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The exact solution to the problem of the acoustic wave propagation is
presented for a half-infinite cylindrical wave-guide with rigid walls, i.e., with
taking into account the diffraction phenomena on the open end of wave-guide.
The problem was solved by means of the theory of acoustic field without sources
and the use is made of the Green’s function method in the cylindrical space co-
ordinates, leading to two integral equations which are solvable with the help
of the Wiener-Hopf method.

The wave number considered was taken to be a complex quantity,
and the reduced forms of the final formulae are presented for the limiting case
of real wave number.

Notations
f(u) — directivity factor,
Jm(2) — funection of apparent sources,
Fp(w) — Fourier transform of functions of apparent sources,
gm(2) — source function,
Glo, o', w) — Fourier transform of Green function,
— constant,
In(2) — nucleus of the integral equation, =
L(w) — Fourier transform of the nucleus of the integral equation,
Ly (w), L_(w) — factors,
I,m — integers, indexes of wave mode,
N — order of the highest acceptable mode,

w — partial wave number,
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v — radial wave number,

S(w) — function determining factors L, L_,

X(w), ¥(w) — real and imaginary part of function S(w),

Ym — radial wave number of mode numbered m,

& — imaginary part of wave numbered &,

7 — imaginary part of variable w,

B — m root of the Bessel function J,(z2),

¥(z) — jump of the potential on the wall of the wave-guide,
: 3 L N - o=

2(v) function equaling tg 7,0) 5

Other notations used in this paper are typical and have not been included in
the above list.

1. Introduction

The determination of a wave-guide acoustic field consists from the mathe-
matical point of view in the solution of a wave equation with given boundary
conditions, generally applied to the normal component of the vibrational velocity
on the walls. Such solutions are known only for a few cases, where the boundary

“conditions are accepted on highly symmetrical planes (e.g. infinite wave-guides).
In other cases the symmetry of vibrating systems is corrected by supplementing
them with infinite acoustic baffles. However, only few problems have an exact
solution. &

From among papers concerned with theoretical and experimental acoustics
in the field of phenomena taking place in cylindrically symmetrical wave-guides,
the fundamental work of Rayleigh should be mentioned [17]. Rayleigh calculated
the quantity called the “correction for the open end”, which is the measure of
the phase shift of a plane wave due to the reflection at the wave-guide orfice
supplied additionally with an infinite rigid acoustic baffle. The method of sepa-
ration of variables, applied to the wave equation expressed in cylindrical coor-
dinates [2], gives a solution, which points out that not only a plane wave can
propagate in the wave-guide, but also higher wave modes can occur. They ap-
pear above certain limit frequencies, depending on the pipe radius. It is by
intuition evident that the same modes can also oceur in a half-infinite wave-
guide and that their generation can be related to diffraction effects taking place
at the orfice. This proves that the Rayleigh method applied in certain cases
especially with waves shorter than the doubled pipe radius can give completely
erroneouns results.

LevIN'S and SCHWINGER’S, and WAJNSZTEIN’S papers published in the
40-fies have contributed in particular to significant progress in the mathematie
theory of vibrations in a pipe. The first two scientists [3] have achieved an exact
solution of the wave equation with boundary conditions characteristic for a
semi-infinite cylindrical pipe with perfectly rigid walls, under an assumption
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that only a plane wave propagates in the direction of the orfice and in the reverse
direction. Of course, this limits the practical application of the results to waves
not shorter than the pipe radius, when the generation of higher Bessel modes
is imposgible. WAJNSZTEJN, on the other hand, in his works [4, 5] gave an exact
solution to the problem of electromagnetic wave propagation in a flat and cylin-
drical wave-guide, and then on the analogy of electric waves (in a flat wave-
guide), or magnetic waves (in a cylindrical wave-guide) and acoustic waves,
he established an expression for the acoustic potential, postulating, also by
analogy, such a form of the jump of the potential on the wall of the wave-guide,
which would result in integral equations identical with equations obtained for
electromagnetic waves.

This paper presents a method of obtaining an exact solution to this problem
with the sole application of the acoustic field theory, for a region without sour-
ces, including constraints of the mathematical solution resulting from its physi-
cal interprefation as the potential. The theory of Green functions expressed
in eylindrical coordinates has been applied.

