ARCHIVES OF ACOUSTICS
10, 1, 3-16 (1985)

ACOUSTIC PRESSURE OF A SYSTEM OF CONCENTRIC ANNULAR SOURCES
IN A PARALLEL-PIPED LAYER OF A GASEOUS MEDIUM*
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Department of Theoretical Physics, Higher Pedagogical School
(65-069 Zielona Goéra, Pl. Stowianski 6)

In this paper, an expression was derived for the acoustic pressure distribu-
tion in the near and far fields, radiated by a system of planar concentric annular
sources. The propagation of the pressure wave was considered for a parallel-
-piped layer, bounded by rigid baffles, filled with a lossless gaseous medium.
It was assumed that the system of sources, with known axially-symmetric vibra-
tion velocity distribution, was on one of the planar and rigid baffles. Linear
phenomena dependent sinusoidally on time were analysed.

By solving the Neumann boundary problem by means of the method of
Hankel transforms of the zeroth order, an integral expression was obtained for
the acoustic pressure distribution in a parallel-piped layer. The pressure, ex-
pressed by an integral in the complex variable plane, was represented in the
form of a series of residua at the poles of the subintegral function, giving a for-
mula, convenient for practical calculations and easy to interpret, in the form
of a series of normal waves. The theoretical analysis of the acoustic pressure
distribution was supported by numerical examples, for which curves of acoustic
pressure were plotted as a function of the distance from the source.

1. Introduction

This paper is concerned with investigations of the acoustic properties of
a system of concentric annular sources, consisting in the determination of the
acoustic field distribution in a parallel-piped layer.

Most of the previous studies on the wave generation and propagation were
concerned with analyses of the acoustic pressure distribution in the far field for
the whole space or for a half-space. In the latter case, it was assumed that the
source of the acoustic wave was in a planar and rigid baffle.

* This investigation was carried out within the problem MR.I.24
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Considering these problems, McLACHLAN [4] carried out a detailed analysis
of the problem of the directional characteristic of a planar annular piston with
uniform vibration velocity distribution.

A similar expression for the directional characteristic of a single circular ring
was given by THoMPSON [T7].

A detailed analysis of the pressure distribution in the far field, radiated by
a membrane or a circular plate, excited to axially-symmetric or axially-nonsym-
metric self vibration, was carried out in paper [6]. This analysis was an attempt to
determine the way in which the field distribution is affected by the individual
elements of the vibrating surface of the membrane or plate, i.e. a system of
planar concentric annular sources.

More complex acoustic phenomena occur for generation of acoustic waves
in a layered medium, and in the simplest case-in & parallel-piped layer.

Within this range of problems, deep theoretical research was carried out by
BREKHOVSKIKH [1], by analysing both electromagnetic waves and acoustic
waves generated by point sources.

The present paper refers to papers [6] and [1]. The object of the analysis
carried out in this theoretical study is the investigation of the pressure distribu-
tion in the near and far field, radiated by a system of planar concentric annular
sources. The wave propagation was considered for a parallel-piped layer, filled
with a lossless gaseous medium, bounded by rigid baffles. Linear phenomena
dependent sinusoidally on time were analysed on the assumption that the
system of sources was on one of the planar and rigid baffles.

Assuming knowledge of the vibration velocity distribution on the surface of
the system of sources, the Neumann boundary problem was solved and an
integral expression obtained for the acoustic pressure distribution in the parallel-
-piped layer. In view of the axially-symmetric vibration velocity distribution
assumed here, the general method of Hankel transforms of the zeroth order was
used. The pressure, expressed by an integral in the complex variable plane, was
represented in the form of a series of residua at the poles of the subintegral
function, giving a formula, convenient for practical calculations and easy to
interpret, for the acoustic pressure in the form of a series of the so-called normal
waves.

In the numerical example, calculations were made for the acoustic pressure
radiated by a circular membrane, excited to axially-symmetric vibration, i.e.
by a system of planar concentric annular sources. The surface of the membrane
was divided in such a way that the annular surfaces were bounded by nodal
circles for the respective vibration modes. In view of the axially-symmetric
vibration assumed here, all the points on the surface of any of the rings vibrate
in phase, whereas those of the adjacent rings vibrate in antiphase.

