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By considering the problem of the travelling wave propagation along
two half-spaces: the ideally elastic (solid) and the viscoelastic (liquid), with bulk
viscosity, as a result of solving the wave equations and taking into account the
boundary conditions, the complex characteristic equation was obtained.

The characteristic equation was solved numerically for a frequency of
2.5 MHz for two different viscoelastic bodies, for biological tissue and the
acetic acid CHyCOOH, bordering on an elastic medium, steel.

The wave velocity was sought close to the longitudinal wave velocity
characteristic of the given media. It was shown that the wave could propagate
at a velocity only slightly less than that of longitudinal waves, but with attenua-
tion being slightly larger than that in an unbounded medium.

It follows from the representations obtained of the displacement potentials
that, apart from the wave propagation along the boundary of the media, there
is also wave propagation towards the liquid damping medium. This phenomenon
did not occur in considering the ideal liquid medium.

In both cases, the distributions of the normal and tangential stresses
and of the partial displacements were obtained. The wave decays exponentially
as the distance from the boundary increases (on both sides).

The distributions are close in character to those of stresses and displa-
cements obtained in the previous paper of the author, where a similar, but
a lossless, model was considered. ;

The acoustic impedance in a viscoelastic medium was also found for the
wave type propagating along and across the boundary.

1. Introduction

The investigations of the ultrasonic wave propagation along the boundary
of two half-spaces: a viscoelastic liquid and an ideally elastic solid, involve
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a phenomenon obgerved during biopsy controlled by ultrasound. In specific
physical conditions, there emerges a wave, which propagates along the needle,
reaches its end and returns, giving an image of the needle end on the oscilloscope
sereen. This problem was already considered theoretically with specific physical
restrietions in papers [1-3]. These papers showed that the velocity of the pro-
pagating wave is close to that in the biological medium surrounding the needle.
The previous investigations have dealt with the wave propagation in ideally
elastic media.

At present, it assumed that the biological medium surrounding the needle
is a viscoelagtic liquid, as the biological structures, such as muscle, kidney,
liver, on which biopsy is performed, show viscous properties. The needle used
in the puncture of a given biological structure is reduced to the infinitely long
half-space of an ideally elastic solid. Thus, the wave reflected from needle end
will not be considered ; the wave analysed will be a travelling one. It is also assu-
- med that the viscoelastic biological medium is unilaterally unbounded. These
simplifications will ensure better knowledge of the phenomenon of the wave
propagation itself along the boundary of the two media.

The coordinate system was chosen in the way shown in Fig. 1. The axis @
coincides with the boundary of the two half-spaces and is parallel to the direc-
tion of the wave propagation. The axis z is directed vertically upwards. The
ideally elastic solid medium is a homogeneous, isotropic material with the density
¢s and the Lamé constants A, and u,. Here, the velocities of the longitudinal
and transverse waves are, respectively, ¢; and ¢,. The ideally elastic medinm
borders on a viscoelastic isotropic medium with the density g, and the viscoelastic
constants 1, and pu,, defined as '

do =N +jwd”, p, =p'+jop”,

where A" and u’ are the elastic constants, A" and p'’ are the viscous constants,
o = 2xnf; f =frequency; j* = —1.
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Fig. 1. The system of the media considered

The purpose of the investigations is to determine the parameters characteri-
zing the wave motion propagating in the direction # and the approximate magni-
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' tude of the velocity and attenuation of the wave propagating along the boundary
- of the two half-spaces.

‘ Further on in this paper, the biological medium will be defined as a viseo=
' elastic liquid, where the propagating transverse wave is so rapidly, compared
. with the longitudinal wave propagation, attenuated that it can be neglected.

