, f I (kyasin &) sin §'d9’ —
?ﬂyg 0 i

n/2
.o h
—kya (-;- +—S) f I, (koasin ') J o (koasin §') sin? &'dd’ -+
N Tal

(k(la‘)2 ™ 2 : "\ o 387797
A le(koasmt‘})smi‘}dﬁ}. (20)
nrs 0

These integrals are known [4] and have been presented in formulae (A5),
(A6) and (AT). Integrating we acquire the following form of the mutual resi-
stance (20)

Ors ¢ (200" (s o) U 01 (e Bt 20) = 5 s (20)] - @1)
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where: # = ks, U(xr) = %[J 1(22) 8, (2@) —J o (22) 8, (22)], 8, (%) is the m-order
Struve function,

: 3 1 3
= b,b — —by,—b 22
Qg Vol [ n s+ 2?117’3 (‘1 n¥n s?ﬂs)]! ( )
B - 23
ns 2?2”}: ? ( )

b,b,

Bns = 7 24
i 1% (24)

If moreover # = k,a < 1, then we can apply approximate formulae, (A9)
and (Al11), and thus

0,, ~ (2u) == b.bs [1—1(1+ 3 ¥ 3 )w%] (25)
. i YuYs 3 20, - Yaby
whereas for n = 8
0,, = (22) (b )2[ 1( + 2 ) 2] (26)
s e z*].
Vn 3 Ynbn

We will also analyse the mutual reistance when k¢ > y,, ,, or more ac-
curately when (k,a)* > 5, ¥s.
We perform a change of variables in formulae (13) and (15)

A (R AT) | AU R AT I

: (Vo —P) (i —1) ]/1 (
koa
We use the approximate formula

t \2]2 1/ 1t \? 8/ t\4
-G T omegls) +als) - o

and this results in the expression

s = [ 4,04, [1+§(~;—) +%(§)‘]m (29)

Ops = 4 ('Vn?s)a

(27)
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where

b () — — T, (2)
Y.

An(i) =2 yi ‘}’:—tr o (30)

Three terms of the series (28) have been taken into account in order to ensure
the convergence of integral (29) for very large values of # = kya. If ¢t = y,,
then function A4,(t) is an indeterminate symbol, which has the following limit

by (1) — — (1

lim A, () = 293 lim s

i—syp i=vp

I3 (V) + I3 (72)
Jo(?’n)

Integral (29) within limits (0, ) is presented in the form of a difference of inte-
grals, i.e.

&k
i (31)

Pk )

The integral within limites (0, o) is calculated from formula (Al14), while the
value of the integral within limits (2, co) can be neglected, because it is a small
quantity in comparison to the value of the integral within limits (0, cc). More-
over if we take into account the characteristic equation (3) and Wronskians, (A1)
and (A2), then finally we obtain

Vs B D 0™ (33)
where & = ko & > Y, Ve :
(Vu?s)’ [ J1 (V) Jl(}’a)]
by, =2 - 34
e Vo7 Lo AP E P e

for n s s. In order to achieve higher accuracy of calculations, the integral
within limits (#, cc) has to subtracted in expression (33). The approximate value

Table 1. Coefficients hy,g, ayss fnss and g

n, 8 jixe] 1,3 2,3
Bd —1.7275 —1.459 —3.504

Ois 4.904-10-2 3.278-10-2 1.678-10-2
Bus 1.232:10-3 5.499-10-4 1.412-10-4
e 3.773-10-2 2.599-10-2 1.459-10-2
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of the integral for (k) = a* > 4,9} is

o0 2
f s v ) e S (35)
J 10 b1

Values of several coefficients are gathered in Tab. 1 to facilitate numerical cal-
culations.

Though there is a value of coefficient (34) within limits for # = s, but ex-
pression (33) for n = s can not be used in calculations of the self-resistance.
In this cage an approximate formula, given in paper [8] should be applied.

5. Conclusions

Mutual acoustic interactions between vibration modes, (0, n) and (0, s),
of a single circular plate take place for determined intervals of parameter kqa.
Extreme values of the mutual impedance occur for k near y, and y,. For
higher modes maximal interactions occur when the linear dimensions 2a of the

plate are comparable with the integral multiple of the length of radiated
waves, ni.

Tt is characteristic that acoustic interactions suddenly decay for wave
lengths 2 slightly differing from 2a/n. When the wave length is decreased still,
then the mutual resistance also decreases assuming negative values and within
the limit for A—>0 it equals zero. The mutual reactance also decreases with the
frequency increase of radiated waves. It assumes positive values and within
the limit for k, = 2n/A—oco0 approaches zero.

