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DETERMINATION OF AVERAGE LENGTHS OF CONCENTRATION WAVES
AND OF THE DIFFUSION COEFFICIENT OF THE CRITICAL
N-AMYLIC ALCOHOL-NITROMETHANE MIXTURE*
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The kinetics of concentration fluctuations in the eritical n-amylie aleohol-
-nitromethane mixture have bheen analysed in this paper. Average lengths of
concentration waves and the diffusion coefficient for investigated mixtures
have been established on the basis of results obtained previously by the authors
from estimations of the average relaxation time of concentration fluctuations
and the radius of their correlation.

1. Introduction

The structure of various liquid mixtures and their molecular miesibility
has not been hitherto sufficiently explained. Various methods are being applied
in this problem, but optic and acoustic methods prove to be the most useful.
The method of olecular light scattering proved very effective in explaining:
the state of short-range order in liquids, liquid molecular micsibility and the
influence of various factors on the miesibility. Molecular light scattering is
caused by non-homogeneities of the dispersion medium. These non-homogenei-
ties in mixtures are: density, concentration and orientation fluctuations of
anisotropic molecules.

A strong increase of the absorption of acoustic waves in mixtures in the
direct nearness of the critical point, an intensity increase of the central compon-
ent in the fine structure of Rayleigh light scattering and a strong decrease of

* This work was performed within the framework of problem CPBR 02.03/2.3.

8 — Arch. of Acoust, 3/86



314 M. LABOWSKI, T. HORNOWSKI

the diffusion coefficient are all caused by an increase of concentration fluctua-
tions and an increase of its radius of correlation when approaching the critical
point.

This paper presents the analysis of the kineties of concentration fluctua-
tions in an investigated mixture, carried out on the basis of earlier acoustic
and optic measurements. Values of the following parameters have been estab-
lished : average relaxation time of concentration fluctuations, average length of
concentration waves, diffusion coefficient.

2. Thermodynamic fluctuations

The fluctuation of an arbitrary thermodynamic quantity is an instantaneous
departure of this quantity from its average value. Density and concentration
fluctuations in mixtures are important from the point of view of molecular
acoustics. For example, in a volume of 10~ m?® and at a temperature of T
= 20°C, the density fluctuation for an acetone-nitromethane mixture (con-
centration # = 0.5) is 4, = 1.7 107%, while the concentration fluctuation is
8, = 1.7-107% i.e. 10 times greater. The average value of concentration fluctua-
tions in critical mixtures near the phase transition point, i.e. in the |T—Ty]
< 1-2° temperature range, is several hundred times greater than density flue-
tuations. Therefore, the investigation of properties of critical mixtures ean be
limited only to concentration fluctuations.

Concentration fluctuations and their characteristic dynamic properties
influence the optic and acoustic properties of critical mixtures. According to
the thermodynamic theory of fluctuations, the average value of concentration
fluctuations in a two-component mixture with the concentration of the eompo-
nents, #, and ,, respectively, is expressed by formula [1]

Ly
{Aw)Dy = —(ﬁIFa)— (1)
N

0 |pmr
where N = N,+ N, is the number of particles of the mixture in volume V, p,
is the partial pressure of the saturated vapour of component “27, i.e. vapour
in thermodynamic equilibrium with the mixture. The above formula is valid
only for systems in thermodynamic conditions far from critical. It was derived
under an assumption that fluctuations in neighbouring volume elements are
independent. On the basis of the effect of light scattering near the critical
point L. S. ORNSTEIN and F. ZERNIKE [2] as the first assumed that fluctuations
in neighbouring volume elements are interdependent, so a correlation between
them exists.
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Spatial correlation — radial corvelation function

If AV, and dV, denote two small volume elements of a liquid, distant from
each other by a distance r, then the probability d¥, that particle “1” is con-
tained in volume element dV, is

aw, = av,|v. : 2)

Whereas the probability dW, that particle “2” is contained in volume
element dV, is

aW, = dV,|V. (3)

If positions of particles would be totally independent from each other,

then the probability dW,, that particle “1” is contained in element dV, and
particle “2” in element dV, would be expressed by formula

av, av,
o (4)

dW12 =

Instead, if we assume that there is a certain correlation between positions
of particles, then equation (4) should be written as

av, av,
Vo )

AWy = g(r)

The function g(r), which describes the correlation, does not depend on

the direction of vector 7 and is called the radial funection of the distribution of
particles. When r— oo, then g(r)—1 and edition (5) changes into equation (4).