2. Initial formulae

In elasticity theory, it is assumed that the components of the stress tensor
are linear functions of the components of the strain tensor. These assumptions
' (the Hook law) are valid only when the purely elastic forces are much stronger
than those depending on the strain velocities (the viscous forces). When these
forcés are comparable and the stress components are also linear functions of
' the strain velocities, it is said that a given body also has viscous properties
(a Voigt body). This body model will be assumed as an approximation of the
.~ biological medium. When isotropic, such a body is characterized by four mate-
' pial constants: A’, ', A and u’’, where 1’ and u’ define the elastic properties
and A and u' the viscous properties of the body.

é Then, the constitutive equation of the viscoelastic body becomes

é 0 ol
Ty = (2!4"4'2#-"?#) &;+ (/1'+3~" 'a) & 0:1) (iyj =2,9,2), (1)

" where 7 and & are, respectively the stress and the strain. Substitution of (1)
into the motion equations

o, ov;
? FRg sl B 2
: “Tor - s £
3 gives the equation of the displacements of the isotropic viscoelastic body

78 e i)+ L] eradaivat (wpr 2)vm. @)
& 3m = Iz # Lo jeraadive e e e

& In the case of harmonic motion with the frequency f = w/2w, which is
. assumed in this paper,
e u(x,y,2,1) = u(@,y, 2)exp(jot)
- and, after using equation (3),
— 0,0% = (A + pto) grad div @ + u V%%, (4)
- where
| A= M jad”
o = 2=nf
e = W +jop”’

(5)
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The displacement equation (4) has formally the same shape as that in -

elasticity theory. The only difference involves the coefficients 4, and u, which
are at present complex and depend on the frequency, according to dependence

(5), whereas in the case of the wave propagation in an ideally elastic medium

the coefficients were real quantities. Thus, the ideally elastic isotropic body is
characterized by two constants, the Lame constants; the viscoelastic isotropic
body, by four constants. A’ and p’ define, respectively, the bulk and structural
elasticity, whereas A" and u'’ are, respectively, the coefficients of the bulk and
tangential viscosity. Equation (4) is solved in the same way as in elasticity
theory [7]. :

For the viscoelastic medium, in order to solve equation (4), the displacement
vector % is respresented in the form .

——

u® = (v° +w°)exp(jot)
with the condition rot# = 0 and divw® = 0|

(6)

Here, the vector is respresented in the form of the sum of the scalar poten-

tial gradient ¢° and the rotation of the vector potential ¢° with the coordinates-

‘P:g'r"-'l’; and y;.
The vector rot ° has components of the form

oys Oy (3w§ @w;") Oy @%‘é] 7
, ;

tp° = - - -
oy [ oy oz '

o0x 0z ox ay
In view of the twodimensional character of the problem in expression
(7), only one component of the vector ° occurs, i.e. yZ, while the vector rot °
has the components

TRy VAL VI TP R P e TRTG . VP LI N W oY,

rotyp® = [—%,0,%]. (7a)
Therefore, the displacement vector #° has the form
u’(x,2,1) = [grad¢®(x, z) +roty(x, z)]exp (jot), (8)
and, after breaking it into the components u® and w* they have the form
= (%c aw”)exp (jort)
595" (8a)

)exp(J wt)

(u,
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The potentials ¢° and yy satisfy the equations

—chz
Sigo Ll e
- # Aot+2p, ¢

T

v
= C

where A, = A +jol”, u, = p' +jop’’ and o = 2=f.
Equations (9) result from the application of dependence (8) in the displa-
cement equation (4),

l e.
(4. + p) grad div (grad ¢° + rot yy) + u V?(grad ¢° +rot yy)

3 = — p,w*(grad¢°+rotyy),
but

div grad ¢® = V*°,
div roty, = 0,
(A +,uc)gradV“¢"+M 6°+ uViroty, = — g.w?(grad ¢’ +-rotyy),

grad [(2,+2u,) V° + 0,0°¢°] + 10t [,V + g, 0®y)] = 0
hence, (9) follows.

