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The use of periodic structures as noise abatement devices has already been the object of considerable
research seeking to understand its efficiency and see to what extent they can provide a functional solu-
tion in mitigating noise from different sources. The specific case of sonic crystals consisting of different
materials has received special attention in studying the influence of different variables on its acoustic

performance.

The present work seeks to contribute to a better understanding of the behavior of these structures by
implementing an approach based on the numerical method of fundamental solutions (MFS) to model
the acoustic behavior of two-dimensional sonic crystals. The MFS formulation proposed here is used to
evaluate the performance of crystals composed of circular elements, studying the effect of varying dimen-
sions and spacing of the crystal elements as well as their acoustic absorption in the sound attenuation
provided by the global structure, in what concerns typical traffic noise sources, and establishing some

broad indications for the use of those structures.
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1. Introduction

Among different types of environmental noise
sources for which the national and European legisla-
tion established maximum noise exposure levels, the
traffic noise, with special focus on road traffic, assumes
a clear prevalence.

The World Health Organization (2011) estimates
that, considering the different impacts associated with
noise, the losses, expressed in Disability-Adjusted Life
Year (DALY), reach a value between 1.0 and 1.6 - 105,
i.e. at least a million years of healthy life are lost an-
nually as a result, mostly due to traffic noise.

Another study on the situation held in the Nether-
lands (DEN BOER, SCHROTEN, 2007) indicates that the
annual loss (in 2000) due to traffic noise was approx-
imately 40 DALY x 1000 inhabitants, and this value
already accounted for about half of the total result of
traffic accidents. Moreover, the same study mentions

the growing trend of the effects of traffic noise, whereas
on traffic accidents the tendency is to decrease.

Being relatively consensual as for the need to invest
in interventions that can offset the negative effects of
this type of noise, generically one can distinguish be-
tween interventions at three different levels: at the gen-
eration (the vehicle-tire-pavement interaction), at the
propagation medium (the area surrounding the roads),
and at the reception of noise (the characteristics of the
facades of buildings in the vicinity of roads).

Fitting into the second of the above types of inter-
ventions, the use of ‘classical’ noise barriers is usually
considered an effective solution to reduce sound lev-
els, by between 5 and 10 dB, but whose performance
depends essentially on the geometry and the sound ab-
sorption characteristics of their surfaces.

This work intends to contribute to the analyses of
a different approach in the use of these barriers which
consists in using a periodic arrangement of vertical
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cylindrical elements organized in a geometric config-
uration such as to attenuate the incident sound levels,
with particular emphasis on certain frequencies. This
solution is commonly known as “sonic crystal”.

Sonic crystals get their name by analogy with or-
dered structures of semiconductor materials such as
silicon crystals whose feature of allowing certain en-
ergy waves to pass through and block others is trans-
posed, in sonic crystals, into the capacity to prevent
or limit the propagation of certain sound frequencies.
The shape of these structures corresponds to a “grid”
or “lattice” consisting of a base element which is re-
peated regularly in one, two, or three dimensions.

It is generally considered that the first evidence
that it was possible to achieve some effect of acous-
tic obstruction using structures in periodic arrays was
derived fortuitously from a sculptural element, in the
gardens of the Fundacion Juan March in Madrid, con-
sisting of a number of vertical metal tubes arranged
in a rectangular grid. A series of measurements con-
ducted in 1995 by placing a set of microphones along
this sculpture revealed clear effects in attenuating cer-
tain frequency bands of sounds which were a function
of the direction of incident sound waves (MARTINEZ-
SALA et al., 1995).

Since then, different aspects of the behavior of sonic
crystals have been studied, some of which were essen-
tially theoretical, while others focused on some poten-
tial practical applications. In the first group, aspects
such as the influence of so called point defects (WU et
al., 2009) or the existence of waveguides in which the
sound propagates with low attenuation (VASSEUR et
al., 2008) can be mentioned. In the field of the practical
uses of sonic crystals, one which may be regarded per-
haps as the most promising is their precise use for the
selective attenuation of sound, for example as traffic
noise barriers (SANCHEZ-PEREZ et al., 2002). A very
recent work on this topic (CASTINEIRA-IBANEZ et al.,
2012) has addressed the classification of sonic crys-
tal barriers in terms of relevant European standards
for the determination of the intrinsic characteristics of
acoustic barriers. Although a limited set of tests was
performed in that work, the results have shown that
the sonic crystal barriers can be acoustically competi-
tive when compared with classic noise barriers used to
mitigate traffic noise.

