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A problem is considered of an acoustical wave propagating along a hollow,
infinite elastic eylinder filled with air and surrounded by a viscoelastic tissue.
Such a case approximately corresponds to a biopsy performed with the applica-
tion of a needle introduced to such tissues as liver, kidney, muscles, and the like.

In the problem under consideration it was proved, that the volume viseo-
sity is significant, whereas shear viscosity can be neglected.

Basic equations were formulated in terms of displacement potentials, as
well as the boundary conditions. This led to a characteristic equation of the
problem which were golved numerically.

It was proved that a boundary wave propagates along the needle with
a velocity and attenuation not mueh smaller than in the surrounding tissue.
Part of the energy is transfered from the needle into the tissue where the energy
is dissipated. Distributions of the radial and axial stress components and radial
displacement components were found.

Introduction

The numerical solution of a problem of acoustical wave propagation along
a hollow eylinder filled with air and submerged in a absorbing liquid concerns
an effect observed during the conduction of a biopsy controlled ultrasonically.
It was observed, that under certain physical conditions a wave is produced
which propagates along the needle, reaches the point of the needle and returns,
giving an image of the needle point on the screen of the echoscope. This problem
has been worked on under certain physical limitations in papers [1], [2], [3].
These papers proved, that the velocity of the propagating wave is close to the
wave veloecity in the biological structure surrounding the needle. Previous
papers concerned the wave propagation in perfectly elastic media. Now we
assume, that the biological structure surrounding the needle is an viscoelastic
medium.
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As it results from paper [4], such biological structures as musecle, kidney,
liver, on which a biopsy is performed, have viscous properties. The propagation
of an acoustical wave in a viscoelastic medium was considered in work [5].
It analysed a plane case. Now a needle used for puncturing a given biological
structure will be approximated by a perfectly elastic hollow cylinder, infinitly
long (Fig. 1).
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Fig. 1. A circular sector of a hollow cylinder filled with air and surrounded by a viscoelastic
medium

The analyzed wave is a progressive one. We also assume, that the visco-
elastic biological medium surrounding from the outside the hollow ecylinder
is an infinitely extended medium.

The aim of the paper was to develop basic equations, to solve numerically
the characteristic equation, and to determine the parameters characterizing
the wave motion in this system.

Basic equations

The theory of elasticity assumes, that the components of the stress tensor
are linear functions of the strain. This assumption (Hook’s law) is in force, when
the purely elastic forces are significantly greater then the forces depending
on the strain velocity (viscous forces).

In a case when these forces are comparable and the stress components are
also linear functions of the components of the strain velocity, we can say, that
the given body has also viscous properties and we eall it a viscoelastic body
(Voigt’s body for example). We approximate a biological medium by a mode
of the Voigt body. Such a body, in a case of isotropy, is characterized by four
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material constants ', u’, A", u'’, where A’ and u’ determine the elastic proper-
ties of the body, and A" and p" — the viscous properties.
The constitutive equation for a viscoelastic body is:
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where 7 and » are the stress and strain, respectively.
Placing (1) in the equations of motion:
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where % — displacement we obtain the displacement equation for an isotropic
viscoelastic body:
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In a case of harmonic motion with a frequency f, which we assume in the paper
as:

E(m,y,z,t) :-’lz(w,y,z)ej“" (4)
and applying equation (3) we reach:

— 0% = (A,+p,) graddivii+u, V2 (5)
where
b = N +jody p,=p'+jop’, o =2rf, (6)

The displacement equation (5) has the same form as the displacement equa-
tion in the theory of elasticity. The difference is only in two parameters, 4, and
#c, Which now are complex and depend on frequency according to equation (6),
while in an perfectly elastic medium these parameters were real numbers. So
a perfectly elastic isotropic body is characterized by two Lamé constants, while
a viscoelastic isotropic body — by four constants. 2’ and u’ determine the elasti-
city of volume and the shape elasticity, respectively. A’ and "’ — the volume
and shape viscosity, respectively. Equation (5) is solved in the same way as in
the theory of elasticity [6]. A cylindrical coordinate system is chosen (r, 0, 2)
(Fig. 1). In our case of a deformation axially symmetrical in respect to axis z,
the displacements, deformations and stresses are independent on the angle 6.
For the vibrations of a viscoelastic medium we have a displacement equation:

(A+p) grad dive +uViu = g . (7)
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Coefficients 4 and u are:

P o
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where A’ and u’ determine the elastic properties, and 1" and p"* — the viscous
properties of the body.