2. Formulation of the problem in the form of an integral equation

Our analysis will concentrate on the acoustic field inside a cylindrical
wave-guide stretching from z = 0 to oo, with its axis of symmetry coinciding
with the z-axis. The wall of the wave-guide is described by the equation of the
side surface of a semi-infinite cylinder with a radius e (Fig. 1):

D ={le,9,9):0=0,2>0}. (1)

Xy

z

Fig. 1. Geometry of the system — semi-infinite cylindrical wave-guide with radius ¢ and
the axis of symmetry coinciding with the ¢-axis of the coordinate system

Let us consider a case when the wave-guide is axially excited (the velocity
distribution is independent from the angular variable) to vibrate with a deter-
minate circular frequency w. The expression for the acoustic potential inside
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an infinite wave-guide, obtained from the wave equation, is

1 90,1
AD(F, 1) =~6;—5(ﬁ’—)

with the condition of the decay of the radial component of the vibration velocity
on the surface of an infinite wave-guide

o0D(7, 1)

do -

(2)

=0, —oc0o<2z< +oo. (3)

e=a

Considering only harmonic vibrations and assuming that the time dependen-
ce of the potential is expressed by factor exp ( —iwt), we obtain the following solu-
tion [2], which satisfies physical conditions of the potential:

J (%L’ 9)
5 .e—iyﬂz
JO(Jun)

where y, is the radial wave number related to the vave numbered &, by the

following relationship
3 2
yn=1/W—Fh) (3)
a

and u, is the n root of the Bessel function J,(z). The J,(u,) factor, which ap-
peared in the denominator in (4) is a standarizer, so constant 4 denotes the am-
plitude. Index #n numbers successive allowed wave modes. Of course, in a general
case, the potential of an incident wave can be a superposition of the potentials
of individual modes. Equation (4) shows that when » = 0 a plane wave is ob-
tained, while for other values of n, succeeding higher Bessel modes oceur. More-
over, formula (4) will describe also a travelling wave, but only when the expo-
nent will be an imaginary number, i.e. when ¢, will be real, that is when

?,(¢0,2) =4 (4)

2
kz—(ﬁ) > 0. (6)
a
Int—roducin;g a dimensionless diffraction parameter
x®=ka; (7)
the condition (6) becomes 3
# > i (8)

Denoting by N the greatest integer, so

By < %< fing (9)
then N determines the order of the highest Bessel mode which can propagate
in the wave-guide without loss, with an assigned diffraction parameter x.
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In order to determine the acoustic field of a semi-infinite wave-guide, the
wave equation (2) has to be solved with a boundary condition of the decay of
the normal component of the vibration velocity on the wave-guide surface,
i.e. only for z> 0:

8D (7, 1)

=0, z>0. (10)
de

-

An assumption is made that the sound wave, which propagates towards
the open end, has a potential expressed by formula (4), i.e. it is a single wave:
mode. It undergoes diffraction at the orfice — part of the energy is radiated
outside, and part returns to the wave-guide as a reflected wave. We postulate
that it can consist of all Bessel modes, which can propagate in the given wave-
guide. Therefore, the solution of the diffraction problem lies in the determina-
tion of complex amplitudes of modes in a wave returning from the open end.

Fig.- 2. Integration surface limiting the region without sources; that is with the wave-guide
wall out

In order to solve the problem of the acoustic field of an investigated wave-
guide the second Green theorem can be used, but one of the scalar functions
is substituted by a Green function for a free space G(7,#’) and a sphere with
a radius approaching infinity, with a surface out from it comprising the wall of
the wave-guide (Fig. 2) is accepted as the integration surface. The Green function
G(7, 7') satisfies the following differential equation

(A+EkG(F, 7) = —o(F—7) (11)

where the function on the right side is the é Dirac distribution. Using the men-
tioned above theorem and including the fact that the spatial part of the expres-

5 — Arch. of Acoust. 3/86
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sion for the potential fulfills the Helmholtz differential equation, it can be
written

®(7) = { [G(F,F)WV'DF)—BF)W VEF,7)ldd, (12)
8

The “prim” mark at the deloperator means, that the differentiation is
done in respect to variables marked “prim”, so %' is the unit vector normal
to the do surface element. If we want to use the form of the Green function for
a free space

iklr—

H

'l

-

€

i
G, F) =4 (13)

