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The detectability of calcifications in women breast by means of the ultra-
gonic echo method was estimated on the basis of the transient analysis of the
ultrasonic pulse reflection. Two calcification models in the form of a rigid and
an elastic sphere were considered.

Echoes obtained at tissue inhomogeneities form an interference back-
ground which masks echoes from small calcifications. The level of the tissue
interference background was determined on the basis of measurements in 100
femal breasts and it was shown that the obtained experimental results are proba-
ble from the theoretical point of view.

Ag the result of the performed analysis and experiments the author conclud-
ed that microcalcifications are not detectable by the ultrasonic echo method.
The radii of ealcifications which can be found at the frequency of 5 MHz are
equal to 0.6 mm or 1.6 mm depending on the maximum sampling error assu-
med for a single measurement of the tissue interference background,

\

1. Introduction

The detection of microcalcifications is of basic significance in the early
diagnosis of breast tumors. The reactions occurring in breast tissue cells causing
calcifications in the case of tumors appear already at the very early stage of
their development. In view of this the question of possibilites of detecting small
calcifications by the ultrasonic method becomes one of essential significance.
Two versions of this method, the echo and the shadow techniques are of inter-
est [2].

In both cases examinations involve short ultrasonic pulses at frequencies
usually contained between 3 and 5 MHz.
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In previous papers [1], [2] the problem of calcification detection by means
of the echo method was investigated on the basis of the steady-state analysis.
The purpose of this paper is to extend the analysis of transient phenomena
and to discuss in detail the obtained experimental results.

2. Assumptions

It is assumed for simplification that the calcifications are rigid or elastic
sphereswith the radius a. The longitudinal wave velocity in the calcification
and its density are assumed similarly to those for bone tissue, to be, respectively,
¢z = 3.2. km/s and ¢ = 2.23 g /em? [14]. The literature contains no information
on the velocity of transverse waves in bone tissue, therefore the value of Pois-
son ratio » = 0.2 will be assumed. In follows from Table 1 that this assumption

Table 1. Poisson’s ratio » for various materials and the value
assumed for the calcification

Material v Material v
Lead 0.44 Bismuth 0.33
Gold 0.42 Nickel 0.31
Platinum 0.39 Cadmium 0.30
Silver 0.38 Steel 0.28
Brass 0.35 Glass (crown) 0.27
Perspex 0.35 Zine 0.25
Tungsten 0.35 Glass (flint) 0.24
Copper 0.35 Poreelain 0.23
Constantan 0.33 Calcification 0.2
Ice 0.33 Fused quartz 0.17
Tin 0.33 Berylium 0.05

is most probably, when this value is compared with those of other materials.
The wave velocity and the attenuation coefficient of the breast tissue is as-
sumed to be ¢; = 1.5 km/s and a = 1.1 dB/em MHz, respectively. It is also
assumed that pulse of a plane ultrasonic wave, composed of two high frequency
b MHz periods, is incident on the spherical calcification.

To analyse the detection ability of the echo method with a typical ultrasono-
graph we assume its sensitivity to be 10 pV, the transmitter pulse voltage:
250 V and overall transducing losses (double piezoelectric transducing) equal
to T = —156 dB.

3. The reflection of ultrasonic pulses from rigid and elastic spheres

The transient analysis of the ultrasonic pulse reflection enables us to find
the smallest calcification size which is potentially detectable with a typical
ultrasonograph (scanner). In our computations we applied the procedure as



DETECTION OF BREAST CALCIFICATIONS 289

presented by RUDGERS [11] and HICKLING [7] for pulse reflections from rigid
and elastic spheres, respectively.