We assume, that the displacement vector, %, in a viscoelastic medium has
the following form:

F'ﬁc (r,2,1) = grad ®,+rot ﬁf"__ (9)

Putting the relationship (9) in the displacement equation (7), shows that equa-

tion (7) will be fulfilled if the scalar @, and the vector W¢ potentials are the solu-
tions of equations:

o5 M,
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In a case of a deformation axially symmetrical in respect to axis 2, only one

component, W¢, of vector W* differs from zero. Therefore, equation (11) can be
rewritten: ;

1= o OW;

VaW— — W = s (13)

We bring equation (13) to a scalar wave equation, defining scalar quantity
¥,, in the following way:
oY,

Py Wi = ——* (14)

Placing dependence (14) in equation (13) we obtain:

2
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where u = y'+p"—5t- (15)
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We rearrange equation (15):
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0 v
lu’vzglc'l_y'uvzﬁgfc =% o (16)
Let:
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We introduce a denotation:
_._e_".aip __pz i ltz (18}
p+jop”’

We accept the solution of the Bessel equation (17) in the following form:
Y. (r, 2, 1) = BH (I, r)e~7pe+iot (19)

Analogically we solve equation (10), so we assume the solution of eq. (10) to
have the following form:

D,(r,2,t) = D, ("")f’_ji"pz-*-jmi

and we reach the Bessel equation:

oo, 1 8, [ 0,00

e el o
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We denote:
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—pr =0 (21)
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Then the solution of equ. (20) is @, in the form:
D, (r, 2, 1) = CHP (I;r) e~ Petiot, (22)
Equ. (10) and (15) describe the following wave:

B,(ry 2, 1) = CHE (Igr) e /2=t

Y (ryz,t) = BHf)z)(ltr)e_jszm (23)
where
0,0° 0,0°
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b= K4jol’,  p = u+jop" (24)

HE)(2) = Jo(2) —jXo(2)

p — is the sought propagation constant. Factors ¢/'¢=7P* characterize a harmonic,
absorbed, plane wave propagating in direction z. Let p = Re(p)+jIm(p).
Then:

ejmte-jpz =k ej'wlg—j Re[:p)re—jz Im(p)z __ e}'wtg—j Re(p)zelm (p)z

ez
/ -z

Hence we obtain e/e=i#* — eivlg=i" , when
¢ = w/Re(p), a= —Im(p) (25)

where ¢ — wave phase velocity, a — absorption coefficient.

The components of the displacement vector u° can be noted with the appli-
cation of the potentials @, and ¥,:
o o oD, (15 o ST o
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The radial and axial stress are expressed by potentials @, and ¥, in the fol-
lowing way:

St (1 00, o, 0\ . 0 (00, 0¥, =
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S ore 7o | i e T ot )’ (4
ST VLA B W O, =
=y \“igs 2 et  r o) (28)

The radial and axial stresses, as well as the components of the displacement
vector ® in an elastic cylinder were defined in paper [3] by scalar potentials
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@, and ¥, defined by the following equations:

D (7, 7y 1) = [Ayo(kgr) + Ay Yo (kgr)]e—iPetiot

'.‘Fs (T, 2z, t) = [BlJo(k"r) + Balfo(k‘?,)]e—Jpz+gml ( )
where
b w? d % w? .
E it S g TR (30)

and J,(2) and Y,(z) denote Bessel functions of the zero order first and second
kind, respectively.

The components of the displacement vector ﬁ*, the radial and axial stresses
are expressed by potentials @, and ¥, as follows:
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Material Constants of a Viscoelastic Biological Medium

The viscoelastic constants will be determined from the relationship between
Ay p'y A7, 4" and the velocities of longitudinal, ¢;, and transverse, ¢, waves in
soft tissue as well as the absorption coefficients a;, @, for given frequen-
cies, o = 2xnf.
Therefore:
¢; = o/Re(h), a3 = —Im(h) (31)
where:
h = [ch/(ac'i_z#c)]”z! Ay = X +jwd”, e = p' +jop"’
and
¢, = w/Re(l), o, = —Im(l) (32)
where 1 = (0,0/p,)"*.
Papers dealing with the propagation of ultrasonie waves in soft tissue give
only quantities characteristic for a longitudinal wave. A transverse wave pro-

pagating in tissue is absorbed so quickly (1000 times quicker than a longitudinal
wave), that practically it is not applied. Also the measurement of this wave is
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very difficult. Paper [4] states first results of experiments conducted on deter-
ming the velocity, ¢, of a transverse wave, the absorption coefficient ¢, and the
bulk elasticity u ' and viscosity u'' coefficients of such structures as muscle,
liver, kidney. For frequencies in a range from 2 to 14 MHz only the intervals of ¢,
aq;, p' and p'’ were determined [4]:

¢ e[9-10*mfs, @ e[2-10°%+-3-10%]1/m,
w' <10® N/m?, u' €[3-10-3--4-10-3] Ns/m?2. (33)

In order to determine ux' and u'’ from equations (31), (32) we assume that:

a) ¢ is the geometric mean in the interval (33), therefore ¢, = 30 m/s

b) @, was measured in paper [4] in the frequency range 2 —14 MHz. The ab-
sorption coefficient a; for longitudinal waves in soft tissue rises in direct
proportion to the frequency [7], the choice of the smallest coefficient a,
from the outerval (33) is accepted by analogy. Frequencies applied in bio-
psy are about 2.5 MHz, thus ¢, = 2-10° 1/m.