The solution of system (9) (by the classical method of separation of variables)
leads to the form

# (@, 2) = (Dexp(—jla2) + Dyexp (jly2)) exp(— jpa),

yy(@,2) = (BBXP( —jlz) +BleXP(ﬂtz))eXP

—jpx), (10)
where
>
Jao s Rid —m2
iR
. > (11)
B =22 _pe
He
p is the sought propagation constant
¢ =o[Re(p), p = (Re(p),Im(p))
) (12)
a —Im(p)

¢ is the phase velocity of the wave and « is the attenuation coefficient of the
wave.
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A damped planar harmonic wave travelling in the direction z is characte=
rized by the factor exp(jwt)exp(—jpz).

Since the biological medium is bounded only on one side (by the elastic
half-space), the wave radiated in the direction 2 will not be reflected and the
term containing the factor exp(jl;z) can be neglected (i.e. D, = 0). Analo-
gously, B, = 0.

Finally, formulae (10) become

¢°(@, 2) = Dexp(—jlgz)exp(— jpx), (13)
vy(@, 2) = Bexp(—jlz)exp(—jpx).

Then, the normal and tangential stresses, expressed by the displacement
components, «° and w° according to the formulae

S ou’ ow’ 42 ow®
Toe = f¢ o _é'z_ He oz ’
ow® ou’ (14)
TgZ:”"'( s 83)
where
= (—pj Dexp(—jl;2) +jl Bexp (— jiz)) exp ( — jpa),
(15)

( JlaDexp(—jlgz) +jlBexp( —.'ﬂtz)) exp(—jpa),

lI

and defined by representations (8) and (13), become
Toe = [—Dexp(—jls2) (A,0* + Al +2u,03) + Bexp( —ji2) X
X 2p,pl;1exp ( —jpx + jot),
%2, = p,[ — 21y Dexp (— jl2) + (1 —p*) Bexp(—ji2)] X
X exp(—jpr+jot).  (16)

The constants I;, I, and p are complex conjugate quantities, related by for-
mulae (11). The propagation constant p is related to the wave number k and
the wavelength A by the formula

Re(p) =k = % = 2r/A. (17)

In general, the propagation constant has the form P = w[c—ja, where ¢
denotes the phase velocity of the wave propagation in the system and a is the
coefficient of the wave attenuation.
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3. Viscoelastic liquid

Formulae (13) describe the displacement potentials in the viscoelastic
body, where longitudinal and transverse waves can propagate. This body is
characterized by the density g,, the Lamé elastic constants 2’ and u’ and by the
coefficients of the bulk and structural viscosity, 4" and p”, respectively.

The determination of the specific values of the material constants 1/, 1",
u#' and p” requires the solution of the following equations:

G =oRe(®) . [h&]’

ag = —Im(h) Ao+ 2p, e
= 21/2

5 = 90wl where [ = [9°w ]

o = —Im(l) He

These dependencies relate the material constants to the longitudinal and
transverse wave velocities in tissue, ¢; and ¢;, and to the attenuation coefficients
az and a;, corresponding to the propagation of these waves for given frequen-
cies. It is assumed, after [4], that

¢g =1.5x105cm/s, ¢ =3x10%cm/s,
ad = 0.37 Cm"l, a‘ = 2 X ].0:i Om_!,

where a, is the attenuation coefficient of the longitudinal wave propagating
along the muscle. With these assumptions and the frequency f = 2.5 MHz,
the values of the material constants of biological tissue, determined from rela-
tions (18), are

A" = 2.27 x 10 dyne fem? = 2.27 x 10° N /m?2,
p' = 5.9 %108 dyne/em? = 5.9 X 105 N/m?, (19)
A" =10.23 dyne s/em?® = 1.023 Ns/m?, u"" = 0.33 dyne s/cm?= 0.033 Ns/m2.