Acoustic interactions through a fixed mode (0, ») and an arbitrary different
mode (0, s) are the smaller, the higher the value of n—s. If the value of m —s
is fixed, then acoustic interactions decrease when higher and higher modes,
(0, ») and (0, s), are considered.
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Appendix A

The following Wronskians are known for the Bessel function J,, (), Neu-
mann function N,,(z) and the MacDonald function K, (z) [9]:

2
J1(2) No(2) —d o(@) Ny (2) = e (A1)
1
I, (2)Ky(x) + Io(2) K, (2) = = (A2)
The indefinite integral [9]
f 10T o (110) Ty (0) 0 = —== (1T, (1) Ty (1) =W o () Ty (o)} (A3)

can be applied also for complex quantities #, 1.
Using the indefinite integral (A3) it can be proved that eigenfunctions

Jo(¥n
qn(r)=Jo(—:-?n) (y) ( ?n)

Lo(yn)
are orthogonal for 0 < r < a in the sense of the Kronecker delta, i.e.
f (1) G () 1dr = a2T3(9,) By (A4)
0

if 9, is the n-root of the characteristic equation (3).
The following definite integrals [5] are found in expression (20):

nf2

Ay = f JE(wsint)sintdt = J,(22)+
+ 5 [71(20)80(22) — o (20) §1(20)],  (AB)

4 — Arch. of Acoust. 3/86
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~

ﬂfﬁ 1
Ay = [ Jy(@sint)dy(@sint)sin®tdt = 5= [du(@) = J,(20)]

0

- .=__f J;(wsint)sin3tdt =

0 !
1

2 (2)?

It is convenient to introduce function
T
Uiw) m [J1(22) 8o (22) — J o (22) 8, (2)]
which for # < 1 can be approximated by the expression

2
U(x) == —3—5&2 (1-— 1—3:)-952)

if we use approximate formulas for Struve and Bessel functions [3]:

; 8y (@) E—50(1'__): 8y () Eiﬂﬂ(l—ﬁ):

et 2 36 zf(l_ m—z)

Appendix B
The contour function (compare [9], [8])

1 HY (az)dz

e, -1
2mi 4 #2008 A =)

3
= 2 A0 (@) + 5o [oo(0) =207, (20) — Jo(20)]-

(A6)

(A7)

(A8)

(A9)

(A10)

(Al11)

(A12)

where a > b > 0; r,8 — complex numbers; Z,— u-order cylindrical function;
lul+ 7| < o < 10, can be expressed in the form of a sum of residues in poles

of the integrand. When a = b, then o < 9.

With the application of the Jordan lemat and the Cauchy residuum theo-
rem [1], the integration contour can be closed in the top half-plane of the com-
plex variable 2. Four poles of the integrand, for z = r, 2 = ir, 2 = sand z = s,
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—

are enclosed during integration. We obtain

2me {Z,,(bx) HY (ax) — exp (oni) Z,, [bwexp (i) | HY [awexp (ri) ]} X
0
z°-1d 1 :
e (;_84) = oy O HD (an) — 12, (be) x

x HM (as) +i° [1°~*Z,,(ibr) HD (iar) — s°~*Z,, (ibs) HD (ias)]}.  (A13)
For a special case, when Z, = J,,a = b = 1, taking into account rela-
tions

7tia) = exp i ) L), BOG) = 2 exp| —itr+1) 2| & 0,

Ju[vexp(wi)] = exp(uni)d, (¢), HP[zexp(mi)] = —exp(—ivr)HP (a),
Hf’l)(a:) o J,(.’E)—]—'i.N,,(.’B), Hsuz}(wa o J,,({L')—%.N,(m)
in place of (A13) we have

2w 1]
—ri)(at—st)  4(r*—sY)

[ u@)(o {—W‘J,,(r)ﬂ‘:’(r)—
1]

— 804 (s)HY(s) + % cos(o+pu—w) % (=%, (r) K, (r)— sg““Iy(s)K,,(s)]}
(Al14)

for p+pu—v=2n,n=1,2,3,... and

a®dy % r
(@ —r")(a*—s")  4(*—s")

[ 7@, @ (e, B9 ) -

— 84, (8) HY(s)+ —?; sin (g + p—»)m[2[r** T, (1) K, (r) —s*~*1(s)K, (s)]}

(A15)
for p+pu—v =20+1, n =0,1,2,...





