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DIRE CTIONAL CHARACTERISTIC OF A CIRCULAR MEMBRANE VIBRATING UNDER

a
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In this paper, the acoustic pressure of a circular membrane is analysed
on the agsumption that the distance between the field point and the membrane
is much longer, both in terms of its linear dimensions and the wavelengths
radiated. It was assumed that the membrane was excited to induced harmonic
vibration — including nonresonance one — by a force with uniform surface
distribution. The membrane was placed in a rigid, planar baffle, and the gas
medium, into which it radiated, was lossless. Numerical examples of the direc-
tional characteristic were represented graphically.

1. Notation

— membrane radius

a,, b — radii of the annular surface of the membrane, on which the normal component of the

force inducing vibration, different from zero, acts

ey — wave propagation velocity on the membrane
e — surface density of the force inducing the vibration ’
Jo — constant density, independent of time, of the force inducing vibration (1)
J,, — Bessel function of the mth order
N,, — Neumann function of the mth order
k= oy
ko = 2n[A
K  — directionality coefficient (17)
K’ — directionality coefficient (25)
P — acoustic pressure (10)
p’ — acoustic pressure in the main direction (23)
py — acoustic pressure in the main direction (22)
R — radial variable of the field point in the spherical coordinate system :
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r, ¥y — radial variable of the point of the membrane surface in the polar coordinate system
T — force stretching the membrane, referred to unit length

i — time

v — mnormal component of the vibration velocity of points of the membrane surface
Bon — nth root of the equation Jy(fo,) =0 '
& — transverse displacement of the points of the membrane surface

7 — surface density of the membrane

A — wavelength in a gaseous medium

oo — rest density of the gaseous medium

a, — membrane surface area (circular field)

w — angular frequency of the force inducing vibration

2. Introduction

In considering practical applications, membranes being sources or receivers
of acoustic energy, excited to resonance vibration, are most often analysed. In
order to investigate fully and in detail the acoustic properties of such vibrating
systems, investigations should also be carried out for nonresonance frequencies.

In the case of nonresonance vibration, the velocity distribution is much
more complex than that for resonance vibration and depends significantly on
the factor fqr@ing the viibmtion? e.g. on the distribution of the inducing force
1l 21

I» paper [2], analysing the forced vibration of the circular membrane,
expressions were given for the vibration velocity in the form of the expansion
into a Fourier series, and the distribution of the force inducing the vibration
and the distribution of deviations, as the resultants of the series of sinusoidal
vibrations with frequencies equal to the eigenfrequencies of the membrane,
were given.

Two methods for the calculation of the vibration velocity distribution of
the membrane were given in paper [1]. The first of these methods is based on
the use of the eigenfunctions for a cireular membrane performing free vibration.
This method is convenient for the analysis of the physical properties of the
vibrating membrane, but hardly useful for numerical results to be obtained,
since the solutions given in it are slowly converging series. The other method
leads to the establishment of the vibration distribution in the form of the sum
of the general solution of a homogeneous vibration equation and of the specific
solution for a heterogeneous vibration equation. This method was used by HAJA-
SAKA to analyse theoretically the forced vibration of the ecircular membrane,
induced to harmonic vibration by an electric force, by means of two circular
electrodes parallel to the surface of the membrane.

The directional characteristic of the ciréular membrane, strained Wlth
the same force over the circumference, excited to resonance vibration, is known,
e.g. from SKUDRzYK’S papers [4], [5].

Referring to communique [3], the present paper also considered the direc-
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tional characteristic of the circular membrane, however, on the assumption
that it is excited to forced vibration — including nonresonance one — by a force
with uniform surface distribution. The use was made of the expression for the
vibration velocity, obtained by solving a heterogeneous vibration equation for
undamped phenomena harmonic in time. The vibration distribution was given
in the form of the sum of the general solution of the homogeneous equation and
the specific solution of the heterogeneous vibration equation. It was also assumed
that the membrane was placed in an ideal rigid, planar baffle, and the baffle —
into which it radiated — was lossless. An eXpression was obtained for the
directionality coefficient in a form convenient for numerical calculations, which
wererepresented graphically.

3. Vibration velocity

On a plane, which is an ideal rigid baffle, there is a circular membrane

stretched by the same force round the circumference with the radius a. The

membrane is induced to transverse vibration under the effect of an axially-
symmetric inducing force, e.g. by means of two planar annular electrodes parallel

Tig. 1. The vibrating 8ystem: ¢ — membrane radius; a,, b — radii of the annular surface
of the membrane on which the inducing force, different from zero, acts; {a < r < o0, 0 <
< p < 2n} — the region of the rigid baffle

_to the surface of the membrane, with the external radii b and the internal ones
a, (Fig. 1). In this case, the factor inducing harmonic vibration can be an elec-
tric force with the surface density

0 for0 <r <a,
f(r,t)={foexp(iot) fora,<r<b (1)
0 forb<r<a.
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The vibration equation [2] of the circular membrane under the effect of an ._
axially symmetric inducing force, is the following:

T—

19 T@E(r,t)) a2 (r, 1)

ror\  or e b @8

where T = ¢jn.
The solution of equation (2) for a membrane excited to forced vibration
by force (1) has the form

T fo {No(ka'

& (ry 1) = T, (ka)

e [k, (kb) — kay], (kag)]—

—kle(kb)-i—kaoNl(ka,,)} Jo(kr)exp(iot)  (3)

for 0 <7 < @p;

© fo {[No(ka)
% nw?