The theoretical analysis carried out in this paper for the acoustic field ra-
diated by a planar system of annular sources in a parallel-piped layer was sup-
ported by numerical examples, for which curves of pressure were plotted as
a function of the distance from the source.
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2. Expression for the acoustic pressure in integral form

‘We consider the problem of acoustic wave propagation in a parallel-piped
layer of a homogeneous gaseous medium with the rest density g, and the sound
wave velocity ¢,. The parallel-piped layer of the medium is bounded by planar,
rigid baffles spaced at the distance h. The sound source is a vibrating system
of a finite number of concentrically situated planar circular rings, placed on the
plane z = 0, which is the rigid baffle.

We consider linear phenomena dependent sinusoidally on time. It is assumed
that the vibration velocity distributions on the surface of the rings are axially-
symmetric, assumed to be known. Thus, the value of the normal component
of the vibration velocity is known, no = —uv, where m is a unitary vector normal
to the surface of the source, directed in a direction opposite from that of the
velocity vector ». The vibrating surface of the sth circular ring, arbitrarily
chosen from the system of sources, is bounded by circles with the radii r, and
Y1y With 7,_; <7,.

Within the parallel-piped layer, filled by a gaseous medium with the density
0o, for the acoustic potential @,(r, z)exp (iwt), whose source is the sth vibrating
circular ring, the Helmholtz equation

AD,(r, 2) +E2 D, (r, 2) = 0 (1)

is valid. The quantity ¥ = w/¢, is the wave number, o is the angular frequency-
One should find such a solution of equation (1) for the region {0 <z<h
0 < r < oo}, which satisfies the inhomogeneous Neumann boundary condition

oD, (r, 2)

0z (2)

0 beyond the ring,

& {— (r) for the sth ring
z=0

and the homogeneous Neumann boundary condition

00,(r, 2)

Fw =0, (3)

g=Hh

where »,(r) is the vibration velocity distribution function assumed to be known,
Following the general method of Hankel transforms of the zeroth order, the
solution is sought in the form
B,(r, 2) = [ g(z, 2)Jo(r)7dr, (4)
0

where

g(r,2) = [ @,(r, 2)Jo(xr)rar, (8)
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J, is a Bessel function of the zeroth order, while the complex parameter z is a pro-
pagation constant in the radial direction. Equation (1) can become

a’ g(z, 2)
dz?

with the following solution:

+ (K ~7)g(7, 2) =0, (6)

g(7, 2) = Aexp(—iyz)+ Bexp(iyz), (7)

where 4 and B are integration constants, ¢ is a propagation constant towards
the axis z and %2 = 272
Relation (2) is replaced by

dg(z, 2)

- = —W,(7) (8)
dz r,_o 1Sr<rg foal
where
Wo(v) = [ v,(ro)do(wre)rodr, (9)
Te—1
is a characteristic function of the sth ring, which is the set of points {r,_, <r<r,,
0 < ¢ < 2w},

The integration constants 4 and B can be determined from relations (3)
and (8). This gives

cosy(h—2)

0 2) = = W) =L

(10)

The use of inverse Hankel transformation from formula (4) and considera-
tion that for phenomena sinusoidally dependent on time the dependence of
pressure on the potential is linear: p(r) = iko,c, P (r) give the sought solution
in integral form for the acoustic pressure generated by the sth ring, in the form

==

; cosy(h—z
p(ry2) = “'@keocof ___ZS_,_Z
0

iR We(z)do(2r) vdr. (11)

3. Expression for the acoustic pressure in the form of a series of normal waves

When the distance at which a point of the field is, is much larger than the
linear dimensions of the source and than the length of the acoustic wave radiated,
it is convenient to transform formula (11) to a form in which the integral is
calculated within the limits (—oc, +o0). The following dependence can be
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~ used [8]:
1 .
Jo(u) - [HD () —HP (—u) 1, : g s

where H{» is a eylindrical Hankel function of the zeroth order, of the second
kind, satisfying the radiation condition of the time dependence exp (iwt). The
substitution of (12) in (11) and the taking advantage of the evenness property
of the characteristic function W,(7) with respect to the variable 7 (see definition
(9)) give