~I

=

then there should be no sources in the range limited by surface 8. The surface
of the wave-guide with apparent sources related to the potential discontinuity
hss been cut out from the integration range. The adequately chosen integration
surface is shown in Fig. 2. Tt consists of sphere §, with a radius R approaching
infirity, circle §, which is a cross-section of the wave-guide at z = R and
cylivdrical surfaces, Sy, and S,_, situated infinitely near the inner and outer side
f the wave-guide wall. Now we will calculate integrals (12) on individual parts
£ surface §. The potential of a spherical wave, modified by a directivity factor
f(n'), can be accepted as the acoustic potential @(7') on the surface S8,

D7) ex f() —- (14)

For great values of r, the considered potential satisfies the Sommerfeld’s
radiation and finity conditions; the Green function fulfills the so-called sharp-
ened Sommerfeld’s radiation and finity conditions; the (12) integral on the
surface of sphere 8, vanishes, what has been proved among others by RuBINO-
wicz [6]. The integral on surface §, tends to zero for R—>co due to the finite value
of the potential, finite integration surface and the decrease of the Green function
with inverse proportion to distance. Thus, the value of potential @(7) will
be determined only by an integral on surfaces 8,, and §,_. Considering that
the side surface of the cylinder satisfies the boundary condition (10) of the
decay of the normal component of the vibration velocity, and that 7'V’ = &/dp
for elements of the surface 8,,, and &'V’ = —3/dg for elements of the surface
8,_, the expression (12), which determines the acoustic potential, can be writ-
ten in the form

®(F) = 2na f A O R (15)

oe' o' =a
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where the function ¥(z’) determines the jump of the potential on the surface
of the wave-guide

Y (&) —Dipts z’)le,_m+ —@(g', 3| R (16)

The analysis of expression (15) shows that the acoustic potential in an arbitrary
point of the field is univocally defined by the jump (discontinuity) of the po-
tential on the surface of the wave-guide. The application of this form allows
the notation of the boundary condition (10) in the form of a homogeneous
integral equation

ng, e 39 7y F)gmae’ = 0;  23>0. (17)

e=a

Thus, the calculation of the acoustic potential of a semi-infinite cylindrical
wave-guide has been reduced to the determination of the value of the jump of
the potential ¥(z') on the wave-guide surface, i.e. to the solution of integral
equation (17). Because the problem is cylindrically symmetrie, then the Green
function expressed in cylindrical coordinates can be applied, ie. the Green
function for a cylinder, which has been discussed in detail in papers [2], [7].
It results from the free form of the Green function (13) that this is a function
of the following variables (¢, o', p—¢', 2—2'). Solving equation (11) in eylindri-
cal coordinates, the following expression is derived for the Green funection:

co4in oo

AR g
2 etm(vpmp){gni; ("DQ)Jm(’UQ )} ezw(s—z’) dw,

G(e, 0’y 9—9'y2—2) = O (ve")J,, (ve)

i

87 :

—00+4in m=-—c0

e>e

e<e”

This is the Green function for a cylinder. It has the form of an inverse

Fourier transform, while the integration path is a line parallel to Rew, and
coefficient # satisfies the inequality

(18)

—Imk <y <Imk. (19)

When the excitation is axial (the case under investigation), then the infinite
series under the integral is reduced to one term for m = 0. Then we obtain

oo+in
’ g, .y i H“)( ) ('UQ ) w:(z——z‘) e = 9’

=oo+in

where v is the radial wave number

v =Vik—w?. (21)
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The form of the obtained Green function differs in dependence on whether
the point of the field lies inside (¢ < @) or outside (o > o') the wave-guide.
This oceurs because from among a family of solutions of equation (11) we have
to chose those, which fulfill the physical eonditions of the problem. Both solu-
tions are symmetrical with respect to the change from p to ¢’, what corresponds
to the change of location of the source and the observation point. The expres-
gion in braces describes the propagation of eylindrical waves along the radial
coordinate p.

imW

!
T
L

N )()( vfﬂk) ReW

Vs

{

xm-

Fig. 3. Analyticity regions of Fourier transforms, L(w) and F;(w). Common analyticity
region —e& < Im < &.

