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This paper is concerned with the so-called local velocity of a harmonie
pressure wave of a circular ring vibrating with a constant velocity amplitude.
The ring is placed in an infinite rigid acoustic baffle. The local propagation
velocity was calculated on the axis condueted from the center of the ring perpen-
dicularily to its surface.

The propagation velocity changes from infinity for z = 0 (singular point)"
to a constant value, ¢,, for # equal to about 10 times the external radius of the
ring.

1. Introduction

Because this paper is a continuation of paper [4] we will not repeat the

complete reasoning presented previously. Only several fundamental formulae
and definitions will be given.

In a case of an arbitrary harmonie pressure wave, i.e. a wave with an arbitra-
ry amplitude, A(x;) ¢ = 1,2, 3, and wave front f(z;), we have

D(@;y 1) = A(x;) e, (1)
The condition of wave propagation acquires the form:
| ot — f(x;) = const. (2)
Differentiating both sides of equation (2) with respect to time we obtain:
o—|gradfle = 0 (3)
where the so-called local velocity of wave propagation:

w
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depends on the position in the acoustic field. It is constant only for a plane wave
and an elementary spherical wave, as in both cases we have:

: w
|gradf| = ko = — (5)

where ¢, is the material constant — propagation veloeity from d’Alambert’s
equation [1] [2].

Paper [4] has dealt with the local velocity of propagation of an acoustic
pressure wave in the near field of a circular piston in a rigid baffle. The wave
propagated along the axis of symmetry of the field, marked as the z-axis. It
has been proved there that this velocity changes from 2¢, on the source, to ¢,
for all greater distances from the source (piston), and practically at a distance
equal to b radii of the piston, ¢ differs from ¢, by less than 19%.

The second case considered was the local velocity in an acoustie field of
a cylinder for a zero order wave. Here the ratio ¢/¢, depends on the value of
k,r, where r is a polar variable, i.e. the distance from the axis of the eylinder
(source). As opposed to the first case, here ¢ is lower than ¢, and with the increase
of Ek,r increases from zero (this value does not have physical sense) to ¢,, and
for kg ~ 5 ¢ differs from ¢, by less than 1%.

This paper discusses an acoustic system, in which the local velocity can be
arbitrarily great and theoretically decreases from oo to ¢,. Such a system is
ensured by a circular ring placed in an infinite rigid baffle. The field is conside-
red on the z-axis, which is the axis of symmetry of the system and is drawn from
the source (ring) perpendicularily to its surface. It will be proved that when
z—0, then the local velocity approaches infinity. '

2. Calculation of the phase velocity on the axis of the near field of a circular ring

The formula used for the acoustic pressure on axis 2, directed as it has been
given in the introduction, is given in accordance to STENZEL [3], [6]. Denoting the
internal and external radius of the ring by @, and a,, respectively, the velocity
amplitude on the ring by u, and the rest density of the medium by g,, we ob-
tain:
ko

P = 2 Uy0y0e8in [% (Va2 +ai—Var+ aﬂ] o [+ 5 -7 (Va¥ead + Vi

(6)

The condition of wave propagation (phase stability when z and ¢ are changed)
has the following form: :

k :
wt+% - ?" (V224 a2 +V22+a}) = const. (1



PHASE VELOCITY OF A PRESSURE WAVE 333

Differentiating both sides of equation (7) with respect to time, we have:

k, ( 2 ” 2 ) dz 0 (8)
n— — | = —|— = 0.
2 \Ver+al Veartall dt

Taking into consideration that:

dz
=5 = o) (9)
and
ko = Gﬁ (10)
we obtain

¢  2Vetia V2i+ al (1)

¢ z2Vertai+Veta® :
It is much more convenient to use formula (11) in a form expressed by the rela-
tive distance, z/a;, and the radii ratio — =, according to formula

& =ngy, n<l. (12)

o Ve Vel
) V)

When n = 0, the ring changes into a circular piston and then (a, = a)

2 2
: ]/ 1+ (_)
¢ a
— = T (14)
Gy 2 z\*
e e Pl B0k
a a
in accordance to the result in the paper [4].

When z/a, in formula (13) approaches zero, for n s 0, then ¢/c,—>oc, and
thus in the centre of the circular ring, on the baffle, the propagation velocity
of the pressure wave has to be infinitely great. This result is only apparently
surprising, because the rigidity of the baffle is tantamount to the infinite value
of wave resistance. The baffle itself has such a resistance. However, when also
the propagation velocity in the medium, in which the wave propagates, ap-
proaches infinity when z/a,—0, then we have the continuity of the boundary
condition ensured. On the other hand, when z/a,—>oc0, we have ¢/c,—1.