6).z— 1.5 10° mjs.

d) e; = 0.37 1/em = 3,26 dB/em.
With these assumptions, the following values of material constants (viscous

and elastic) of soft tissue, were obtained for a frequency of f = 2.5MHz:

A" = 2189 10° N/m?, u' = 5.854-10°5 N/m?

4
A = 0.9056 Ns/m?, pu" = 0.0033 Ns/m? (36
It can be seen, that the volume viscosity coefficient 4" is nearly three orders
of magnitude greater than ux"’. O’BRIEN in paper [6] showed, that '’ has the
same value for tissue and for water (soft tissue contains is 709, of water) and
for water he accepted an approximation x'' < 1”. The same assumption can be
applied for tissue. Then, comparing in (34) the elasticity coefficients A" and u’,
we can observe that u’ is 4 orders of magnitude smaller than A’. In such a case
we make an assumption: u' <€ A'.
Summarizing the above assumptions we can define the tissue as a liquid
characterized by coefficients:
volume viscosity: A" = 0.9056 Ng/m?,
elasticity of volume: 1’ = 2.189:10° N/m?2.
In this liquid only a longitudinal wave propagates, because the absorption of
a transverse wave in tissue is a 1000 times greater than the absorption of a longi-
tudinal wave, what was proved in paper [4].
Therefore in the investigated case the displacement potential has the form:

D°(r, 2, 1) = CHP (I;r)e~P?ei" (35)
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where

wzgc
A

= p*. (3ba)

The radial component of the displacement vector, expressed by potential @°,
is:
ul = —CLHD(1;r)e 7" ™, (36)

The normal and shear stresses in a viscoelastic liquid with a volume viscosity
are:
£ e (2) 2 27 g—iDzpiwt e
%, = — ACHY (lar) [13+ p2le %™, 1, =0. (37)

s

Taking advantage of equations (29) and (30a), the radial and axial stresses, and
the radial component u; of the displacement vector in a elastic solid body are
expressed by:

k
= [~ Aal ) (0~ 20— S 2 k) -

k
— Ay {¥o(kar) (00 — 20,p%) — —f 2y ¥y (kar)} —
— By (24, jpley [r){ 1 (Rr) — egrd o (leyr)} —
— By (2p, jpky [r) { X (leyr) — ke X o (kﬂ’)}] o (38)

e = pe{2pkaA T (ker) +2jpka Ay Yo (kgr) + Bk (p* — ki) 1 (Fyr)
+ Byl Y (k) (K — p?)} e 7%,
wy = [ — Akgd(kgr) — Aok Y, (kgr) + By jpke (k) + Bokjp ¥, (kfﬁ‘")je_jp'eh'

where

¢; and ¢, being the propagation velocities of the longitudinal and transversal
waves, respectively, in the medium (issue).

Boundary conditions

The boundary conditions should be fulfilled, on the surface of the hollow
cylinder with the internal and external radius, ¢ and b, respectively. These
conditions have the form of a continuity of radial and axial stresses, and the
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continuity of the radial component of the displacement veetor, so:

gar g s
T 5 Tyt Tpa

c

Yy ==t . Tor.r =6

sl
=1 -

rz? (39)
00 2 el 200 fori R4=0D

Placing relationships (36), (37), (38) in the system of equations (39) we obtain
a system of b homogeneous equations with unknown complex amplitudes:
A,, A,, By, B,, C. If there is to be a non-trivial solution of the equation system,
the determinant formed from coefficients standing by amplitudes 4,, 4,, B,, B,,
¢ must disappear:

byl =0 " 3,9 =1,85. (40)

Determinant |b;| is expressed by formula (40a). Terms b; ¢,j = 1,5 contain:
the material constants characteristic for the needle and the biological structure,
wave numbers k;, k;, I;, the sought wave number p, which occurs explicitly
in the equation, and is also included in k;, k;, I; and in the arguments of the first
and second kind Bessel functions.

The solution of the characteristic equation [b;| = 0 by means of analytical
methods in order to obtain the complex wave number p — is impossible. The
complicated form of the characteristic equation suggests the application of
numerical methods. We look for such values of the wave number p, which cor-
responds to:

a) the zeroing of the determinant,

b) to a wave velocity close to the wave velocity in the surrounding liguid medium
and absorption close to wave absorption in the surrounding unlimited liquid

medium.