The underlying principle behind the latter case has
to do with the aforementioned fact that these periodic
structures have an attenuation capacity in certain fre-
quency bands of sounds and with the fact that the
dominant frequencies in road traffic noise can also be
identified. Thus, by being designed to match those fre-
quencies, such structures could provide a very effective
way to mitigate traffic noise.

This application presents some advantages when
compared to conventional noise barriers such as the
fact that it does not require foundations as significant

as the latter, due to its comparatively small mass, and
the relatively small action of the wind, as it is a fairly
“open” structure (CASTINEIRA-IBANEZ et al., 2012).
Another important benefit is the ability to adapt its at-
tenuation capabilities to a specific site’s requirements
through an appropriate “fine tuning” of geometrical
configuration of the elements in its periodic structure.

As a disadvantage, it should be noted that to
achieve an attenuation level similar to that of a tra-
ditional noise barrier, a structure with a significant
thickness may be required. A possible solution could
arise by combining different effects, such as multiple
scattering resonances or sound absorption capabilities
in the sonic crystal (ROMERO GARCIA, 2010). There
are, moreover, some experiments in this direction, for
example the use of porous coatings on individual cylin-
drical of elements sonic crystals (UMNOVA et al., 2006)
or the use of trees arranged in different periodic geo-
metrical configurations in order to achieve noise atten-
uation outdoor (MARTINEZ-SALA et al., 2006).

A relatively consensual aspect, from the available
published literature, is that these periodic structures
provide a certain level of sound attenuation due to two
different mechanisms: the geometry of the structure
itself and also the acoustic properties of the scatter-
ers, for example their sound absorption. What is also
apparently clear is that the study of the combined ef-
fect of these two aspects, in order to correctly predict
the level of sound attenuation results, is not a trivial
procedure.

Although a significant number of works has been
published, the subject of sonic crystals is still under
development and there are several issues that need fur-
ther studying. In what concerns the numerical mod-
eling of these structures, some benefits can be taken
from adapting concepts inherited from other areas of
acoustics and wave propagation, namely in what con-
cerns the theoretical and numerical treatment of the
problem. This paper is, thereby, intended as a contri-
bution to the development of the study in this area,
proposing a general numerical strategy based on the
Method of Fundamental Solutions (MFS) to model a
2D sonic crystal noise barrier subjected to the inci-
dence of acoustic waves generated by a line source.
First, the theoretical formulation in which the numer-
ical analysis methodology is based will be presented;
the proposed model will then be verified against ref-
erence solutions; a set of results will be further laid
out, depicting different combinations of geometrical
and acoustic absorption characteristics, followed by
main conclusions and some indications regarding fur-
ther work.

2. Mathematical formulation

In the present work, MFS is adopted to perform nu-
merical simulations. Essentially, MFS is a collocation
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technique which requires only the definition of a set
of points along the physical boundaries of the prob-
lem to establish an approach to its solution. Based on
these points and making use of a linear combination
of fundamental solutions of the differential equation
governing the problem, the method allows to obtain,
in a simple manner, an approximation to the solution.
As in the better-known Boundary Element Method,
MFS requires previous knowledge of the fundamen-
tal solutions which are not always known to the type
of the problem involved; obtaining these solutions is
mathematically complex and can be extremely diffi-
cult in the case of nonlinear problems with moving
boundaries or time dependence. Still, the mathemat-
ical approach of MFS is much simpler than that of
the BEM, since its formulation does not require per-
forming any kind of integrations, analytically or nu-
merically, within the domain or along the boundary.
This method has been discussed in the literature by
various authors. Noteworthy are the works of FAIR-
WEATHER and KARAGEORGHIS (1998), FAIRWEATHER
et al. (2003), or GOLBERG and CHEN (1999). It should
be noted that, despite its simplicity, many of the pub-
lished works show that MFS can provide a very accu-
rate calculation of solutions for different physical prob-
lems, including those related to the field of acoustics
(ALVES, VALTCHEV, 2005; GODINHO et al., 2007; AN-
TONIO et al., 2008) and wave propagation (GODINHO
et al., 2009).