—ik +j-° cosy(h—2)

=Y :
2 o W, () Hy' (vr) rdz (13)

(7, 2) = 000

Integration will be carried out over the real axis, where the singular point
7 = 0, in integrating for the transition from negative real values to positive
ones, is bypassed along a small half-circle underneath, since H{"(zr) has a lo-
garithmic singularity at the point 7 = 0.

Expression (13) can be represented in the form of a series of residua at the
poles of the subintegral function. To achieve this, it is possible to use Jordan’s
lemma and Cauchy’s residua theorem [2], closing the integration path in the
lower halfplane of the complex variable = (Fig. 1).

Im(t)

3 Coote ’

Fig. 1. Integration path in‘clluding poles of the subintegral function (13) in the lower half-
plane of the complex variable

The poles of the subintegral function (13) are at the points defined by the
roots of the equation sinyh = 0, whose solutions are yh = mmn; m =0, =1,
+2,... In the neighbourhood of the points, defined by a root corresponding
to m =0,

Yo o 1
ysingh  h(K —7)

(14)
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Expression (14) has poles of the first order at the points 7, =k, 7, = -k.
In general, when m =0, +1, +2,..., from the expression yh = mm, for the
poles 7,, = + Vk* —(m=/h)*.

It will be easier to analyse integral (13) when it is considered that in real
conditions in a gaseous medium there is the phenomenon of absorption of pro-
pagating waves. In view of this, it is assumed initially that the wave number &k
has a low negative value of the imaginary component & = k,—id; ko, 6 > 0.

The integration will thus include the poles in the lower half-plane of the
complex variable 7, i.e. those for which 7, = k, 7,, = V k* —(m=/h)*. The inte-
gration gives as a result a final expression in which it will be possible, in the
limits, to pass from the value of & to zero.

The residuum of the subintegral function (13) can be calculated, i.e.

38 14 (2) .
Res[F () Liar,, = TmCO8Y,(h—2)W,(7,) H” (7,.) Res [ ki ]mrm (15)

For the pole m = 0, considering relation (14),

piciakogH| 1 1
T o w B e = —— 16
i E7Y7 “[km—wnk+ﬂ]hk ) (e
For the poles m =1, 2,...
B —1
P Ml i il L cadlots S oo (17)
| ysinyh |, & ht,, cosy,, b
™ y — sinyh
dr Te=Tp,
The following dependence can also be used:
co8y,, (h—2z) = cosy,, hcosy,?, (18)

where y =0, y,, = m=/h.

The integral over a half-circle with a large radius R in the lower half-plane
of the complex variable 7 will tend to zero, when R —oo. For very large K the
function H? (zr) will tend to zero, when r # 0. The value of the integral over
the half-circle €, with a small radius ¢ in the limits for ¢—0 will also tend to zero.

The use of Cauchy’s residua theorem indicates that integral (13) is equal to
the sum of the remainders of the subintegral function at the poles, multiplied by
the factor —2ri. There emerges the following expression for the acoustic pres-
sure, in the form of a series of normal waves:

P(ry 2) = po(r)+ Y Pulr, 2), (19)

m=1



CONCENTRIC ANNULAR SOURCES 9

where
=k (2)
Polr) = 9000“2_‘-,'&‘ W, (k) Hy (kr), (20)
=k mmz
pm (‘l", z) = 00Co T COo8 T Ws(rm) HEZ)(TTm)' (2]-)

Each of the components p,,(r, 2) in expression (21) is suitable to describe
the pressure wave, propagating towards the increasing values of the radial
variable » and the standing wave towards the variable z.