Eo(r, 1) = (kT (Feb) — kg, (ka)) —

—kle(kb)] To(hr) + ko] (o) Nolr) — | exp(iot)  (4)

for ay<r <b; and

5, 1) = % nf O (kb (kD) — Koy (kag)] X
No(ka) g
X[Jo(k 5 Jo(kr) —N (kr)] exp (iwt) | (5)

for b <r < a, where & = wVn/T

The solutions given here satisfy the following conditions:

a) The functions & (r, 1), &(r, ) and &(r, ) take finite values in the res-
pective regions: {0 <r<ay, 0<p<2n}; {a,<r<b, 0<o<2n} and {p<
<r<a, 0<9<2x}, and, thus, the solution of & (r, ?) also has a finite value
for.r = 0.

b) The boundary condition &(r,?) =0 for r = a.

¢) The agreement econditions

Ei(ryt) = &(r, 1), 0&(r,t)[or = 0&(r,Y)[Or forr =a,
and 2
Eur, 1) = &(r5 1),y 0&y(r,t)[or = 0&(r,t)[or forr =b.
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The normal component of the vibration velocity of the points of the mem-
brane surface, is obtained after taking into account that v(r,t) = 9&(r, 1)/,
where &(r,t) = &,(r)exp(iwl).

In the boundary case, when the membrane is excited to transverse vibration
by the force

Fir,t) =

t) foro <Lib3
[foexP iot) orf<r ) (6)

forb<r<a,
solutions (3), (4) and (5) are replaced, after assuming previously that a, = 0, by

fo (kb [ No(ka)
ﬂw“{ 2 [Jo(k“)

&(ry1) = Jl(kb)—N,(kb)] J,,(kr)—l} exp (iot) (7)
for 0 <r<b;

55("'5 t) i

{: kb 1(kb)[l\ﬁ,(ifc.su)

7, (ka) Jo(kr) — No(kr)] exp (towt) - (8)

for b <r < a; and

kb [ N,(ka
60,0 = £(0,0 = T [0 [ 20 7,00 3, )| 1 expion. @)

In order to show that relation (9) is satisfied, it is necessary to assume in
solutions (3) and (4) that » = a,, perform the boundary transition a,—0, apply
wronskian (14) and the asymptotic expressions Jy(z) ~1, Ny(2) ~ —2[nw
with o— 0.

Solutions (7) and (8), which are specific cases of the more general solutions
(3), (4) and (5), are known from paper [1], which analysed the membrane vibra-
tion under the effect of force inducing it by means of circular electrodes parallel
to the surface of the membrané.

4. Acoustic pressure

The acoustic pressure distribution in the far field of a source vibrating in
an ideal rigid and planar baffle can be calculated from the dependence [2]

i0ow €xp(—ik,R)
R, 0 =
( y @5 1) 9 R X

x [ 0(ra, puy hexpikyrysin Ocos (p—go)1day ~ (10)
%
for 1/2 kyro(ro/R) < 1, where R, 0, ¢ are the spherical coordinates of a point of
the field; », and ¢, are the polar coordinates of a point of the source; o, = ma®
is the surface area of the circular membrane.
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In the case of a circular membrane excited to axially symmetric vibration
(3), (4) and (b), the vibration velocity of the points of its surface does not
depend on the angular variable ¢,. Consideration also of the integral property [7].

2r

J explibeos(p—py)ldgy = 27Jo(b) (11)
0

leads to the following form of the expression for the acoustic pressure (10):

—ik (7]
P(R, 0,1) = igyw ol lf L J o (Kqrosin 0) rodro -+

R 0E,(ro, 1)
+ fa—a:’—Jﬁ(kor{,sin 0)rodrs +

%9
a t o '

+ f EE(;;“—’) Jo(korosinﬂ)fodr[,]. .- (128
b

"In caleulating the integrals occurring here, the following dependencies can
beused [7]:

[ w000 Z(1 w0) i = g (0T (100) Zo(00) — 1T o () Z4 o)}, (13)

where Z,, is any cylindrical function of the mth order. Conmderatlon also of the
wronskian [7]

‘ 2
Ji (@) Ny(x) —Jo(x) Ny (2) = o (14)
leads to
' b2 AT T
oilb ) eofob? exp [i(wt — k)] : 5
29 R (ko) 2
1—|—] sin26
k
{2J1(kobsin 0)  [a,\* 2J,(koa,sin )
kbsind  \ b Kottosin 0