The acoustic pressure p; of a plane continuous wave, travelling in the »
direction, incident on the sphere, has the form

Pi = Py exp[j(ot—kx)] or p; = p; exp[jk(et—2)]  (la,b)

where p;, denotes the pressure amplitude, = 2=f, f — frequency, ¢ — time,
k = w/e, ¢ — wave velocity in the soft tissue. :

The acoustic pressure p, of the wave reflected from the sphere can be ex-
pressed as

Ps = Dio D, (2m+1)(—j)" e, k) (kr) P, (cos6)exp (jot) (2)
m=0

where m denotes natural number, j = ]/—_1, B2 (kr) — spherical Hankel func-
tion of second kind P,,(cosf) — Legendre polynominal, ¢, — scatternig coeffi-
cient of the m-th partial wave, § — azimuth. For the backward reflection 0
= 180°, P,,(cos 0) = (—1)™. The function A (kr) can be represented by the
assymptotic expression (for kr > 1)

: | » m-+1
(2) e = SO
ko (kr) = o exp[ 3(1&:1’ 5 7:)] (3)
Thus, Eq. (2) becomes
a
Pso = Pio gfoo(ka) (4)
where
2% ©
folka) = =L 3 @m41)(—1)"0, (ka) )
m=0

when r > a [1], [7], [12]. p,, denotes the pressure amplitude of the reflected
wave.

Figs. 1 and 2 show the far field form function (for backward reflection)
[7] fw(ka) which was computed Eq. (5). For computations of ¢, formulae of
HASEGAWA [6] were applied. The diagrams of the far field form function present-
ed in Figs. 5 and 1 in the papers [1] and [2], respectively, are incorrect due to
an error in the computing program.

In the case of a rigid sphere, the longitudinal and transverse wave velocities
in the sphere tend to infinity. It can then be shown that Eq. (5) takes a much
simpler form as ¢,, = —j,, (ka) W (ka), where j,, (ka) and k% (ka) denote deriva-
tives of spherical Bassel and Hankel functions with respect to the argument.
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Tig. 1. Modulus of the far field form function f(ka) (backward reflection) calculated for
rigid (R) and elastic (F) spheres under consideration, ¥+ — Poisson’s ratio
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Fig. 2. Modulus of the function fy(ka) as in Fig. 1 but calculated for small arguments of
ka (v = 0,2)
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It follows from Eqs. (1a, b) that the acoustic pressure varies as a function
of two variables, ¢ and . It is convenient to introduce one dimensionless variable
in the form

T = (ct—r)la (6)
then Eq. (1b) becomes
P; = Pypexp (jkar). (7)

The last expression is valid for steady-state. In the case of transients the
incident wave pulse can be represented in the form [11]

D = Do ” (z/l —1/2)sinkyaz (8)
where

e 1 when || <1/2,
" |0 when |z|>1/2

and I = 2xb/k,a is the dimensionless pulse duration, & — number of high fre-
quehcy periods, equals 2 in our case, k, — wave number corresponding to the
carrier frequency of the incident wave pulse.

The incident wave pulse can be represented in the frequency domain as
a function of a. However, in view of the form of Eqs. (7), (8), it will be given
in a more general form, as a function of the dimensionless variable wa/c = Fka.
By using the inverse Fourier transform [8] the pulse reflected from the sphere
can be represented in the form

+ o0

pi(0) =g | g Fe(halGelha)exp(kar)iha) ©®)

where G;(ka) represents the spectrum of the incident pulse in the domain of
ka, expressed as the Fourier transform of p,;(r)

+o0
Gi(ka) = [ pi(x)exp(—jkar)dr. (10)

In Eq. (9), each monochromatic component of the incident pulse spectrum
G, (ka) is weighted by the function (a/2r) f, (ka) [12] which represents the reflec-
tion speetral characteristics of the sphere.

Fig. 3 shows the reflected pulse shape computed as the real component
from Eqs. (9), (10), (5), (8) for kya = 2.5 (f = b MHz, a = 0.12 mm). Its rela-
tive amplitude is equal to 2.2, while the one of the reflected continuous wave,
obtained directly from Fig. 1. equals 2.7. For ks = 1 transient and steady-
state analysis do not show any difference in the relative amplitude of the
reflected wave being equal to 0.45.
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The reflected pulse (Fig. 3) starts at » = —2, as this point corresponds
to the pulse reflection from the anterior sphere surface (r = a) which takes
place in the time t= —a/e. For our time coordinate starts at the instant in
which the incident wawve arrives at the sphere center, ie., 1 = 0 for r = 0.
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Fig. 3. Ultrasonic pulses reflected from elastic sphere under consideration for kye = 2.5