It is seen that the coefficient of the bulk viscosity A’ is larger by almost 2
orders of magnitude than x”. In paper [12] O’BRIEN showed that p’’ has the
same value for tissue as that for water (soft tissue contains 70 % of water) and,
subsequently, made the assumption u'* < A"’ for water., The same assumption
can be made here for tissue. Subsequently, comparison of the elastic coefficients
A'and p'in (9) shows that u’ is lower by 4 orders of magnitude than A’. Therefore,
it is assumed that u' < A'.

In summing up the above assumptions, tissue is defined as a liquid with
the coefficients of bulk viscosity A" = 10.23 dyne s/em? and of bulk viscosity
A" = 2.25 x 10" dyne/em? In this liquid only the longitudinal wave propagates,
since, as FRrIZzZELL showed in paper [4], the attenuation of the transverse wave
in tissue is 1000 times as large as that of the longitudinal wave.
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Thus, the displacement potential has the form

2
ot

¢°(x, 2) = Dexp(—jl2)exp(—jpa), 1§ ="t —pe, (20)

A

c

The displacement #% is, when broken into components,

AL _jngxp(—jldz)exp(—jpm)efp(jwﬂl (21) §
w = —jlyDexp(—jlgz)exp(—jpa)exp (jot) !
The stresses have the form
W =1, = — Dexp(— )k (p*+ ) exp(—jp m)expw)l (22)
Ty = 0. '

The propagation constant p is common to the potential ¢° and the potentials

¢° and vy}, defined below, in the ideally elastic half-space of the solid. These
(displacement) potentials can be given in the following form (considering, analo-
gously to formulae (13), only the possibility of the wave propagation away
from the boundary, i.e. in the direction —z):

¢*(x, 2,1) = Aexp(jkyz)exp(—jpr)exp (jwt)l we
vi(x, 2, 1) = Bexp(jkz)exp(—jpa)exp (jot) |’
where
2 2
= —p', H=—r—p (24)
Cq Cy

The components of the displacement vector, «* and w®, and the normal
and tangential stresses, calculated from formulae (16) and expressed by poten-
tials (23), have the form

(25)

u® = [— Ajpexp (jksz) — jkexp (jk,2) Blexp (—jpa +J'wt)l :
w® = [jkaA exp (jks2) — jpEexp (jkz)]exp(—jpx + jot)

7o, = [— (Ap?+ A,K5 + 2u,k3) A exp (k) +2u,pk, Bexp (jkz)Jexp ( — jpx +J'wt)l
Toe = [2Aexp(jkg2) kap + Eexpjkz (ki — p®)] pexp ( — jpa +jot)]
(26)

4. Boundary conditions

On the boundary of the half-space 2 = 0, the normal and tangential stres-
ses, and the normal components of the displacement vector, must be continuous,




ULTRASONIC WAVE PROPAGATION 169

- i.e. the following conditions should be statisfied:

Bl oop

Teo = Taz

RIS

5, =0 }. (27)
=gt

Substitution of dependences (8a), (21), (22), (25) and (26) in the boundary
- conditions (27) gives a system of three homogeneous equations with the nunkno-
- n8 4, ¥ and D and the coefficients a; 4, j =1, 2, 3. The coefficients include
- the material constants of the elastic half-space and the viscoelastic biological

medium, and the wave numbers k;, k; and I; and the sought propagation con-

stant p = (w/c) —ja. The determinant formed from conditions (27), after sub-
- stituting the previously determined displacements (8a) and (25), and stresses
. (22) and (26), has the form

2up*— w0y 2upky 0%,
lagl =1 2upk,  poki—p* 0 |. (28)
\ ikq —ip  —ila
The characteristic equation

gignifies that there exists a nontrivial solution of system (27). The characteristic
equation is an algebraic equation with complex conjugate terms and the complex
conjugate unknown p.The propagation constant p occurs explicitly and is contai-
ned in the terms k;, k, and l;, defined by relationships (11) and (24). It is impos-
sible to transform equation (29) to achieve an analytical solution. Therefore,
equation (29) will be solved numerically for the characteristic parameters of the
biological medium when biopsy is performed. Subsequently, the results obtained
will be used in another model, providing clues as to in what ranges the propaga-
tion constant p and other parameters, characteristic of the wave propagating
along a hollow elastic cylinder immersed in a viscoelastic liquid, should be sought.
This problem will be considered in another paper.