The following sections summarize the main aspects
of the method when applied to solving acoustical prob-
lems in the frequency domain.

2.1. Governing equation

It is usual to consider that the propagation of sound
in a two-dimensional space, in the frequency domain,
can be represented mathematically by the Helmholtz
equation. This equation has the usual form

V2p+k%p =0, (1)
)

where V2 = — + 3—y2’ p is the acoustic pressure,

ox?
k = w/e, w = 2nf, [ is the frequency, and c¢ is the
propagation velocity within the acoustic medium.

2.2. Fundamental solution

Given the differential equation (1), it becomes pos-
sible to define analytical solutions that satisfy the
equation under certain conditions. One such situa-
tion corresponds to free-field conditions in which the
medium is considered infinite and for which a two-
dimensional pressure field is generated by a sound
source located at point g of coordinates (g, yo). This
solution, known as the fundamental solution, allows to
define the acoustic field in terms of pressure and par-

ticle velocities generated by the source at any receiver
located at point @ of coordinates (x,y) as

G2 (@, @0, k) = —THE (kr), (2)
k or
H2P (@ o, kyn) = —p—HP ()5, ()

where 7 = \/(z — 20)%? + (y — yo)?, and n represents
the direction along which the particle velocity is to be
calculated.

2.8. MFS formulation

In MFS, the solution of the problem is approxi-
mated by a linear combination of fundamental solu-
tions. To formulate the method, consider a generic
problem governed by Eq. (1) where the problem’s phys-
ical boundary I" = I'1UI (see Fig. 1) can be subjected
to either Dirichlet or Neumann boundary conditions
defined, respectively, by:

p=pg at I1, (4)

1 0

= t I%. 5
ipw On v 2 5)

Virtual sources

I
o
/ Collocation
|‘ oint
. [ ]

Fig. 1. Schematic representation of the problem.

In the general case, it is not a trivial task to com-
pute a solution that simultaneously satisfies these pre-
scribed boundary conditions together with Eq. (1). To
allow obtaining one such solution, consider a set of NS
virtual sources located outside the field of analysis, and
assume that the pressure field at any domain point x
can be represented by a linear combination of the ef-
fects of NS sources positioned at points x;, so that

NS
p(m,k) = ZQJG(mij’k)v (6)

where (); is an amplitude factor associated with each
of the virtual sources and which is, a priori, unknown.
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For the problem under study, and given such repre-
sentation of the pressure field, consider, additionally,
a set of NC collocation points distributed along the
boundary (see Fig. 1). Imposing the desired boundary
conditions (Egs. (4) and (5)) at each of the NC collo-
cation points, two sets of equations can be written:

NS
ZQjG(mi,ccj,k):pKyi for each @; at Iy, (7)
j=1

NS
ZQjH(wi,wj,k,n) =gk, for each x; at Iy, (8)
j=1

where pg; and vk ; are the sound pressure and the
normal particle velocity values, respectively, to be pre-
scribed at each collocation point 7.

Establishing these equations, a system with NC
equations for NS unknowns can be written, allowing
the calculation of the unknown amplitude factors @;.
If NS = NC, a linear equation system is obtained for
which the solution can be calculated making use of
common solution procedures such as the Gauss elimi-
nation.

It is worth noting that besides the two boundary
conditions indicated in Eqs. (4) and (5), it is some-
times useful to impose mixed, or Robin, boundary con-
ditions. In acoustics, this can be the case of absorbing
boundaries to which surface impedance Z is ascribed.
In that situation, the boundary condition can be writ-

ten as
p

i/pw x Op/On =7 ©)

To enforce this boundary condition, a combination of
Egs. (7) and (8) must be written for the relevant col-
location points, which becomes

NS
> QG (@i, @, k) — ZQ;H (xi, x;, k,m)] = 0. (10)

Jj=1

3. Model verification

To verify and assess the accuracy of the proposed
MFS model described in the previous section, two dif-
ferent configurations will be here analyzed correspond-
ing to systems with one or multiple inclusions.