The frequency bandwidth of the incident wave pulse (between first zeros)
falls within the interval (0.5-1.5) w, = (0.5-1.5) k,a, where w, denotes the an-
gular carrier frequency of the pulse. It follows hence, that in the formation of
integral (9) averaging of the function f(ka) will oceur over a large range of ka
(see Fig. 1). In the case elastic sphere the function f (ka) shows many peaks which
correspond to many resonances oceurring in the sphere. FLax et al. [3]have shown
that the scattering by elastic sphere is the superposition of the scattering by
a rigid sphere and a number of resonances arising in the sphere, These resonan-
ces differ in character, since they correspond to different wave types, including
also transverse waves, surface waves, of the “whispering gallery” type and so on.
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Therefore, in the case of calcifications with irregular shapes and corru-
gated surfaces, one should expect that a number of resonances will not occur
at all an average value of the function f,(kae) could, approximately, be taken
a8 1 for higher values of k,a. This approximation signifies in practice that the
caleification model of the rigid sphere is accepted in this case.

4. Determination of the tissue interference background level

Many echoes obtained at the boundary of fat, fibre and gland tissues and
on their inhomogeneities form a tissue interference background which may mask
echoes from small caleifications. To determine the tissue interference background
level, measurements were performed in 100 femal normal breasts of 50 women
21-54 years old at a depth of »r = 4 cm by means of an echoscope with a non-
focused ultrasonic beam of 5 MHz frequency (transducer radius ¢, = 2.5 mm).
The level of the tissue interference background was found D = 27 dB higher
than the electronic noise level of the echoscope. The standard deviation of a sin-
gle measurement was equal to ¢ = 8 dB. The electronic noise level was equal
to 10 wV corresponding to the level N = —148 dB in respect to the transmitter
gignal of 240 V (in pulse), assumed as the reference level of 0 dB. Thus the over-
all electrical dynamics of the echoscope equated W = 148 dB.

The measurement idea is illustrated in Fig. 4. Taking into account trans-
ducing-losses T = —15 dB, attenuation losses A = a-2r [em]-f[MHz] = 44
dB diffraction losses of the beam equal to 4 dB (not shown in Fig. 4) and the
measured level D, one obtains the remaining value of the overall electrical dy-
namies equal to AW = 58 dB. This value is crucial for the detection ability
of ecalcifications.

To show that the obtained experimental results is probable from the theo-
retical point of view, we introduced a hypothetic reflector formed by the surface
of the half-space H (Fig. 4) with characteristic acoustic impedance p'¢" = gc--
-+ Ape. It can be assumed that tissue interference echoes result from the reflec-
tions of the ultrasonic beam when it is incident perpediculary at the plane sur-
face of the reflector H. Different breast tissues may have irregular boundaries,
however, highest echoes will be received from these surface elements of tissue
boundaries, which are plane perpendicular to the ultrasonic beam axis.

If we assume that the plane reflecting surface element of the tissue bound-
ary has a form of a disc with the diameter d, then the echo signal 85 can be
expressed by the formula

d
Sy = (—) 0 8p for d< D, (11)
D,
where D, denotes the ultrasonic beam diameter, 8, — transmitting signal,

g — reflection coefficient equal to
g = (¢'e"— o) /("¢ + oc) = Aec/2ge. (12)
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Fig. 4. The idea of the experimental determination of the tissue interference background

level in womans breast: P — ultrasonic probe, B — breast, H — hypothetic reflector, 0 —

level of the transmitting signal, T' — transducing losses, 4 — attenuation losses in breast

tissues, N — electronic noise level, W — electrical dynamics of the ultrasonograph, D —

difference between the levels of the tissue interference background and the electronic noise,
r — distance from the probe (depth)

The coefficient 6 = d(r/l,, d/D;), depending on undulations in the ultra-
sonic field, ecan be found from the diagram determined experimentally by
KRAUTKRAMER [9], [10]. Its value tends to 1 for r/l,—0, where r is the distance
between the reflector and the transducer, I, = a7 /A is the near field length.
Eq. (11) is a generalized formula which for ¢ = 1 was given and experimentally
verified by KRAUTKRAMER [9], [10]. For instance, in the case under consider-
ation D, =5 mm, d =1 mm, r = 40 mm, /, = 21 mm. For r/l, = 2 and
d/D, = 0.2 the coefficient 6 = 1.8—5 dB [10]. If one assumes for breast tis-
sues dpc/oc = 59, then Eqs. (13) and (14) give