The characteristic equation (29) was solved numerically by the method of
successive approximations. The aim was to find a complex conjugate solution
whose real part lies close to the longitudinal wave velocity in tissue (close to
1.5 x 10° em [s) and whose imaginary part is close to the value of the longitudi-
nal wave attenuation in tissue (close to 0.370 em-1). The signs of %k;, k; and I,
from formulae (13a) and (24) were chosen in such a way that the wave decayed
with increasing distance from the boundary of the two media. The solution of
the complex conjugate characteristic equation gave zero for the velocity of the
wave sought ¢, = 1.499593 x 10° cm s, i.e. slightly lower than the longitudinal
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wave velocity assumed in the unbounded viscoelastic liquid ¢ = 1.5 x 105 em [8.
The, value of the attenuation coefficient obtained was a, = 0.3734 em-l i.e.
higher than the attenuation coefficient of the longitudinal wave in an unbounded
viscoelastic medium assumed as a = 0.370 em-2,

As a result of solving the equation, the following values of the wave numbers
kg, k; and 1; were obtained:

kg = —0.39—j101,
k, = —0.42 —j92.8, (30)
la = 0.013 —j2.59,

and the following values of the displacement potential amplitudes:
E = 0.00067 —j1.08,
D = 4.85—30.047, (31)

for the assumed value of the amplitude 4 = 1-4j0.
Subsequently, in order to verify whether the phenomenon is similar for
a highly damping liquid, the acetic acid CH,COOH was assumed as the viscoelas-
tic liquid. This is a medium which shows 10 times as much attenuation as that
in biological tissue. Namely, according to [9] the measured attenuation coeffi-
cient is
2

ag ; 8 .
7 X107 = 90,000, (32)

Then for the frequency f =2 MHz the attenuation a; = 5.625 em-.
The other characteristic parameters of the acetic acid are: the longitudinal
wave velocity ¢; = 1.15 x10%cm/s, the density p = 1.049 g/em3, the coeffi-
cients of elasticity and bulk viscosity 2’ and 1", respeetively (from formulae(18)):
A" =1.38x10" dynefem?® =1.38 x10° N/m?, 1" = 72.5 dyne s/em? = 7.25
Ns/m?® Then, the solution of the characteristic equation (29) by the method
of successive approximations gives the sought velocity of the wave guided
along the boundary, ¢, = 1.14913 x 10°m/s and the attenuation of this wave
a, = 5.635 1 /cm.

Analogously to the first case considered (biological tissue), the velocity
of the sought wave was found to be slightly lower than the longitudinal wave
velocity in the medium and the attenuation slightly higher than the wave
attenuation in an unbounded medium. By assuming the displacement amplitude
A =1+j0, the remaining displacements amplitudes D and ¥ and the wave
displacements and stresses in the system considered were caleulated. For the
velocity ¢, and the attennation a, determined numerically, the calculated num-
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bers k;, k, and I; and the displacement amplitudes E and D are

ky = —B.T4—j134
k, = —6.03—j128 ), (33)
1, = 0.0937 —j1.86

E = 0.00411 —31.047

- . (34)
D = 4.863—j 0.0256

A Congsideration of the numerical results of (30), (31), (33) and (34) gives the
displacement potentials in the form:
a) biological tissue/steel:

¢° = Dexp(—j20.013)exp (— 2.592)exp ( —jw104.75 — 0.37341)
tissue

¢* = Aexp(—j20.39)exp(101z)exp(—jz104.75 — 0.3734x)

steel (35)
y, = Fexp(—jz0.42)exp(93z)exp(—ju104.75 —0.3734x)

b) acetic acid [steel:

¢° = Dexp(—j20.009)exp(—1.862)exp(—jz136.69 —5.63bx)

acetic acid

#° = Aexp(—j25.74)exp(134z)exp( —jr136.69 — 5.635x)
- steel (36)
yy = Hexp(—j26.03)exp(128z)exp( — j#136.69 —5.635x)

It follows from the form of ¢°, ¢° and o), that the wave propagates and is
attennated in the direction x and z; from the solid to the viscoelastic liquid.
The first -exponential factor did not occur when the liquid medium was
considered without attenuation [1].