The signs of k;, &k, and I; in formulas (30) and (35a) have been chosen in

such a way, that the wave propagating away from the media boundary is at-
tenuated. The characteristic equation was solved numerically for the following
data: f = 2.6 MHz, a = 0.75 mm, b = 0.5 mm.
The needle is made of steel with density o, = 7.7 g/em?, Lame constants: 2,
= 1.07-10'%g/(em s%) and p, = 8.03-10"g/(em s2). The velocities of the longi-
tudinal and transverse waves are ¢; = 5.9 km/s, ¢, = 3.23 km/s, respectively.
A viscoelastie liquid was accepted as tissue. It was characterized by the follow-
ing parameters: volume viscocity 4" = 0.9056 Ns/m?2, elasticity 2’ = 2.189-10°
N/m?, density g, = 1 g/em3. The velocity and absorption of the wave in this
medium are ¢ = 1.5 km/s, a = 0.37 1/em, respectively.

Under these assumptions the acquired veloecity of a wave propagating along
a hollow eylinder immersed in a viscoelastic liquid was ¢, = 1.49741 km/s, in
other words samewhat smaller than the velocity of a longitudinal wave in
an unlimited viscoelastic liquid, accepted at 1.5 km/s. The obtained absorption
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coefficient a, — 0.349 1/em is also lower from the absorption coefficient of a
longitudinal wave in an unlimited viscoelastic medium, accepted at a = 0.370
1/em.

As a consequence of solving the characteristic equation the following va-
lues of wave numbers k,;, k, and I; were obtained:

k; = —0.36—j 101, k, = —0.39—j 92.9, I; = 16.3 —4 0.0037  (41)
and the following values of the amplitudes of the displacement potentials:
A, = —j, B, = —j 0.0072, B, = —0.0072, C = —0.0011—j 0.00073 (42)

for an assumed amplitude value 4, = 1-j0.

Putting together the obtained numerically results (41) and (42), we receive
the displacement potentials in the following form:
a) in a viscoelastic liquid:

@ — CH®((16.3—j 0.0037)r)e~10%¢="349%55m10%, (43)

It results from formula (43), that the wave propagates also in direction z.
The wave is attenuated along the z axis.

The second kind Hankel function H?(I;) represents a wave propagating in
the direction of the increasing r. For r—oco we have an asymptotic represen-
tation:

H(1 L e Ny —
D] exe| =il — 7

= [(16 ] 20 0037)1‘ ]”2 3—3'16.3:-,6_0.00371-63-57:1051 ; (44)
o—] U. T

From this representation it can be seen, that the wave propagates also in direc-
tion r and is attenuated with the increase of r, because Re(l;) > 0 and Im(l;) < 0.
In an ideal case (absorption in liquid is equal to zero) the real part, Iy, is zeroed
and [; is an imaginary quantity. Then the wave is attenuated with the increase
of », [3].

b) in an elastic solid body:

D, = [AJ(—0.47—j 101r)+4,Y,(—04r—j 101r)]e 71012, o= 0-34%
% 6_1'51:10"( (45)

W, = [ByJy(—0.47—j93r) + B, Y(— 0.4 r—j 93r) ]~ T1012. g= 039 iSO (465)
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From formulas (45) and (46) it can be seen, that the wave propagates in direction
z and is partially attenuated.

Fig. 2, 3, 4 present the distributions of the stresses and deformations in
a golid body and liquid.

Conclusions

1. Characteristic equations for a problem of a progressive wave propagating
along the surface of a hollow eylinder and surrounding viscoelastic liquid
(with a volume viscosity), were obtained.

2. The characteristic equation was solved numerically with the method of sue-

cessive approximations and the zero crossing method. The wave velocity
close to the velocity of a longitudinal wave characteristic for a viscoelastic
liquid (1.5 km/s), was sought.
The possibility was proved of wave propagation with a velocity not much
smaller, ¢, = 1.4974 km/s, than the velocity in a unlimited medium, and
with the absorption lower, a, = 0.349 1/em, in comparison to the absorption
of a longitudinal wave in an unlimited viscoelastic liquid, equaling a,
= 0370 1/cm,

3. From the character of obtained presentations for displacement potentials
it results, that aside from the propagation wave along the boundary of the
media, also wave propagation takes place in the direction of the liquid medium
where the energy is absorbed.

4. Distributions of radial and axial stresses, and radial components of displace-
ment were obtained. The wave decays exponentially with the increase of
the distance from the media boundary. The character of stresses and displace-
ments is shown in Fig. 2, 3, 4.
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