When 7, tends to zero, the amplitude of the mth normal wave tends to
infinity, in view of the infinite value of the Hankel function. This specific case
corresponds to a resonance at which the pressure value is in theory infinitely
large. This follows from the analysis carried out for the acoustic wave propaga-
tion in a lossless medium. The parameter y,, = m(=/h) is called the critical wave
number (the cut-off wave number), since it determines the wave frequency w,,
at which free propagation of a normal wave of the mth order decays, i.e. the
frequency at which 7,, takes a zero value. This occurs when y,, = k, i.e. when
kh = mr.

For such frequencies o (the wave frequencies in a free space) at which
® > w,,(k = m=[h), the normal pressure wave p,, considered propagates freely.
Expression (21) can deseribe a current wave only when 7, is a real, positive

quantity, i.e.
2
T =]/ 1%(%) > 0. (22)

When the value of w approaches w,, (kb —>m=), the frequency of the normal
wave in the parallel-piped layer tends to zero, until, at kh = mmr, the free propa-
gation of the wave of the mth order decays.

In a case when M denotes the highest integer, such for which

Mz < kh < (M +1)x, (23)

then M will define the order of the highest normal pressure wave, p,,, which can
propagate in the parallel-piped layer with a preseribed value of the interference
parameter Lh.

For w < w,,(kh < m=) the normal pressure wave p,, considered is damped
along the propagation direction. In this case m > M, whereas the phase of the
square root is assumed to be —=/2, i.e.
= —i|tnl, (24)

Tm
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where

R ]/ (%)2 K> 0. (24a)

The characteristic function W(z,,), defined by formula (9), is even with
respect to the parameter 7,,, which takes real values for m < M and purely
imaginary ones for m > M. It is thus a real function, i.e. W(z,) = W* (7,)-
For real 7,, (m < M) [8]

ng, (Trm) S JO (Trm) _"iNO(rTm) ’ (25)

while for purely imaginary 7,,(m > M)
Sy 1 2¢
HO (—'Trlfml) =—;K0(T}Tm|)! (26)

where N, is a Neumann function of the zeroth order and K is a MacDonald
function of the zeroth order.
After geparating the real component p’ = Re(p) and the imaginary one

p" = Im(p), the acoustic pressure (19) can be written in the following way:
p =p' +ip”, (27)
where
k - mmz
i TC TC.
P'(r; 2) = @oCooa- g £, COS (‘ﬁg‘) Wo(v,)do(r7y,), (28)
1 - m :
T e
P17y %) = 00y — { -- £,, COS W, (Tp) Nolrery) +
2h = h
2 o0
+—;m§“ S L D ACHTENTS NN )

&, =1lform =0 and ¢, =2 form =1,

In expression (29) the infinite series (M +1 < m < oo) can be replaced in
specific numerical calculations by a finite number of terms M'— (M +1). Sum-
mation is then carried out over theindex m fromm = M +1 to the valuem =M,
dependent on the magnitude of the parameters ka, kh and kr.
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4. Acoustic pressure for much larger distances with respect to the length of the wave radiated

In a specific case, when the distance r of a point of the field is much large
than the length of the wave radiated, 4, and when z,, # 0, the Bessel, Neumann
and MacDonald functions in expressions (28) and (29) can be replaced by their
asymptotic representations:

2
Jo(r7,,) z]/ o (r-rm — %) ’
2% 3
No(rey,) =~ l/ — sin (r'rm - %) )
m

Ko('-"]fmn l—’]/ 2?"[::." I GXP(—?'ETmI)- (30)

From the practical point of view, it is very important to be able to predict
the pressure distribution about the source, when the distance r of a point of the
pressure studied is larger than the linear dimensions of the source. When, in
addition, in series (28) and (29) r > h, then in practical calculations only the
finite number of M terms can be considered, for which mi < 2h(m= < kh). Con-
sideration of dependencies (30), (28) and (29) gives then

e M
ta k T im mnz exp(—irr,,)
p(r, 2) = 9°c°fl/§ exp (z I) 2 £, COS ( W )W,(-rm) —7;—.

m=0

5. Characteristic function

Bearing in mind the practical applications, the surface vibration velocity
distribution can be assumed to be the same as that which occurs in the case of
a circular membrane excited to axially-symmetric vibration. Such dimensions
of the individual annular surfaces are assumed that they are bounded by cir-
cles corresponding to nodal cireles for the (0, n) mode of the vibrating circular
membrane. Since the object of the analysis is axially-symmetric vibration,
then all the points on the surface of any of the rings vibrate in phase, while all
the two adjacent annular surfaces vibrate in antiphase.