As a first test, consider that the system includes
just a single circular inclusion placed within an infinite
fluid medium with density of 1.22 kg/m? and allowing
sound to propagate at 340 m/s. The circular inclusion
has a rigid surface and exhibits a radius of 0.1 m, be-
ing centered at (x = 0.0 m; y = 0.0 m); this inclusion
is illuminated by a source located at (r = —0.5m;
y = 0.0 m), and the response is determined at a set of
receivers located over a circumference of radius 0.2 m,
with the same center as the inclusion. This configura-
tion is illustrated in Fig. 2a.
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Fig. 2. Geometry of the model (a) and convergence re-

sults when analyzing a single rigid circular inclusion with

a radius of 0.1 m. Results are shown for 1 kHz (b) and
2 kHz (c).
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To analyze the proposed configuration, MF'S is here
used, positioning the virtual sources inside the inclu-
sion, equally spaced along a circumference; different
distances between these sources and the boundary are
tested ranging from 0.1R to 0.9R. Figures 2b and 2c
illustrate the relative L2 error norm computed for fre-
quencies of 1 kHz and 2 kHz, for different numbers of
collocation points; as a reference for the calculation
of this error, an analytical solution of this problem is
used based on works of TADEU et al. (2001). In addi-
tion, a similar curve is presented for the more classic
BEM model, also for increasingly refined discretiza-
tions. It should be noted that each of these plots can
be viewed as a set of convergence curves computed for
each of the considered distances, and thus gives impor-
tant information related to numerical behavior of the
method.

Analyzing the two figures, it can be observed that
MFS presents very good convergence rates for all an-
alyzed distances, clearly surpassing the behavior of
the BEM for this test case. Moreover, one can con-
clude that by positioning the sources at larger dis-
tances from the boundary leads to increasingly better
results, reaching excellent convergence rates for dis-
tances equal or larger than 0.5R. The best convergence
rates are obtained when the sources are positioned as
far from the boundary as possible (e.g. concentrated
near the center); however, for this case, the conver-
gence curve reaches a point above which the results do
not improve with the increase in the number of collo-
cation points, since the equation system becomes pro-
gressively more ill-conditioned, affecting the quality of
the results.

A second test case was analyzed to verify the pro-
posed model, corresponding to a more complex config-
uration in which eight circular inclusions, each of them
with a radius of 0.1 m, are illuminated by a source lo-
cated at the same position as indicated above; in addi-
tion, Robin boundary conditions (as defined in Eq. (9))
with Z = 1000 Pa-s/m are imposed along all bound-
aries. For this case, results are computed using MFS
with 15 collocation points (and positioning the virtual
sources at a distance 0.5R) and BEM with 30 bound-
ary elements. The response is computed at a line of
receivers located at x = 1.0 m. Figure 3a illustrates
the proposed configuration.

Figure 3b exhibits the calculated results for a fre-
quency of 2 kHz, over the indicated line of receivers.
Here, a perfect match between the two numerical meth-
ods can be seen, revealing the excellent behavior of
MFS in the analysis of this specific type of problem,
even when Robin conditions are considered. It should
also be noted that the finer discretization required by
BEM, together with the need to perform integrations
over each boundary element, leads to a much higher
computational effort of this method when compared
with MFS.
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Fig. 3. Comparison with the results computed using a BEM
model for 2 kHz when the geometry consists of eight circu-
lar inclusions (a) with Robin boundary conditions. The re-
sults (b) are computed using 30 boundary elements (BEM)
or 15 collocation points (MFS) to discretize each circle.

4. Discussion of numerical results

As previously mentioned, the main mechanisms by
which sonic crystals provide specific levels of sound
attenuation or insertion loss, are the geometry of its
basic periodic structure, or lattice, and the acoustic
properties of its individual scatterer elements. In what
follows, the proposed MFS formulation is applied to
analyze the influence of different combinations of those
aspects when a periodic structure is used as a noise
barrier alongside a road, as illustrated in Fig. 4.

