ARCHIVES OF ACOUSTICS
10, 3, 281-302 (1985)

FLOW PERTURBATION MEASUREMENTS BY NUMERICAL ANALYSIS OF THE POWER
SPECTRUM OF A DOPPLER SIGNAL

MACIEJ PITECHOCKI

Institute of Fundamental Technological Research, Polish Academy of Sciences
(00049 Warsaw, ul. Swietokrzyska 21)

A method was elaborated to measure flow perturbations. It was based
on analysis of the power spectrum of a Doppler signal. In view of the simplifi-
cations assumed, it concerns pulsed flowmetres. The process of the formation
of the Doppler signal is deseribed mathematically, its power spectrum is calculat-
ed. A numerical model of the signal power spectrum is pressented. It has been
constructed to calculate the effect of the gradient of the mean velocity in the
sample volume, and also to determine the effect of the passage of blood
particles through the sample volume on the shape of the power spectrum.

This model was verified experimentally. On the basis of it, a corrected
turbulence index was proposed. This index describes with greater precision
the flow perturbations.

1. Introduction

The introduction of measurements of the degree of the perturbation into
diagnostic studies of the circulatory system results from a tendeney to expand
the application range of Doppler flowmeters, by fuller use of information on
the flow contained in the signal obtained. The measurement of perturbations
permits the quantization of the flow properties, which are now evaluated quali-
tatively from the detection of Doppler signals. The published investigations
confirm the usefulness of such a measurement in studies on the stenosis of blood
vessels and on the infra-operational investigations of the correctness of the ves-
sel reconstruction [5, 8].

The commonly applied measure of the flow perturbation is the so-called
turbulence index, defined as the percentage ratio between the standard devia-
tion and the mean frequency of the power spectrum of a Doppler signal or its
time interval histogram [5, 8].
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In considerable approximation, it is assumed that if the velocity measure-
ment is carried out with a sample volume that is small compared with the size
of a vessel, the indices mentioned above correspond approximately to the ratio
between the standard deviation of the instantaneous velocity oscillation and
the mean velocity in the area studied. For laminar flow, the value of the tur-
bulence index should, therefore, be zero [8]. Unfortunately, the interpretation
given here is only too oversimplified. For, in practice, the values of the turbulen-
ce index never drop down to zero, as the width of the power spectrum
also depends on factors other than flow perturbation. Because of this, the in-
dices presented here are hardly sensitive to the real magnitude of flow pertur-
bations.

Another essential problem, occurring for flow perturbation measurements,
which, however, will be reflected here, is the difficulty in obtaining accurate
estimation of a Doppler signal power spectrum for real, pulsating blood flows.
This involves difficulties in accurate measurement of the turbulence index.

The aim of this paper is to analyze relations between the flow studied and
the power spectrum of a Doppler signal and to develop a method permitting
a more precise flow perturbation measurement than that allowed by the turbu-
lence index. It was assumed that the shape of the sample volume and the distri-
bution of the mean velocity inside this volume can be just any.

The process of the generation of the Doppler signal was described and its
power spectrum calculated in order to determine factors defining the parame-
ters of this spectrum. The dependencies obtained permitted the construction
of an approximate, numerical method for the calculation of the power spectrum
and its parameters, based on measurements of the mean flow velocity profile
in a vessel and the parameters of the flowmeter. By comparing the power
spectrum, measured for a given signal and a synthesized one, we can conclude
on the existence of flow perturbations.

A numerical model of the power spectrum of a signal is also the basis for
the introduction of an improved turbulence index, proposed in this paper.
This index is defined in a way that is slightly different than that given in the
literature. From the spectrum variance the effects are detracted which are rela-
ted to the factors expanding the spectrum, and not connected with the flow per-
turbations. The detracted values can be determined numerically from measure-
ments of the shapes of the samples volumes and the mean profiles of the flow
velocity. =

2. Signal generation process

The description of the signal generation process aims at obtaining a mathema-
tical form of a Doppler signal, depending on the properties of the investigated
flow and on the parameters of the equipment. This description provides the
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basis for caleculating the signal power. To that end, analysis was successively
performed on operations implemented by a typical Doppler flowmeter (Fig. 1)
and on the effect of these operations on the final form of the signal.

The following assumptions were made:

1. The signal detected by the transducer is the sum of independent dissi-
pations from randomly placed particles.

2. The amplitudes and phases of scattered waves are random.
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Fig. 1. A simplified schematic diagram of a flowmeter with |

pulsed emission. @ — generator, N — transmitter, O — re-

ceiver, D — demodulator, UP — sampling unit, # — low-
-pass filter, PNO — transmit-receive transducer

— T

3. All the scatterred waves, giving significant components of a signal with
respect to the noise field, come from the nearest sample volume.

4. The sample volume is so small and far from fthe fransducer that the
scattered waves reaching the transducer can be recognized as plane.

* b. The velocity of the scattering particles is constant in the course of pas-
sing through the sample volume and is parallel to the flow axis.

The first two assumptions are generally assumed in the analysis of a Doppler
signal [16, 24] and lead to a random model of this signal.