Moreover, the wave is strongly attenuated with increasing distances from
the boundary z = 0 in both directions.

5. Acoustic impedance in the viscoelastic liquid

Let us now calculate the impedance in the unbounded viscoelastic medium
and the impedance of the half-space of the viscoelastic liquid for the wave
propagating along the boundary of the two half-spaces.
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The impedance in the unbounded medium, Z, ., of the viscoelastic liquid,
for the planar wave propagating in the direction #, is given by the formula

X Ao+ 2p, A ]/ %
bulk = QcC P = o Ve 2 ): (37)

where p’ is the pressure of the wave and ¢ is its velocity. In the case of a bounded
medium the components of the vector of the impedance of the medium in the
direction ¢ (¢ = @, y, 2) are defined, according to [8, 10], as

z =

Bl

; (38)

where

P in e c gk
T =Tyttt (E=2,Y%,2),

du® dv® dw®
=l r i = [0, vy, vZ].

Then for the half-space of the viscoelastic liquid, from formulae (14)
(15) and (22),

(39)
Tk w
T z:c :
giving the following values of the components of the impedance
a) for tissue:
||.Z$| = 1.5 X105 g/sem?, since Z, = 1.4995 x10%+5.35 x 10% (40)
|Z,] = 6.2 x10%g/sem?, since Z, = 3.216 X 10*46.234 x 108§
b) for acetic acid CH,COOH:
ermi = 1.2 x 10% g /sem?, since Z, = 1.2 x 105+ 4.96 x10% 1)
|Z,] = 8.8 x108g/sem?, since Z, = 4.44 X 10°+8.82 x 10%

weheras the characteristic impedance for the wave in an unbounded viscoelastic
medium is:
a) for tissue

|Z5 ] = 1.5 x 10% g[sem?, since Z . = 1f49 % 105+ 5.7 x 10%;
b) for acetic acid CH,COOH: : (42)
|25l = 1.2 X 108 g/sem?, since Zyyy, = 1.2 X 10°+49.88 X 10%.
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It can be seen that the modulus of the component Z, of the impedance
vector for the liquid half-space (formulae (40) and (41)) is equal to the modulus
of the characteristic impedance of the wave in the unbounded medinum (formula
(42)). In turn, the component Z, of the impedance (perpendicular to the boundary
of the medium) is in both cases distinetly larger (more than ten times). Its
imaginary part is larger by one or two orders of magnitude than the real one,
which results from the very weak attenuation of this component, propagating
from the elastic medium to the damping liquid, perpendicularly across the boun-
dary of the two media. For an undamped propagating wave the impedance
15 a real quantity [13].

6. Discussion and results #

It has been shown that in a planar system of a viscoelastic half-space
(biological tissue), bordering on an ideally elastic half-space (steel), a boundary
‘wave can propagate with a velocity slightly lower (¢, = 1.499593 < 10°® em/s)
than that of the longitudinal wave, assumed for an unbounded viscoelastic
‘medium (¢ = 1.5 x 105 cm/s). In view of the properties of biological tissue, it
has been assumed that it only exhibits elasticity and bulk viscosity (damping
liquid).

z |

tZZ
{re!atwe un:tsl

- Fig. 2. The distribution of the moduli of the normal stresses 73, and 7, for the tissue-steel
system

The boundary wave analysed propagates only in the boundary conditions:
the thickness of this layer in steel is smaller by an order of magnitude than that
in biological tissue. In turn, the thickness of the boundary layer in biological

8 — Archives of Acoustics 2/85
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tissue is of the order of 10 wavelengths. This results from the displacement
distributions (Fig. 4) determined for a frequency of 2.5 MHz. The stress distri-
butions (Figs. 2, 5, 7), determined in biological tissue and acetic acid also conﬂrm
this character of bﬂateral decay of the wave across the boundary.