Noise source

380000000008880088 «—— Sonic crystal
0000000000006060000 ry

ﬁ < Receiver
X

Fig. 4. General configuration for the studied cases.

For this purpose, the traffic assumes the role of
the noise source, a small area (a window for exam-
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ple) of a nearby house shall correspond to the re-
ceiver, and a sonic crystal noise barrier will be lo-
cated between them, materialized by a set of vertical
cylinders, either rigid or with some level of acoustic
absorption. Those cylinders are considered to be ar-
ranged in two distinct lattice configurations, typical of
sonic crystals, namely square or triangular, as shown
in Fig. 5.

z X

Fig. 5. Square (a) and triangular (b) lattice configurations
of the sonic crystal.

Throughout the different analyses presented in the
following, the situation shown above is studied by
means of frequency domain responses calculated on a
horizontal plane, as the geometry of the problem can
be considered constant along the z-axis (vertical). For
such a case, the MFS model described in the previ-
ous sections can be used to simulate the pressure field
around the structure of the sonic crystal.

In order to replicate a realistic situation, based on
the usual dimensions from a typical cross section of
a road, the positions of the source and receivers will
correspond, in the axis system shown in Fig. 4, respec-
tively, to values of x = —6.5m and z = 7.5 m. As for
the y-axis values, the analyses were made considering
the receiver close to the center of the barrier along that

axis (consisting of five distinct receiver points along a
length of 0.80 m). The source was initially assumed to
be located in front of the receiver (at half the length
of the crystal), although in further calculations its lo-
cation will additionally be considered in other posi-
tions.

The analysis carried out sought to evaluate the in-
fluence in the sonic crystal’s sound attenuation fea-
tures for different geometrical parameters (the num-
ber of cylinders in the sonic crystal, the diameter of
the cylinders, the spacing between cylinders, the po-
sition of the noise source and also the random vari-
ability of the diameter of the cylinders) as well as
the acoustic absorption characteristics of the scatte-
rers.

4.1. Influence of the number
of cylinders

As the intention is to examine the attenuation re-
lated to road traffic noise, given that it is usual to
consider that this noise exhibits a maximum sound
level near 1000 Hz (SANDBERG, 2003), at this stage
the attenuation values evaluated corresponded to five
individual frequencies in the region of this maximum,
specifically 600, 800, 1000, 1200, and 1400 Hz.

In analyzing the influence of the number of cylin-
ders, the purpose is to establish the minimum num-
ber of scatterers that can provide nearly stable lev-
els of attenuation at those frequencies, for each of the
two lattice configurations previously mentioned. Along
the y-axis, that number will correspond to the small-
est “length” along that direction so that the diffrac-
tion effect near the extremities of the structure be-
comes negligible. In trying to keep the solutions as eco-
nomical as possible, the “width” of the sonic crystals,
along the z-axis, will be kept at two or three cylin-
ders.

Consequently, N being the number of cylinders
along the y-axis, we will have arrangements for each
of the cases of 2N cylinders or 3N cylinders.

As for the other geometrical parameters of the sonic
crystals, given that they are supposed to embody road
noise barriers, to avoid very dense structures and en-
sure the cylindrical elements are sufficiently robust but
have a plausible dimension if obtained from trees, the
diameter of the cylinders was assumed to be 0.20 m,
and the distance between the centers of cylinders, i.e.
the lattice constant, a = 0.40 m.

The sound attenuation was then evaluated for each
of the five frequencies already mentioned, for increases
in the number of cylinders along the y-axis, in multi-
ples of five, until the values of the sound attenuation
can be perceived stabilizing for the various frequen-
cies, indicating that negligible diffraction phenomena
occur at edges of the sonic crystals. The results are
summarized in Figs. 6 and 7.
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Fig. 6. Insertion Loss (in dB) vs number of cylinders (square configuration).
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Fig. 7. Insertion Loss (in dB) vs number of cylinders (triangular configuration).

In view of these results, the minimum numbers of
cylinders along the y-axis for the different configura-
tions under consideration were established as follows:

e Square configuration:

2N = 40 cylinders / 3N = 40 cylinders;
e Triangular configuration:

2N = 40 cylinders / 3N = 40 cylinders.

