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The propagation of acoustic disturbances in a continuum medium was
analyzed under the assumption that the non-dissipative Burgers’ equation is
a reagonable mathematical model of the phenomenon under study. Regarding
the propagation as a transformation of the time dependence of the acoustic
veloeity in a system with an input signal and employing the Banta’s solu-
tion, the non-linear Burgers-Banta system was obtained. This system was
described in the form of Volterra’s series; the kernels of the series being
determined with the help of the method of harmonic excitations. The r-di-
mensional Volterra’s kernels given in the paper and their Fourier transforms
(transfer functions) enable the parameters and probabilistic characteristics of
the output signal to be determined under the condition that the input signal
is known.

1. Non-dissipative Burgers’ equation

Navier-Stokes equations [1, 2] define the dynamics of a viscous gas medium
with the consideration of heat conduction. These can be reduced to one equation
for the potential of the acoustic veloeity, with general agsumptions concernmg
the disturbances of the medium [3]:
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where besides typical notations, there also are: :
¢, — adiabatic sound velocity, y — exponent of the adiabate (= ¢,/¢y), 7 —
first coefficient of viscosity (coefficient of dynamie viseosity), ' — second
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coefficient of viscosity, » — coefficient of kinematie viscosity (= 5/g,), Pr —
Prandtl number.

Applying the approximation of the theory valid for waves with a small
but finite amplitude and limiting the case to a one-dimension problem, the
above equation can be written in the following form:
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which, by integrating in terms of ¢ and differentiating in terms of , can be con-
verted to the equation for acoustic velocity:
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d in equations (2) and (3) marks the coefficient of sound dissipation:
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where { = '+ 37 is the total coefficient of viscosity. The coefficient of sound

dissipation represents losses in the medium due to viscosity and heat con-
duction.

This paper is concerned with such a ecase of propagation of dlsturbances,
in which the right side of equation (3) can be neglected. Thus, equation (3) is
replaced by the non-dissipative Burgers’ equation:
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2, Banta’s solution

The unconventional solution of equation (5) given by Banta [4], has the
following form:
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In further considerations a slightly different expression for ¥ will be used;
applying the assumption about finite but small (with respect to ¢,) acoustic
velocities it can be accepted, that

Flg)=——=— ——50; (6b)

in expressions (6a) and (6b): g = (y+41)/2.

The approximation in (6b) is sufficient; e.g. if the level of acoustic pres-
sure equals 174 dB (re 2-10~° Pa) what corresponds to the velocity of the acous-
tical particle of 0.1 ¢,, the approximation error in (6b) does not exceed 1.5 % [56].

3. Application of the harmonic input method in the construction of a transfer function of
a system defined by Banta’s series

The phenomenon of non-linear propagation, defined by Banta’s series (6),
can be presented in the form of a system with an input signal X (f) = (%)
= u(0,?) and output signal Y () = u(x,t) (Fig. 1) [6].

X(t) f_rsurgers -Banta Y(t)
system

Tig. 1. Illustration of the “input — output” relations for propagation described by the Banta
series

The Burgers-Banta system is a non-linear inertial system without the
hysteresis effect. In a general case such a system can be described by Volterra
geries [7, 8]; the general form of this series is as follows:

Y(t) = 2“,?11_ fh,,(rl, T ﬁm(t—mdrf (7)
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where h, are the Volterra kernels of the r-order. Their analytic form depends
on the properties of the system; the integration domain R" is the r-multiple
Cartesian product of R = {r:7e(—o0, o0)} and di" = dr,...d7,.

This paper is aimed at the determination of kernels &, and their r-dimen-
sional Fourier transforms, i.e. r-multiple transfer functions of a system presented
in Fig. 1, which is described by series (6). h,(t;,...,1,) denotes the Volterra
kernel and k,(t;,...,1,) denotes the kernel of the Burgers-Banta system. The
harmonic input method [6, 8, 9] was used to determine the set {h.}. In order
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to apply this method effectively the. series (6) should be converted to a form
more convenient for further calculations. From
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series (6) can be converted to
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and then using equation (6b) and taking into consideration that
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we have
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This new form of the Banta series is particularily useful in the generation
of Volterra kernels with the harmonic input method. This method consists in
the determination of coefficients of exponential factors of the exp [j(w,+...+o,)]
type in the input signal, under the assumption that the signal exp(jw,t)+ ...

. +exp(jo,t) acts at the input. As it has been proved in paper [8] these coef-
ficients are r-dimensional transfer functions and their r-dimensional inverse
Fourier transforms are Volterra kernels of the »-order. Thus, in order to deter-
mine the transfer functions of the first order (denoted by H,(w, «)) it was ac-
cepted that () = exp(jot). Finding the coefficient of the exp(jwt) factor
in series (8), H,(w, @) is obtained. Making the substitution in expression (8),
we obtain the series:
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which, after differentiating, has the form:
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The sought coefficient can be derived from the above expression by acceptmg
kE = 1; then the expression for H, will be:
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hence
hi(t, o) = F1{H,(w,2)} = F"{exp(—j;m-w)} = 5( ..-éi)

where §(:) denotes the Dirae delta. In order to obtain the transfer function of
the second order we have to accept

(l) = 14 ¢#°2!
and then we have to find the coefficient of the harmonie factor with a w;4 w,
pulsation in series (8) with the ¢(t) function accepted as above. The series of

caleulations (as above) leads to the following expression for the transfer func-
tion of the second order:
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The kernel of the second order will be expressed by:
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In a general case, the following expression for the transfer function of the r-order
is obtained :

ﬁw r=1
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hence the general form of the Volterra kernel is:
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The obtained expression for the general form of Volterra kernels leads
to a more compact than in (6) form of the Banta series [4]. Namely, substituting
(10) in (7), expressions for succeeding terms of the Volterra series are obtained.
Thus, let V, denote the r-term of series (7), i.e.
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and then in case of the Burgers-Banta series it is:

hp(tyy ooy ty) = Ry(tyy ooy ty, @), X (1) = @(1), X (1) = u(w, ).
The final result is:
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Hence, a different, more compact form of the Banta series is achieved:
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4. Conclusions

The approach applied in this paper to the description of the “input-out-
put” relations of a Burgers-Banta system consists in treating the propagation
of an intensive acoustic signal from the point of view of the analysis of non-linear
changes of the signal initiating disturbances in the medium, i.e. signal X (t)
= %(0,1?) = ¢(f), where the signal ¥ (f) = u(x,t) reflects these non-linear
changes. Such a formulation of the problem suggests that the non-linear pro-
pagation phenomenon should be treated as a non-linear system; and the method
of Volterra serieses was used, because of its versatality.
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New elements of the description of lossless non-linear propagation have
been achieved. A compaect analytical Volterra description of the Burgers-Banta
system was derived; the form of kernels (10) shows that the said system is
quasi-memoryless.

Analytical forms of r-dimensional Volterra kernels and transfer functions,
presented in this paper, make it possible to determine easily all parameters
of the output signal, when the input signal is known. Also the construction of
all probabilistic characteristics (e.g. multi-dimensional probability distributions,
power spectrum density) of the output signal is possible, when the input signal
is a stationary Gaussian process [7]. This can find application in investigations
of non-linear propagation of intensive acoustic noises [2,10].
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