2 (%) T, (kay) — 2, (kb)

+ T Jo(kyasin e)}. (15)
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In the main direction, i.e. for 6 =0,

 0ofob? expli(wt—FkoR)] a)\? A |
Po(R,0,1) = o Bsess [1— (_1;) + E
2 (%) I (kag) — 27, (kb)
3 Tbd o (ka) ] o _ |
The directiondlity coefficient [2]
E(6) = -2 (17)
[Pl

for py #0. When, in turn,

VI o PACRERZAC)
1—(7) 4 kb J o (ka) o t8)

the phenomenon of antiresonance occurs, and the directionality coefficient
must then. be defined in another way. It can be achieved by referring the value
of the pressure p (R, 0, t) to that of the pressure p’(R, 0, ?) in such a direction 6
where it is maximum.

In the case of resonance vibration, ka = f,,, where f,, is the nth root
of the equation Jy(f,,) = 0. Then, calculation of the limit

R, 0,1
lim K(6) = lim 1BLE, 9,51 (19)
Ka~Byp ka—fijy [Do(By 0, 1)
gives the dependence
[ (kpasin 6) |
T e e LA (20)

ke

which is known, e.g. from papers [4], [5] and [6].
When, in turn, a, = 0, then instead of expressions (15) and (16), the fol-
lowing formulae are obtained for the acoustic pressure:

cofd* explilot—kB)]
2 R
1 [2J1(kobsin f) 2, (kb)
Y (%)" <in20 kybsin 0 kbd o(ka)

p(R,0,1) =

¥ oJ o (kyasin B)] (’21)
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and

‘ Po(B,0,1) =

00fob? €xp[i(wl—FkoE)] [1 24, (kb) ] (22)

2 R  kbd 4 (ka)

In this case, it is also possible to determine the directionality coefficient
from formula (17), but on the assumption that 2J,(kb) # kbJ,(ka). When, in 4
turn,

2J, (kb) = kbJ o(ka) (22a)

the phenomenon of antiresonance occurs. Relation (22a) can also be derived
by assuming in dependence (18) that a, = 0.

5. A numerical example and final remarks ’l

Figs 2, 3 and 4 show curves of the directionality coefficient of the radiation
of the circular membrane excited to forced vibration. The value p (R, 0, ?) of the
acoustic pressure (21) was referred to the value p’(R, 0, #) of pressure (22) on
the main axis, where it was assumed that ka = 2, b = q, i.e.

oofoa® exp[i(wl— k)] J1(2)]
ety = - 1— 5 23
p'(R,0,1) o 7 7.(2) (23)
e
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Fig. 2. The directionality coefficient of the radiation of a circular membrane vibrating

under the effect of a force with uniform surface distribution, for the different values of b/a.

Curve I — bja = 1, curve 2 — bja = 3/4, curve 3 — bfa = 1/2, curve 4 — b/a = 1/4. It
was assumed that ke =4, ky/k = 1/2
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Tig. 3. The directionality coefficient of the radiation of a circular membrane vibrating under

the effect of a force with uniform surface distribution, for the different values of the parameter

ka. Curve I — ka = 2, curve 2 — ka = 4, curve 3 — ka = 8. It was assumed that b = a,
kofk =1
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Fig. 4. The directionality coefficient of the radiation of a circular membrane vibrating

under the effect of a force with uniform surface distribution, for the different values of the.

parameter ka. Curve I — ka = 1, curve 2 — ka = 2, surve 3 — ka = 4. It was assumed.
that b = a, kyfk = 2
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After introducing the notation

i |

G

J5(2)
Jo(2)

J = 1.5757 ... (24)

the expression on the basis of which the curves of the directional characteristics
have been plotted takes the form
y(bla)? 2J, (kobsinb) 2 1(kb)J o(koar) sin 0

K(0) = : o :
ll_ (_753) Sinzﬂl kobsin 0 kbd o (ka)

(25)

where y = 0.6346 ...

The expressions obtained for the acoustie pressure can be used for calcula-
ting in practice the frequency bands of the factor forcing vibration, contained
between the particular resonance frequencies. It is impossible to analyse the

Ip,!
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Fig. 5. The acoustic pressure p, in the main direction, referred to the acoustic pressure p’,
depending on b/a. Curve I — ka = 2, curve 2 — ka = 6. It was assumed that p’ is the
acoustic pressure in the main direction for ka = kb = 2

pressure for resonance frequencies or those to them. Despite this, analysis
of the directionality coefficient can be carried out for resonance frequencies
from formula (20), obtained by calculating in the limits the quotient of the
pressure represented by means of dependencies (15) and (16), which take then
infinitely high wvalues. :

Expressions (15) and (21) derived for the acoustic pressure can also be used
in a more profound analysis of the physical properties of the radiating membrane
as a vibrating system, e.g. to calculate the acoustic resistance and reactance.
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