For phenomena harmonie in time, the distribution of self vibration velocity
for the (0, n) axially-symmetric mode is expressed by the formula [3]

0,(7) = Oonds (% _,,,,), (32)
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where ¢, = a(w,[cy) is a root of the equation Jy(g,) =0, w, is the angular
frequency of self vibration, ¢,, is the wave propagation velocity on the membrane,
¥y, 18 the maximum vibration velocity. The radii r, of the nodal circles for the
(0, ) mode of vibration, as found from the equation

7, ("—) g =0, (33)

a

arer, = a(q,/q,),s =1,2,..., n—1; with, for s = n, r, = a being the radius of
the membrane, i.e. of the external nodal circle (see [5]).
The characteristic function (9)

Wg/p,

W) =vo [ (2 a) Tutemiradn 1)

agg— llqn

for the sth ring, being the set of points {a(q,_,/q,) <r < a(g,/q,), 0 < ¢ < 2m7,
after considering the integral property [8]

[ wdy)Jouo)dw =~ (17, ()T o(10) —T o) Iy (W}, (36)

is

w Yn8 s )_ (_!ls—l )
We(r) = ¢ —(ar)? lqul(qﬂ)Jﬂ(qﬂ at) —qy_1J1(8-1)J o 7. at), (36)

where Jo(q,) = Jo(g,_y) = 0.

When in turn the source of the acoustic field is a system of concentrie cir-
cular pistons, i.e. when the vibration velocity distribution on the surface of the
sth annular piston is uniform, v, = v,, = const., then the characteristic function

Wo(e) = 0w [ Joleroredrs, (37)

Tg—1

after considering the integral property (35) for I = 0, is
v,
Wy(r) === [nda(mr) =111 (wra0) ] (38)

In calculating the characteristic funetion from formulae (36) and (38), the
quantity = should be replaced by 7,,, as defined by relation (22) or (24), depen-
ding on whether m=n << kh or mn > kh.
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6. Numerical example with analysis of results

In analysing the acoustic pressure radiated by a circular membrane for the
axially-symmetric vibration mode (0, 2), two vibrating surface elements, sepa-
rated by the nodal circle a(q,/q,), where a = 2 cm, ¢, = 2.4048 ..., and ¢, =
5.5201 ..., were distinguished. The central element of the membrane is a circular
source, being the set of points {0 <7 < a(g/g.), 0 <@ <2z}, the external
element is an annular source, being the set of points {a(q,/g.) <r < a, 0< @<
2m}.

In the numerical example the value of the acoustic pressure p radiated by a
surface source wasreferred to the pressurep,, = g,¢,v,. Therelative pressure value
p[p, was represented graphically depending on the dimensionless parameter /k,
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Fig. 2. Relative acoustic pressure p/p, of the sources separated on the circular membrane

for the (0, 2) vibration mode, depending on the parameter r/h in the parallel-piped layer.

It was assumed that @ = 2 em, ke = 2, kh = 10. Pressure distribution in the plane z = h

— 10 em: 1 — ecircular (central) source, curve 2 — annular (external) source. Pressure distri-

bution in the plane of the source (¢ = 0): curve 3 — circular source, curve 4 — annular
source
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or r/a, with a fixed distance between the baffles, & = 10 cm, and the radius
a = 2 cm.

The curves of the relative acoustic pressure, depending on the parameter
r[h, for a separate central element and the external element of the circular
membrane are shown in Fig. 2. These curves show that in the variation interval
of the parameter 7 /h under analysis the relative acoustic pressure of the exter-
nal source exceeds that of the central circular one. This property is satisfied
both on the surface of the baffle in which the source is and also on the surface
of the baffle at the distance k from the plane of the source. On the baffle at the
distance h from the plane of the source there are circles in which the value of
the pressure drops to zero (see curve 1 in Fig. 2).