From this point on, the attenuation values are ob-
tained by means of an energetic average within each
of five 1/3 octave frequency bands with centers at 630,
800, 1000, 1250, and 1600 Hz. For this purpose, fre-

> Square 2x40

a

3

2
= 1 B0.20
=
= 0 E0.15

§0.10

630 800 1000 1250

1600 Hz

quencies between 562.5 Hz and 1777.5 Hz, with an in-
crement of 7.5 Hz, were analyzed.

4.2. Influence of the diameter of the cylinders

In this case, assuming sonic crystals with the num-
ber of cylinders established in the preceding section
for different lattice configurations and maintaining a =
0.40 m, the attenuation values were calculated consid-
ering diameters of 0.20, 0.15, and 0.10 m. The results
are shown in Figs. 8 and 9, referring to the center fre-
quency of the five 1/3 octave frequency bands defined
above.

> Square 3x40

a4

3

2
= 1 B0.20
=
= 0 §0.15

§0.10

630 800 1000 1250

Fig. 8. Insertion Loss (in dB) vs diameter of cylinders (square configuration).

1600 Hz
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Fig. 9. Insertion Loss (in dB) vs diameter

From these values, a noticeably higher attenuation
can be seen to occur when the triangular lattice con-
figurations (particularly the one with 2x40 cylinders)
are used. Indeed, for those configurations, peak atten-
uation values at the frequency band of 1000 Hz are ob-
servable, with insertion loss values as high as 4.5 dB.
Interestingly, and mostly for the square lattice config-
uration, negative values of the IL (amplification) may
be observable which can be strongly related to the fact
that the source and the receivers are at similar posi-
tions in the y-axis. For that case, the sound may travel
directly through the gap between cylinders which could
have a waveguide-type effect generating some amplifi-
cation.

> Triangular 3x40
4
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= 1 B0.20
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= 0 E§0.15
-1 0.10
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3
4
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of cylinders (triangular configuration).

4.3. Influence of the spacing between
the cylinders

Assuming, once again, sonic crystals with the di-
mensions used in the preceding point and cylinders
with a diameter of 0.20 m, the influence of the dis-
tance between the centers of cylinders, i.e. the lat-
tice constant a, was analyzed. The sound attenua-
tion corresponding to values for that spacing of 0.50,
0.40, and 0.30 m, for the different configurations, was
determined, and the results are shown in Figs. 10
and 11.

The main conclusion that can be drawn from these
figures is that variation of the lattice constant induces

9 Square 2x40 9 Square 3x40
7
= BOS0 g ° 80.50
- =
= @040 S 3 §©0.40
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Fig. 10. Insertion Loss (in dB) vs lattice constant a (square configuration).
9 Triangular 2x40 9 § Triangular 3x40
.
7 7 \
§
= B050 o ° % B0.50
=
= 3 @040 o 3 § §0.40
N \ S
1 0.30 1 % 0.30
1 1
3 -3

630 800 1000 1250 1600 Hz

630 800 1000 1250 1600 Hz

Fig. 11. Insertion Loss (in dB) vs lattice constant a (triangular configuration).
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very pronounced variations of performance in terms of
attenuation. There is no clear advantage of any of the
tested scenarios, which makes it difficult to identify
the best choice. However, it can be stated that, in
these results, the smaller attenuation provided by the
square configuration compared to the triangular one
is again very clear.

Comparing the results computed for the three val-
ues of the lattice constant it can be seen that strong
variations occur between the tested cases. Indeed, al-
though the smaller value (0.3 m) seems to provide bet-
ter results when the square lattice is used, in some
cases it seems to be outperformed by other values of
this spacing. As an example, observing the results for
the triangular lattice with 3x40 elements, it is pos-
sible to conclude that this spacing is clearly inade-
quate when analyzing the 800 Hz and 1000 Hz fre-
quency bands; by contrast, on the lower and higher
frequency bands, the results reveal a very good effi-
ciency, with high values of the IL.

4.4. Influence of the random variability
of the cylinders’ diameter

The possibility of using natural resources, such as
timber logs, to build a sonic crystal noise barrier could

mean using scatterers that are not entirely identical
concerning their diameter.