Using expression (20) in the equation describing the potential (15) and the
boundary condition (17), two integral equation are obtained

+in :
H(ﬂl) (Q}Q)Jl (’{‘}a) iw(z—2") g>a
gl 4fl‘” f I e LR
—oo+1in A
(o] co+in
[ #ede [ oHY(va)d,(va)e™ = dw =0, 220, (23)
0 —cotin

The acoustic potential can be found by solving the second equation, i.e. fining
the function ¥(z'). The problem of solving a wave equation with a boundary
condition of the decay of the normal derivative on the side surface of a semi-
infinite cylinder has been reduced to the problem of solving a pair of integral
equations, (22) and (23).

3. The determination of source functions on the surface of a wave-guide

The jump of the potential on the surface of the wave-guide can be accepted
as the ocecurrence of apparent sources on this surface. The function describing
gources on the surface of the wave-guide is marked g(z). When a single allowed
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wave mode (e.g. 1-st) propagates in the wave-guide, then this function can be
expressed as a sum

9:(2) = fi(2) + Py(a, 2) (24)

where f;(z) determines apparent sources, which appear on the surface of the
wave-guide due fo diffraction, and ®,(a, ) is the value of the potential of the
wave inciding on the wave-guide wall. For z < 0 sources do not occur, there-
fore

gi(2) =10, ;.2 <0, (25)

It results from the above discussion that the function of sources equals
the sought value of the potential jump on the surface of the wave-guide and zero
on its extension :

B ey

Therefore, the integration range can be widened onto the interval (— eo,
-+ o0), antd then expressions (22) and (23) will have a form convenient for fur-
ther calculations. The boundary condition, in particular, will have the form of
a convolution, so it will be simple to find its Fourier transform. Moreover, if
we denote

(26)

co4in
i :
l(zg—2') = — f e =27 (pa) J, (va) dw (27)
¥l
—oo+4in

then the boundary condition for a I wave mode reaching the open end will be

[ ate)lz—21d =0, 2>0, (28)

- 00

while the expression for the acoustic potential will equal

- o oo+19
ai 5 HY (v0) 1 (va)] st >a
o= [ae) [ ofgh(OTEN set-irzy, €0 (a0)

-0 —co+in
The function of sources is equal to
5:(2) = fi(2) + Ay~ (30)

because the form of the second term in expression (24) is accepted as explicit.

Equation (28) is an equation with a nucleus with a translated 4rgument.
It can be solved with the factorization method, which consists in the distri-
bution of the Fourier transform (if it exists) of the investigated equation onto
the product of analytical functions (factors), which do not have zeroes respecti-



270 A. SNAKOWSKA, R. WYRZYEOWSKI

vely in the upper and lower half-plane of the complex variable w. The upper
half-plane will be noted by {w:Imw > —Imk}, and the lower by f{w:Imw
< Imk}. It should be noted that these half-planes have a common part, denoted
by expression {w: —Imk < w < Imk}.

As it has been previously stated, expression (28) presents a convolution, so
its Fourier transform can be easily found. Expression (27) has the form of an
inverse transform, so the transform will be

L(w) = v*H,(va)J, (va). (31)

Certain conditions have to be satisfied by both functions in order for the
transform to exist. The analysis of the function of sources proves that fi(z) as
a diffraction term, must tend to zero for z—oo, 80 it has a Fourier transform

(=]

Fi(w) = [ filz)e"a (32)

—00

while if Tm% > 0, then Imy, > 0, and thus for z— oo the second term in expres-

sion (30) approaches infinity. At the same time it results from transform L{w)
that .

L(ya) =0 (33)

2
80 set {yn = ]/kz— (%) } is the set of roots of equation (31). Taking all that

was up to now said into consideration we obtain the following form of the Fourier
transform of the boundary condition

J ez [ g l(z—2")dz’ = Fy(w)L(w). (34)
-0 -—_00
The last equality is true if both transforms F(w) and L(w) have a com-
mon analyticity range. This range is the zone of the complex plane w, defined by
equality —Imk < Imw < Imk. Now, additional conditions, which the trans-
form of the function of apparent sources, F,(w), must satisfy will be determined.
The function of sources g;(2) equals zero when z < 0, therefore

fi() = —Ae™" z<0. (35)

This equality will be satisfied if the transform F,(w) will have a first order pole

with the residuum equal to =% in point w = —v;, and furthermore it will
2

uniformly tend to zero on the lower half-plane, for |w|->oco. Then
1 +in
= f F(w) e dw 4 A,g=" =0, 2z < 0. (36)

—00+41in
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The physical interpretation of this equation is as follows: for 2z < 0, i.e. on the
extension of the wave-guide surface, the potential is continuous.