Because function g(r) is related to probability dW,,, it can be considered
as the averaged statistic characteristic of the structure of the liquid. The appli-
cation of the radial distribution function, g(r), allows the determination of
the relative frequency of occurrence of various intermolecular distances in the
liquid, when the thermodynamic parameters, namely density, temperature
and concentration, are given.

The radial distribution function of atoms for simple liquids can be deter-
mined on the basis of data obtained from the scattering of X-rays, neutrons
or electrons. The relationship between the radial distribution function and
distance r usually has a shape as in Fig. 1; 7, is the radius of the atom. Fune-
tion g(r) has several maxima and minima ; their value tends to 1 with the increase
of r. Far from the critical point, function g(r) reaches 1 already for distances
equal to 4-5 atom diameters. There is a “long tail” near the critical point, shown
at the right side in Fig. 1.
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Fig. 1. Radial correlation function for a liquid [3]

Taking advantage of the idea of a correlation between density fluctuations
in a liquid in critical conditions, ORNSTEIN and ZERNIKE [2] derived a formula
describing the intensity of scattered light near the eritical point (critical opales-
cence). Due to the existance of the correlation there is an asymmetry of scatter-
ing (dependence of the intensity of scattered light on the scattering angle),
which can be used in the experimental determination of the radius of density
(or concentration) fluctuations correlation [4]. Also on the basis of the above
correlation, ArRooviTo, FALoor, ROBERTI and MISTURA [3] proposed a simple
explanation of the diffusion effect near the critical point in liquids. According
to them, when there is a correlation between density fluctuations with a radius
of correlation & then we can imagine that a diffusion process of droplets, which
have a radius of the same order as &, takes place in the liguid. Of course the atoms
“evaporate” and “settle” on the surface of the droplets all the time. In obedience
to the Stokes law the mobility of a sphere with a radius £ is described by expres-
sion (67n,£)~", while in accordance with Einstein’s expression the relationship bet-
ween mobility and diffusion coefficient has the following form: D = (kzt) X
(mobility). Hence, the diffusion coefficient can be drived from the following
expression :

D = T [67n,6. (6)

Further theoretical considerations, carried out on the basis of the mode
coupling theory developed by KAwWASAKI [5], and KADANOFF and Swirr [6],
have resulted in an expression for the diffusion coefficient in a hydrodynamie
range, which differs from the one presented above only by a constant factor
of 1.05.

3. Kinetics of fluctuations

Mixtures with developed concentration fluctuations resemble disperse
systems with very small non-homogeneities. They differ from ordinary disperse
systems by the fact that concentration fluctuations are unstable. These fluctua-
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tions are formed and disappear very quickly. Average lifetimes of eoncentration
fluetuations are inversely proportional to the diffusion coefficient of the mixture,
It was experimentally proved [1] that for mixtures with positive departures
" from the ideal and in thermodynamic conditions distant from critical, relaxa-
tion times can be contained in the range 10~°~10~" 5. Moving towards the eriti-
cal point average lifetimes of concentration fluctuations approach infinity.

Kineties of fluctuations are closely related to the process of propagation of
an acoustic wave in eritical mixtures. When an acoustic wave propagates in
a mixture, the pressure and temperature change periodically. This effect influen-
¢es the average value of concentration fluctuations and their distribution fune-
tion, because the average amplitude of concentration fluctuations is p- and
T-dependent. The fluctuation distribution attains the equilibrium value with
a certain delay, which depends on the diffusion coefficient D). ‘

Fig. 2. Example of possible changes in the distribution of concentration fluctuations due
to an acoustic wave I — distribution in equilibrium; 2 — distribution at reduced pressure;
3 — distribution at increased pressure

A part of the energy of the acoustic wave causes a change in the distribu-
tion of concentration fluctuations and then is transformed into heat. The pro-
cess is irreversible, so acoustic waves are absorbed. When the frequency of
acoustic vibrations is sufficiently increased, then the change of the distribution
of concentration fluctuations will not oceur during one wave period and the
fluctuation-induced absorption is not observed. A case in which the distribution
function of concentrationfluctuations is changed by an acoustic wave is illus-
trated in Fig. 2.