Therefore, in the present section the aim is to
investigate if small diameter variations can produce
a substantial difference in terms of the sound at-
tenuation provided by the structure. In the pre-
sented results, a lattice constant of 0.40 m is as-
sumed.

For each of the lattice configurations under study,
a possible maximum random variation of 10 and 20%
of the reference diameter (0.20 m) is analyzed. The
computed sound attenuation values are presented in
Figs. 12 and 13. In the cases where random variations
of the diameters are assumed, the results correspond
to an average of three separate computations. One
should note that the random variation in those cases
is applied separately for each element of the struc-
ture, thus generating structures with heterogeneous el-
ements. From the presented results, only small differ-
ences of sound attenuation seem to occur when random
variations of the diameter of the scatterer elements ex-
ist. Indeed, even when a maximum 20% diameter vari-
ation is assumed, the calculated insertion loss values
are only very slightly changed, with maximum vari-
ations of less than 0.5 dB in all analyzed frequency
bands.

> Square 2x40 > Square 3x40
4 4
3 3
2
= #0% = 2 |0%
21 z1
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0 o
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Fig. 12. Insertion Loss (in dB) vs diameter variability (square configuration).
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2
-2 3
-3 630 800 1000 1250 1600 Hz

Fig. 13. Insertion Loss (in dB) vs diameter variability (triangular configuration).
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4.5. Influence of the incidence angle
of the sound waves

As stated above, the relative position of source
and receivers can generate significant changes in the
sound attenuation results. This topic is addressed in
the present section by trying to find out how a longer
path and different obstructions from the scatterers af-
fect the sound attenuation at the receiver. The noise
source was considered in three different positions, re-
lated to the “length” L of the sonic crystal, namely
y =0,y =1/4L, and y = 1/2L (which was the po-
sition assumed in the preceding sections), as shown in

Fig. 14.

—Vl—o

~hle

* * %  <«—— Noise source positions
z \4

s3e22000028090288 . soniccrystal
08888888888888888 < ~oniccrysta

ﬁ |‘ Receiver
X

Fig. 14. Different positions of the noise source.

For each of the three positions of the source, the
sound attenuation values for the five frequency bands
were calculated. The resulting calculations, related to

9 Square 2x40
7
= #y=0
=
= BEy=L/4
Ny=L/2

630 800 1600 Hz

1000 1250

the different lattice configurations, with ¢ = 0.40 m
and cylinders with 0.20 m in diameter, are presented
in Figs. 15 and 16.

The presented results clearly reveal the strong in-
fluence of the relative position of source and receivers.
As the source is positioned nearer to the extremity
of the sonic crystal (further away from the receiver),
the insertion loss computed for the square lattice be-
comes progressively higher. As stated before, when the
source and receivers are aligned around the same y-
coordinates, a direct travel path may exist and almost
no attenuation is observed. This path no longer seems
to exist when the source is positioned further from the
receivers’ position, and thus higher attenuation values
are generated. In the presence of triangular lattices, a
similar, but less evident, effect is also seen. For that
case, the most prominent feature is that the atten-
uation reaches higher values for the lower frequency
bands, for which insertion loss values of more than
8 dB (for the 3x40 triangular configuration) may be
observed.

4.6. Influence of the acoustic absorption
of the cylinders

Taking into consideration the possible use of cylin-
ders made of different materials, the effect of different
sound absorption coefficients (a) was also studied.
Attenuation values were computed for each of the three

Fig. 15. Insertion Loss (in dB) vs noise source position (square configuration).
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Fig. 16. Insertion Loss (in dB) vs noise source position (triangular configuration).
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positions of the noise source discussed in the previous
section. The results are presented in Figs. 17 and 18,
for « = 0.1, 0.3, and 0.5. To implement these values of
the absorption coefficient, Robin boundary conditions
are considered at boundaries of each cylinder. A real-
valued impedance given by

1++vV1—«
C77
1—-—+vV1—«

with ¢ = 340 m/s and p = 1.22 kg/m?, is then consid-
ered.