8g/Sp = 0.0018 = —55 dB. _ (13)
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In this way we have shown that a small plane surface element of the tis-
sue boundary, with the diameter of ¢ = 1 mm, gives in uor case a maximum
echo signal which is 55 dB lower than the transmitting signal S;, incident at
our hypothetic reflector. It means, that the resulting value — AW = 8z/8;
= —b58 dB obtained in measurements of the tissue interference background,
seems to be most probable.

Now, equating AW to the ratio P, /P, one obtains from Eq. (4) the
relation

am
AW = 2= foo (Kim) (14)

where a,, denotes the radius of the calcification which given an echo on the
level of the tissue interference background.

Table 2
- R E@@ = 0.2) Ek R
femi]r | om ka | om ka | a0 | ka | azs | ka
[mm] [mm] [mm] [mm]

0.09| 1.9 | 0.085 1.77| 0.4 | 85 | 1.0 | 21
0.1 2.256| 0.09 | 1.9 0.6 13 1.6 34
0.11 | 2.25 | 0.09 | 1.93 | 0.7 14 153 35

= ]

If we assume that this level depends on the distance s according to the
diagram of KRAUTKRAMER [9] then AW for » = 2 cm is 4 dB greater and for
r = 6 em is 5 dB smaller than that one determined experimentally for the
distance r = 4 em. In this way one can find a,, from Eq. (14) for various values
of r. Results of the calculations are shown in Table 2 for rigid and elastic spheri-
cal models of calcifications. The far field form function f,, (ka) presented in Figs. 1
and 2 was applied in these computations.

It seems reasonable to assume the maximum error of single measurement
of the tissue interference background to be 2¢ or even 3¢. Then, according to
the theory of error estimation [8] in the first case 97.72 9% of all the values of
D = 27 dB are smaller than D420 = 43 dB; the last value corresponding to
AW = —42 dB; in caleification detection to be certain, we assumed these limit-
ing values in our calculations, thus determining the overestimated radius a,,
of the calcification which gives echoes higher by 2¢ = 16 dB (6.5 times) than
the mean level of the tissue interference background. This seems to be necessary
as in the case of small calcifications only the echo amplitude and no additional
information e.g., on the shape, can be obtained. For the maximum error of 3¢
one obtains the above values equal to 99.86 % and AW = —34 dB, respectively.
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Fig. 5 shows ultrasonic pulses reflected from elastic spherical calcifications,
computed from Eqgs. (9), (10), (5) and (8) for kya = 5 and 10. Their relative
amplitudes are equal to 0.7 and 0.8, while those ones for the reflected continuous
wave would be 1 (for f,(ka) = 1). Thus the far field form function f,(ka) can
be for ka = b or 10 approximated by the value of 1 giving an error in amplitude
of 2 and 3 dB, respectively which can be neglected in our estimations. However,
it is interesting to notice a great distortion of the shape of these reflected pulses.

5. Conclusions

Microecalcifications in the breast can not be detected with the ultrasonie
echo method. The detectability is restricted by the tissue heterogeneities which
constitute the background of tissue interference signals. The level of these signals
was determined experimentally in 100 femal breasts. Assuming rigid and elastie
spherical models, the radius of calcification which gives the same signal level
was estimated to be a, = 0.1 at the distance r = 4 ¢m and at the frequency
of b MHz (standard deviation ¢ = 8 dB). This value does not depend distinctly
on the distance » = 2-6 cm. For maximum sampling error 2¢ and 3¢, assumed
for a single measurement of the tissue interference background, thé radii of
detectable calcifications are equal to a,, = 0.6 mm and a;, = 1.6 mm, re-
- spectively.
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Fig. 5. Ultrasonic pulses reflected from elastic spheres under considerations for kya = 5 (a)
and kg = 10 (b)

Both, rigid and elastic models give similar estimation results of calcification
gize. Therefore, it seems to be useful to apply the rigid spherical calcification
model, in further research, as it is much simpler for computation than the elas-
tic one.
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