Let |Awx(r)] = «(r)—Z represent concentration fluctuations. Expanding
the distribution of fluctuations into a Fourier series (formal operation intro-
duced by Einstein), we have

o)) = Yoeer. (7)

g
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Harmonic components of this speetrum are represented by concentration

waves with wave vector ::; and amplitude ¢,. In the state of thermodynamiec
equilibrium the average amplitude of the Fourier component with wave vector

g, equals
¢ =f(V,T,u). (8)

The distribution function of concentration fluctuations in the field of an
acoustic wave differs from the distribution in equlibrium. Therefore, average
amplitudes of concentration waves assume new values ¢). After the acoustic
wave has passed through the mixture, the system will change in the direction
of the initial state and cf—¢,. According to ONSAGER’S hypothesis it can be ae-
cepted that the change of ¢, in terms of time is subject to the macroscopic law
of irreversible processes, so

%(c;—aq) = —% (ch—7,), (9)
where 7, is the relaxation time of the ¢g-Fourier component. Let us assume, as
it is usually done, that the change of average amplitudes of concentration waves
Ao}, = ¢4 —7T, occurs in accordance with Fick’s diffusion equation [7]

gt. (4cf) = DV*(4d}). (10)

The solution of equation (10) is sought in the form of a concentration wave
with length A,, which decays in relaxation time r,. Hence we have

2
Adt = Ce""acos (ﬂ) (11)
Aq

Substituting solution (11) in equation (10), we achieve the following relationship

between the g-concentration wave and its relaxation time z,:

1
= = 4n2D/A2. (12)
Tq

An analogical relationship can be written for a concentration wave, which
has an amplitude decaying in relaxation time 7,. This is the average relaxation
time of concentration fluctuations, defined by the following formula [8]:

(=]

f tﬂ(r)d(lﬁr)

0

Fﬂ(t)d(lnr)
0

Ty =

(13)
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where funection H(7) is the density of the relaxation time spectrum. H(v)dw
deseribes the contribution of all Maxwell mechanisms, which have their relaxation
times in an interval from 7 to =4 dr. Function H (7) can be determined as the
global module per unit interval of the logarithm of relaxation times (In7).

Concentration waves, hitherto considered only as a result of a formal
expansion of concentration fluctuations into a Fourier series, correspond to
density waves in mixtures; and these — according to MANDELSZTAM [9] — are
elastic Debye waves. Taking advantage of this analogy and basing on Debye’a
considerations we can estimate the smallest possible length of a concentration
wave. If we consider a crystal as a continuum, then its normal vibrations can
be determined from the elasticity theory with adequate boundary conditions.
The total number of normal vibrations with frequencies contained in an inter-
val from o to o+ do, is equal to

3widw

onp? ]

aD(w) = (14)
where v is the average velocity of elastic waves in an amorphie solid body when
3/v* = 2/v}+1/v}; v, and v, are propagation velocities of a transverse and longi-
tudinal wave, respectively. The maximal frequency of elastic vibrations ean be
determined approximately from

“max Vo .
D s,y f aD(w) = =% — 3N (15)

0

where N is the number of particles in volume V. Assuming that d* = V/Nd is
the lattice constant or the average intermolecular distance in liquids, we have [9]

27w [ 3 \'° dm |\
wmax = T(_Z-ﬂ_) ’ Amax = (?) d. (16)

The maximal frequency of elastic Debye waves, @,y = 10 Hz, and their
minimal wave length, A, = 1.5 A, can be estimated from formula (16). All
3N elastic waves propagate in the medium in all directions forming a complex,
spatial “lattice” of optical non-homogeneities. However, if a parallel light beam,_
characterized by wave vector k, incides onto such a medium and scattered
light is observed in the direction determined by wave vector k', then the maxi-
mal intensity of the scattered light will be observed only when wave vectors k, k’
and q satisfy Bragg’s condition [9]. In such a case |g| is described by formula

- 4mn

— 1 1?
B apein. (17)

It results from equation (17) that if we use He-Ne laser light with wave
length 4 = 6328 A, then the minimal length of the concentration wave, which
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3

can be examined in scattered light will equal approximately 2000 A (scattering
angle equal to 180°). As it will be proved further on, the average length of a con-
centration wave in critical mixtures will be by 1-2 orders of magnitude shorter.

The Debye approximation of the description of lattice waves [10] assumes
that the spectrum of lattice vibrations D(w) has a rather specific form, Namely,
it is accepted that D(w) is proportional to w® near = 0, where the material
behaves like a continuous elastic medium, and quickly decreases to zero for
frequency wp,.. Such a form of function D(w) is not justifiable for solids [10],
but ean considerably well describe the situation in liquids. It has been experi-
mentally and theoretically proved that the spectrum of lattice waves in solids
spreads over a considerably wide frequency range and has sharp maxima cor-
responding to modes with various polarizations and velocities. In low viscosity
liquids generally only longitudinal waves occur and they propagate with
the same velocity in all directions. Therefore, the spectrum of lattice waves
should not exhibit such maxima in liquids. Furthermore, many similarities
¢an be noted between the character of function D(w), proposed by Debye,
and the distribution function of relaxation times, presented in paper [8]. In this
poper we also have a sharp maximum for shorter times and a graduate decrease
cf the value of the distribution function for longer times.