The boundary condition will be noted with the use of Fourier transform.
The inverse Fourier transform of expression (34) is

[ a)e—2de" = [ Fy(w) L(w) e"*dw (37)

hence the boundary condition (28) becomes

[ Fy(w)L(w)e™dw = 0, z>0. (38)

—e0

This equation will be satisfied when the product of functions F;(w) and
L(w) is an analytic function in the upper half-plane and tends uniformly to
zero on the infinite semicircle on the half-plane. :

Both equations, (37) and (38), can be written in the form of homogeneous
equations

[ Fy(w) ™ dw = o, 2<0 (39)
C
[ Fy(w0) L(w)e™dw =0, 2>0 (40)
¢
where ( is the integration contour, consisting of a line parallel to the real axis
(it can be the axis itself in particular) and a loop around point w = —y, (Fig. 4).
ImW
“"—'“1| r--— ———————— Re W
l) L\
Lo ok
Y

Fig. 4. Integration contour ¢ in the plane of the complex variable w. Consists of a line parallel
to the real axis and a loop around point w = y;

It follows from this paragraph that the condition of continuity of the
potential on the extension of the wave-guide surface (36) and the condition of
decay of the normal component of the vibration veloecity on its wall (38) are
fulfilled, when
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1. Funetion F(w) is analytie in the lower half-plane, Imw < Imk, exclud-
ing the point w= — y,, where it has a first order pole with a residuum equal to
4,/i, and it tends to zero on this half-plane for |w|—co.

2. Product Fy(w)-L(w) is an analytical function in the upper half-plane,
Imw > —Imk, and it uniformly tends to zero for |w|—oco in this range.

Thus, the problem of the acoustic field of a semi-infinite cylindrical wave-
guide can be solved by determining funection #;(w), which satisfies conditions
(24) and (25), i.e. by solving the pair of integral equations (36) and (38) or (39)
and (40).

Integral equations derived in this paragraph are identical with WAJN-
SZTEJIN’S equations for electromagnetic waves [5]. Therefore, his methods and
results can be applied in further considerations.

4. Application of the Wiener-Hopf method in solving obtained integral equations

As it has been mentioned in the preceeding paragraph, the integral form (28)
of the boundary condition (10) is a Wiener-Hopf type equation, so it can be solved
with the factorization method. In this paper only a short outline of the solution
will be presented, because of the applied complicated calculation methods [11].

An assumption is made at present that the distribution of function IL(w)
onto analytical factors, respectively in the upper and lower half-plane of the
complex variable w is known

L(w) = L, (w)L_(w). (41)
L
‘It can be seen that when function F,(w) is chosen in the form
P
F,(w) = —————— 42
) = L) fo

where K is a constant, then both conditions are satisfied.
The factorization of function L(w) results in the following expressions

L, (w) =(k+w)(H“) va)J va)H”‘+w) ¢Stz (43)

N

L_(w) = (k—w)(Hgl)(m)Jfl(m)n %‘;—z)m g=S(w)/2 (44)
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Fig. 12. Moduli and phases of transformation and reflection coefficients of the fourth Bessel
mode in terms of the diffraction parameter ka. This mode appears when the diffraction para-
meter ka exceeds the fourth zero of the Bessel funection Jy(2), (ka > 13.32)
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Fig. 13. Moduli and phases of transformation and reflection coefficients of the fifth Bessel
mode in terms of the diffraction parameter ka. This mode appears when the diffraction para-
meter ka exceeds the fifth zero of the Bessel function J,; (2), (ka > 16.47)
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where
S(w) = X(w)+i¥ () (45)
k ’
2w =2 [ 29 4w, )
-k

1 r
¥ (10) = .2;‘:_“ —9(m)+%;}m [Z Pt s SRS f s dw'].