In Fig. 17, corresponding to results computed for
the square lattice, it can be observed that by pro-
gressively increasing the sound absorption coefficient,
increased values of the insertion loss are obtained
throughout the studied frequency bands. This fact was
very much expected, since the presence of an absorbing
surface allows sound energy to be progressively dissi-

Z=0p (11)

16 Square 2x40-a =0.1
14
12
10
By=-0
o
= By-1/4
=
Ny=L/2

2 800 1000 1250 1600 Hz
16 -
Square 2x40-a =0.3
14
12

IL [dB]

16 Square 2x40-a = 0.5

IL [dB]

800

pated whenever one of those surfaces is hit by acoustic
waves. Curiously, the effect of those absorbing surfaces
is also quite significant when the source and the re-
ceivers are aligned, which indicates that the waveg-
uide effect referred before is strongly attenuated by
those absorbent materials. Indeed, observing the re-
sults for the higher absorption coefficient (o = 0.5) it
can be seen that interesting values of the insertion loss
are computed for all source positions, representing a
marked improvement when compared with the results
computed for o« = 0.1. For this case (o« = 0.5), peak
insertion loss values are reached at 1000 Hz (for the
2x40 structure) and 1250 Hz (for the 3x40 structure),
for which IL values of 10 dB and 15 dB are reached
when the source is further away from the receivers,
and of 4 dB and 6 dB when the source is aligned with
those receivers. These attenuation values can be seen
as noteworthy in what concerns traffic noise attenua-
tion.
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By=L/4

IL [dB]
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Fig. 17. Insertion Loss (in dB) vs noise source position (square configuration) for varying values of the absorption coefficient.
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Fig. 18. Insertion Loss (in dB) vs noise source position (triangular configuration) for varying values of the absorption
coefficient.

Finally, the results in Fig. 18 illustrate the evo-
lution of the attenuation for the case of the triangu-
lar lattice. For this case, the conclusions that may be
drawn are, globally, very similar to those stated for
the square lattice. However, as the computed values of
the insertion loss are, generally, higher for this config-
uration, this seems to suggest that in an actual road
barrier application, the triangular configuration might
be considered more adequate.

5. Final remarks

The present work addressed the use of sonic crys-
tals as noise barriers to mitigate road traffic noise
by means of an approach based on a numerical tech-
nique called the Method of Fundamental Solutions.
This technique was adopted, as it appeared to be par-

ticularly well suited to the requirements of the topic
being studied, largely due to the geometric character-
istics of the structures employed.

The accuracy of the model in evaluating the sound
pressure in the presence of multiple cylindrical inclu-
sions is analyzed by benchmarking the results against
those computed using the better known Boundary El-
ement Method. The comparison yielded very favor-
able indications in favor of MFS, namely regarding
discretization of the problem and computation times,
compared with those when BEM was used.

Several arrangements were studied, covering differ-
ent combinations of geometrical and acoustic absorp-
tion characteristics, and the influence of those aspects
in the resulting attenuation values provided by the
sonic crystals was analyzed, allowing some broad indi-
cations to be established. For example, when compar-
ing the effect of using a triangular or square lattice, the
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results seem to show a trend for better performance, in
terms of the calculated insertion loss, when structures
with a triangular lattice configuration are used.

Another apparently clear implication of the results
is the influence of the location of the noise source on the
overall sound attenuation. When assuming the source’s
position in different locations, noticeable variations of
the insertion loss are registered at the receiver’s posi-
tion, which appears to suggest the possible existence
of some sort of waveguide action. As this can lead to
highly divergent outcomes, from the receiver’s point of
view, such possibility should be thoroughly examined
by carrying out additional analyses.

The results presented in this work appear to indi-
cate that the use of MFS may have a good potential
to be employed in further research in this subject. Fu-
ture developments will predictably include the analy-
sis of more complex arrangements, regarding both the
geometrical parameters of the periodic structure and
acoustical properties of the scatterers. Another rele-
vant topic for further development is related with the
three-dimensional effect of the sonic crystal which, in
a real configuration, has a limited height and thus may
also be affected by diffraction effects occurring at its
top. From a more experimental point of view, further
investigation will certainly be required in terms of lab-
oratory and field tests, using physical models, to allow
the validation of the numerical results.
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