4. Determination of the average length of a concentration wave in a critical n-amylie
alcohol-nitromethane mixture

The determination of the spectrum of concentration waves in a series of
critical mixtures would supply valuable information concerning the kinetics of
concentration fluctuations and widen the knowledge of such phenomena and
effects as light scattering or propagation of acoustic waves in such media.
Yet this is a rather complex problem for solids and a very complex one for
liguids with their random character of particle motion. Most formulations of
the spectrum of concentration waves in liquid media have the character of
qualitative predictions rather than exact empirical or theoretical solutions.

On the basis of the above mentioned analogy between concentration waves
and, density and elastic Debye waves, it can be found that the determination
of the spectrum of concentration waves is tantamount to the determination
of the spectrum of normal vibrations. In a solid body the problem is reduced
to the solution of the following system of 3 N equations [10]:

DG — 0* M 8,00} ULy = O (18)
8'j’
where U, , are lattice deflections with a time factor exp (iwt); G;,+(q) is the ten-

sor deseribing interatomic interactions; M, is the mass of the s- atom The solu-
tion of these equations for a dense network of wave vectors q gives values w,
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from every interval dw,. As it has been mentioned previously the situation is
more complex in liquids, which are randem media, and the determination of
the distribution of Debye waves is still to be done. Of course the determination
of the averdage length of concentration waves is not tantamount to the deter-
mination of the speetrum of these waves. Yet all the same it leads to several infer-
ences concerning the behaviour of such a spectrum in terms of temperature
and concentration of the mixture.

In order to establish the average length of concentration waves according
to formula (12) we have to know the average relaxation time of concentration
fluctuations and the diffusion constant of the mixture. Relaxation times, 7,,
in the critical n-amylic aleohol-nitromethane mixture have been determined
with the application of the method described in papers [8, 11] for various con-
centrations and for two temperatures. Values of diffusion coefficients for these
temperatures and concentrations have been calculated from formula (6). The
radius of correlation, & for this mixture has been determined by the authors
previously with the utilization of the effect of Rayleigh light scattering [4, 12].
Values of the radius of correlation for chosen concentrations and temperatures
were calculated from [13]: :

§ = &[T —T| +d(@—x,)' 1" - (19)
Final calculation results are presented in Table 1.

Table 1
Concentration Vi & : D-10° A3 T
of
ﬂ-CsIInOH
[mole fraction] [K] [10-10m] [m? 51 [10~2m] 5]
0.1 302.356 6.1 39.2 2.5:10-¢ 4.05-10-10
313.15 4.0 74.3 3.8-10-¢ 5.03-10-10
0.3 302.36 18.5 7.4 1.1-10°° 4.04-10-8
313.16 5.5 31.2 6.7-10-% 3.60-10—*
0.385 302.35 20.4 5.9 2.2-10-5 2.23-107
313.15 5.6 26.3 4.4-10-6 1.91-10-°
0.5 302.35 16.4 5.9 9.6:10-% 3.99-10-8
313.15 5.4 22.9 3.4:10-8 1.34-10-% =

Figs. 3 and 4 illustrate D and 7, in terms of concentration in a critical
n-amylic alecohol-nitromethane mixture for two temperatures: 29.2 and 40°C.
In accordance to the theory, the average relaxation time of concentration flue-
tuations increases when approaching the critical point, while the diffusion
coefficient decreases. Figs. b and 6 present the relationship between the average
length of concentration waves and the concentration of the mixture for the same
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Fig. 3. D and 7, in terms of concentration in the critical n-amylic alecohol-nitromethane
mixture at temperature 7' = 302.35 K
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Tig. 4. D and v, in terms of concentration in the critical m-amylic alcohol-nitromethane
mixture at temperature 7' = 313.15 K

two temperatures. As it can be seen, the average length of concentration waves
increases by one order of magnitude, when conditions of the mixture approach
critical conditions. This indicates that the spectrum of concentration waves
moves towards lower frequencies.
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Fig. 5. The average length of concentration waves in terms of concentration in the critical
n-amylic alcohol-nitromethane mixture at temperature T = 302.35 K
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Fig. 6. The average length of concentration waves in terms of concentration in the critical
n-amylic alcohol-nitromethane mixture at temperature T = 313.15 K
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