Pp— W w—w

(47)

The integral in formula (46) should be understood as its principal value.
Two last equations are valid for variable w from interval 0 < w < k. Function
Q(va) equals

N,(va) ™

AR L e R o X2
Q(va) = tg T.ioa) -+ = arg Hy" (va) + 5 (48)

Knowing factors, L, (w) and L_(w), the Fourier transform F;(w) of the
function of apparent sources can be found, and thus the diffraction problem
can be solved. Using equation (30), an expression for the acoustic potential
(31) inside the wave-guide can be determined in the form

o> a

ai [ ;
O, =5 [ oED(a)Ti(00) 2 A0+ )+ Fulwldo, D

(49)

The integration path (—oo+ix, co+in) coincides with the real axis,
because in final calculations we accepted Im% = 0. Using properties of cylindri-
cal functions and integrating, we have

:
@,(0,7) = A e Y R f oHD (va) Ty (v0) Fy(w) e dw, °7 0.
110, 1 Ti5) £ J 1 0 ! 1o z=id)
(50)

The first term describes the potential of the incident wave; thus it can be
accepted that the second term describes the reflected and transformed waves,
which are generated due to diffraction at the open end. The improper integral
in equation (50) can be calculated from the theory of residue, remembering
that variable v is an elemental variable, so the integrand is not unique. From
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formulae (41)—(44) the expression for the potential of reflected waves is

J e

bt O(pﬂ; o<a

ref Y2

(o z)—ZB*" STy (51)
ne=

B, is the complex amplitude of the »n Bessel mode formed due to diffraction
at the open end ‘

1
T (w+yy) (Lo (w))

By, = AL, () Tes (52)

Summarizing, onece again we will write the expression for the acoustic po-
tential inside a semi-infinite cylindrical wave-guide with rigid walls, when a 1-8t
Bessel mode with an amplitude 4, propagates towards the open end. In such
a case the potential equals

e
7o (#J —) i Jo(ﬂng)
O —ws Cf ives e<a

¢1(973)=A1m“6 +Z—mﬂ ¥ Sy (53)

n=0

The analysis of the exponential function in the second term shows that
for an established diffraction parameter ke, only a certain part of the terms of
the sum will represent progressive waves, Beginning from a certain N, so uy < ka
< fiy 41y coefficients y with an index greater than N will be imaginary numbers
and in that case corresponding to them addends will represent disturbances
exponentially damped with the increase of the 2z coordinate. These disturbances
are not waves from the point of view of energy transport, thus they do not
have to be taken into consideration in energetical calculations as well as in case
of great values of variable z (a long distance from the orfice). In this case the
following expression for the potential ean be used

e

Jo (;“i E) = Jo (J“n g) &
—iy2 z a
0e,8) = dy—3 T ALy DR, sy
0 o\Hn

n=0

R, , is a complex transformation coefficient and it is equal to the ratio of the
amplitude of the induced mode and the amplitude of the incitent mode

R, = Bjm

N (55)
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For | = n it is simply a reflection coefficient. Diagrams present moduli
and phases of these coefficients, with the diffraction parameter ka, varying
from 0 to 20.

5. Conclusions

To recapitulate, effects taking place at the end of the wave-guide are as
follows: one of the Bessel modes, which is allowed from the point of view of
the diffraction parameter ka, propagates towards the orfice. In undergoes dif-
fraction at the orfice — part of the energy is radiated outside, the rest returns
to the wave-guide in the form of allowed wave modes — higher, lower and also
the mode of the same order as the incident wave. In order to determine the acous-
tic field inside the wave-guide in such a case, N complex reflection and trans-
formation coefficients have to be established. The number of these coefficients
has to equal the number of modes which can propagate in the wave-guide at
an assigned diffraction parametéer. Furthermore, if we include that the incident
wave can be a superposition of all allowed modes, then the number of coefficients,
describing the field, increases to N2 This may complicate the univoeal inter-
pretation of the results. This is a view shared by many authors occupied with
this problem. They consider that the Wiener-Hopf method applied to diffraction
problems is mathematically very complicated and the interpretation of the results
is difficult due to their complicated form [8, 9]. This statement is only partly
true, because the mathematical description of the theory is indeed difficult -
(it is not presented in this paper, because only final formulae have been used
in paragraph 4), but the interpretation of the results can be carried out with
the application of the analysis of energetic quantities, such as impedance for
example [10].

Thus the problem of the acoustie field of a cylindrical wave-guide is im-
portant from the cognitive point of view, because it is one of the fundamental
diffraction problems, as well as from the practical point of view, because ele-
ments which can be approximated by a long cylindrical pipe without a baffle,
occur frequently in acoustic systems.
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