¥ biological  tissue

e 1 L
b e nz——=_ 06
T, fre!a{.'ve um‘s}
5 1 XZ
= V)!
2 L\

Fig. 3. The distributions of the modulus of the tangential stress 73, in steel for the tissue-
gtell system

The diagrams enclosed confirm the equality of the stresses and displace- -
ments on the boandary of the media, in keeping with the boundary conditions
(27). However, the displacements »® and u® are different (Fig. 8), for they are
directed along the boundary and not determined by any boundary condition.

The boundary wave attenuation determined is only slightly larger (a,
= 0.3734 1/em) than that of the longitudinal wave assumed for an unbounded
biological medium (e = 0.37 1 /em).

zl
{mm]
4_
3_.
<ot

1k biological tissue

o 1
T2 il 3 w?, w* [relative units]

R

Fig. 4. The distributions of the moduli of the displacement components w® and w® for the
tissue-steel system
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It has been observed that the wave propagates in the directions # and z;
from the boundary layer of the solid medium to the boundary layer of the

viscoelastic liquid (see f
where two elagtic medi

to propagate across the boundary. j

Physically, this phenomenon can be explained by energy flow from the boun- 5
dary layer to the viscoelastic liquid. Without this energy flow, as a result of ’
absorption, the amplitude (and energy) of the wave in the boundary layer of

z
{mm]
10

08}

ormulae (35) and (36)). In a previous paper of the author,
a were considered, the boundary wave was not observed i

06 |+ R

04

02

acetic acid

0

=02

-04

-06

* 0P ¢, t5, [relative units]

N\

-08

Fig. 5. The distributions of the moduli of the normal stresses 75, and ¢, for the acetic acid-

Fig. 6. The distribution o

steel system

acetic acid

6 '8 ¥ T, lrelative units]

N

f the modulus of the tangential stress 75, in steel for the acetic
acid-steel system
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{rom)]

06k ————

04 |
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02
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Fig. 7. The distributions of the moduli of the displacement components w® and ws for the
acetic acid-steel system
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Fig. 8. The distributions of the moduli of the displacement components u¢ and u# for the
acetic acid-steel system
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_ the viscoelastic liquid would decrease as the wave would propagate in the direc-
tion x. It would, however, remain constant in the boundary layer of the ideally
elastic solid medium. Therefore, after covering some distance x, it could not
satisfy the boundary conditions of the equality of the stresses and displacements
on both sides of the boundary. Thus, there must oceur energy flow across the
boundary, to increase the wave amplitude in the viscoelastic liquid and decrease
it in the elastic one; and, by doing so, satisfy the boundary conditions, irrespecti-
ve of the distance .

The conclusions that there is energy flow across the boundary of the media
can also be drawn from the value of the impedance Z, determined for the visco-
elastic liquid. It has a real component, which, in view of the wave propagation
in the direction #z, indicates that energy penetrates into the viscoelastic liquid.

The above analysis, on the mechanism of the wave propagation along the
boundary of the two media, also permits some practical conclusions to be drawn
for the performance of biopsy controlled by the ultrasonic beam, since it can
be assumed that the ultrasonic wave propagates along the needle with practi-
cally the same velocity and attenuation as that in an unbounded biological
medium.

However, it should be noted that these conclusions have been formulated
for a very simplified planar system of two media. In reality, in biopsy, there is
a layered cylindrical solid medium surrounded by the biological one. Therefore,
it seems indispensible to analyse such a much more complex case, in order to
solve the problem in an exact way. This will be considered in another paper,
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