Then we have
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Fig. 1 presents values of ¢/e, for various », including the case of an infinitely
thin ring, i.e. when # = 1. This case has been considered separately, because
substituting n = 1, i.e. a, = a,, in formula (6) gives the acoustic pressure equal
to zero. Thus formula (6) can not be used in such a case. Howéver, further on
it will be proved than the result obtained with a different method is the same
as if we substituted » = 1 in formula (13).

0 1 2 2 4 - z/a,

Tig. 1. ¢/o, versus z/a, for different values of n

3. Phase velocity on the axis in a case of an infinitely thin ring. i.e. a circumference closely
packed with point sources

Even though the case of the near field of an infinitely thin ring is one of
the simplest examples of an acoustic field, it has not been mentioned in litera-
ture. Only the formula for the far field has been given [1], [2]. Therefore,we
will begin with the calculation of the near field.

According to Fig. 2 we will mark the radius of the ring by a and the veloeity
amplitude on the ring, calculated formally as the productiveness of the source
per unit of arc length, by u,, and the acoustic pressure on the z-axis will have
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the following form [1], [2], [4]:

—ikyr

k
Stht. u.,e‘("‘“”"")f  edy (15)
2n

L

: i

where L is the length of the circumference of the circle (ring.). As r is
a constant value, and we integrate over variable ¢ from 0 to 2z, then we have

a
p = koecouueﬂmi{-w[ﬁ—kur) ? s (16 )
z >
p a

Fig. 2. The geometry of an infinitely thin ring

Naturally, also

r =Vz2+a?, (17)
thus formula (16) will have the following form:

¢i(@t+m/2— Va2ia?)

P = koo0sly e (18)
The condition of wave propagation is
wt—l—g —k, V2?4 a® = const. (19)
Differentiating both sides of (19) with respect to time we obtain
B e (20)

= V224 a? a
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and taking into consideration that

dz ()
7 e M (21)

finally we acquire the following formula for an infinitely thin ring

oy

Cy 2

a

(22)

It is worth mentioning that formula (22) can be obtained from formula (13)
by accepting » = 1, although the initial formula does not suit this case. This
happens, because we consider phase instead of amplitude, which for a, = a, in
formula (6) is equal to 0.

The curve ¢/¢, = f(z/a) for an infinitely thin ring is shown in Fig. 1. Also
there for z/a = 0 we obtain an infinite value of ¢/¢,. For n = 1 the curve ascends
most steeply when z/a—0.

4. Conclusions

An acoustic antenna in the shape of a circular ring radiates a pressure wave,
which propagates along axis z (axis of symmetry of the field) with a variable
velocity dependent on the position, i.e. on variable z. For z = 0 this velocity
exhibits a singularity — it is infinite. This means that the central point, z = 0,
does not vibrate. This corresponds to the boundary condition on the baffle.
In a point arbitrarily close to z = 0, but at a finite value of 2, the local propa-
gation velocity of a wave can be arbitrarily great. For every # this velocity has
the greatest value for an infinitely thin ring (n = 1) and the smallest value for
a circular piston (n = 0).

When z increases (as well as 2/a,, where a, is the external radius of the ring),
then the propagation velocity of a pressure wave decreases to the material
veloeity, ¢;.

These effects practically occur only at relatively small distances from the
plane, i.e. up to the value of z/a, ~ 4, at greater distances they are imperce-
ptible. However, they can play a significant role in large antennas in the shape
of a circular ring not only for acoustic waves.




PHASE VELOCITY OF A PRESSURE WAVE 337

References

[1] 1. MarEeck1, Theory of waves and acoustic systems (in Polish), IPPT PAN, Warszawa
1964.

[2] E. SkuprzYK, The Foundations of Acousties, Springer Verlag, Wien-New York 1971.

[3] H. StexzEL, O. Broszr, Leitfaden sur Berechnung von Schallvorgangen, Springer Verlag,
Berlin, Meidelburg 1958.

[4] R. WYRZYKOWSKI, Linear theory of the acoustic field of gas media (in Polish). RTPN,
WSP, Rzeszow 1972.

[6] R. WyrzyEowSKI, unpublished.