Fig. 3 shows the curves of the relative acoustic pressure, depending on the
parameter r/h, radiated by the circular membrane for the (0, 2) vibration mode.
This vibrating membrane is a system of two sources: the central circular and

S o

7
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004

0021 5. \A—7-=_ e | \

: D o =
6

= i 2 2

\-—

st ;/

OI.O 1.

Feoulpts Loy 80 ha0n | 2 % 26 28 30 32 /b

Fig. 3. Relative acoustic pressure, depending on the parameter r/h, in the parallel-piped

layer. Curves 1, 2 and 3 show the pressure distributions of the circular membrane for the

(0, 2) vibration mode, respectively in the planes: s = 0, h and h/2. Curves 4, § and 6 show

the pressure distributions of the point source, respectively in the planes: 2 = 0, & and h/2.

It was assumed that the bulk efficiency of the point source was equal to that of the circular
membrane for the (0, 2) vibration mode, ka = 2,-kh = 10, a = 2em

the external annular ones, separated by a nodal circle with the radius a(g,/g,).
This figure also shows analogous curves for the point source whose bulk efficien-
ey @ = 2na®v,[J,(q,)/q.] is the same as that of the circular membrane analysed
for the (0,2) vibration mode. For the membrane and the point source separate
acoustic pressure curves were plotted depending on the parameter r/h in three
planes: in the plane of the source, in a plane at a distance h/2 from the plane of
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the source and in the plane of the baffle situated at the distance h from the
plane of the source. These curves show that larger pressure fluctuations occur
on the surfaces of the baffles in the case of the point source. The almost mono-
tonous decrease in the acoustic pressure occurs in the plane z = h/2 with inecre-
asing parameter r/h, both for the point source and the circular membrane
(see curves 3 and 6 in Fig. 3).

As in Fig. 3, acoustic pressure curves, depending on the parameter r [k, were
also plotted for the circular membrane in Fig. 4. Curves are also shown for the
pressure radiated by a circular piston with the radius @ = 2 em. Different

Al
o
06
— 2
0z Tl
/ \\ : =]
0.2\ __L/ \\ \K__h__ /{_ \\
0
006
5 4
004 > /\
= \\// :\\\74/—:\\\ |
2 _— -._.__.)Q\
00.4 0.6 0.8 1.0 12 14 16 .8 20 22 2.4 26 1 rih

Fig. 4. Relative acoustic pressure, depending on the parameter r/h, in the parallel-piped

layer. Curves 1, 2 and 3 show the pressure distribution of the circular piston, respectively

in the planes z = 0, k and k/2. Curves 4, § and 6 show the pressure distributions of the eir-

cular membrane for the (0, 2) vibration mode, respectively in the planes: z = 0, 4 and h/2.
It was assumed that ka = 2, k = 10 and ¢ = 2c¢m

variation intervals of the parameter »/h were assumed for the membrane and
the piston (see curves 4,56 and 6 in Figs. 3 and 4). Analysis of the curves (Fig. 4)
shows distinct differences among the values of the pressures generated by the
membrane and the circular piston for given values of the parameters »[h. It can
be assumed with approximation that the value of the pressure from the circular
piston is higher by an order of magnitude from that from the circular membrane
with a given value of the parameter r/h.
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The curves in Figs. 2, 3 and 4 were plotted from calculations for ka = 2.

Curves of the relative pressure, depending on the parameter r/a, for the
circular membrane are shown in Fig. 5. It was assumed that ka = 5.52, which
corresponds to the resonance vibration frequency.

s34
0.05 /
._——3(

Q

7
O I
£ 2 4 5 6 r/a

Fig. 5. Relative acoustic pressure p/p, of the circular membrane for the (0, 2) vibration

mode, depending on the parameter r/a, in the parallel-piped layer. Curves 1, 2 and 3 show

the pressure distributions, respectively in the planes z = 0, h/2 and h. It was assumed that
ka = 5.52, kh = 10 and a = 2 cm
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