A third assumption aims at avoiding the components of the signal which
do not come from the sample volume and which <ean occur as a result of the
known phenomenon of ambiguity in the measurement of distance by the im-
pulsed apparatus [10].

The fifth assumption is satisfied for laminar flow in straight vessels. For
perturbed flows, it is reduced to the requu-ement that the sample volume should
be respectively small.

For a pulsed flowmeter, the voltage exciting the transmitter transducer
to vibrate has the form:

400 .
2(l) = 2 B (t—mn7,)cos w, (—ntp), (1)

n=-—00
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where E(t) — the envelope of the transmitted impulse, w, — the working fre-
quency of the flowmeter, 7, — the repetition period of the transmitted impulse.
Thus, the signal ®(f) is an infinite sum of the identical pules.

With the given assumptions, the voltage at the receiving transducer, gene-
rated by the sum of waves scattered by a single particle, is expressed by

400
up(t) = const| ' B (t—nz, —krw,)] ad (r)cos (ot —kr+y), 2)

N=—00

where F,(t) — the envelope of the transmitted impulse, modified by the fre-
quency response of the transducer at detection; A (r) — the resultant directio-
nal characteristic of the transducer, made up of the transmitted and received
ones, r — the tracing vector of the particle, describing its position, k — the sum
of the wave vectors of the transmitted and scattered waves, & — a random
variable, denoting the scattering amplitude, y — a random variable denoting
the scattering phase.

Demodulation is the first operation carried out on the received signal u,(t).
It consists in multiplying the signal by a sinusoid at the frequency w,. After
being multiplied and transforming the product of the cosine function into
a sum, the signal has the form

+00
ug(t) = const| 3' B, (t—nr,—krjoy,)]| ad (r) x

X 1/2[cos(—kr+y) +cos (2wt —kr+y)].  (3)

It is the sum of two components. The first, related to cos(k, r +y), which chan-
ges slowly (through the dependence of r on time), is the one of interest. The
other, related to the curve of a double carrier frequency 2w,, can easily be fil-
tered off, without losing information on the particle velocity. Thus, the final
result of the demodulation will have the form

+00
ug(t) = const[ "2 El(t—nrp—kr/wo)] aA (r)cos (kr—y). (4)

n=—00

Sampling operation

Another operation which is performed on a signal in a pulsed flowmeter is
signal sampling in order to define the depth at which its analysis is carried out.
This sampling will be written as a multiplication of the signal u,(f) by the sam-
pling function £, (¢), which is a periodic function with the period 7,. Let us now
introduce a delay ?, of this function with respect to the transmitter, correspond-
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ing to the depth analysed. The form of the signal is, after the operation of sam-
pling, given by the following formula

+ oo .
u,(t) = const[ 3 f,(t—nz,—1,) B, (t) —n1, — krjo)] x

N=—00

xad (r)cos(kr+y). ()
It is usually assumed that the sampling function is a sequence of Dirac impulses
4(t). The time difference between particular samples equals the repetition period
of the transmitter impulses. The filling is a sinusoidal function with a frequency
coresponding to the movement of a particle. This frequency results from the
Doppler effect, i.e., a change in the frequency of the received wave, when the
source or observer moves.

The envelope of the signal «(¢) is the produet of the functions A (r) and F,({ —
—nt, —krjwy) for t = nr, 41, and the successive positions of  resulting from
the movements of a particle. Thus, in describing the signal after sampling,
we can introduce the function H (r,t,), representing the product of A (r).and
E, (t—nr,—kr/o,) for t = nr,—t,, namely:

+oo ’
U, (t) = const [ 2 d(t—mnt, —t,.)] aH (r,t.)cos(kr+vy). (6)
Nn=-—00

However, in practice, we meet quite frequently situations where the sam-
pling duration (when f,(f) # 0) is equal to or greater than the duration of the
transmitted impulse (when F,(f) % 0). In practical solutions, as a rule systems
calculating the mean value of a sample and memorizing it until the next value
comes are used. Such a solution maximizes the energy contained in the spectrum
concentrated around zero with respeet to the remaining replications. By intro-
ducing the averaging process into our notation, we can simplify it. Thus, again,
for a constant time delay we can define the function H(r,1,) describing the
envelope of the signal w, (¢) defined by a change in the position of a particle [14].

+00

Hir,t,) = [ f(0)B (x+1,—kr[w)drA (r). (7)

-—00

Again, the signal after the sampling operation can be written in the form of
a sequence of impulses set for v = 0,

+00
u, (1) = const[ D 8(t—nz,—1,) aH(r,1,)cos (kr—y). (8)

N=-—00

The final form of the Doppler signal

The function H (r, t,) describes the effective, from the viewpoint of the spec-
trum of the signal received, distribution of acoustic energy in space, which is
usually called the sample volume. In further considerations, the parameter
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t, will be regarded as constant, i.e., the position of the sample volume in the
flow field will be considered constant.

In order to obtain the total signal form after sampling it is necessary to sum
up the contributions coming from all the particles. This procedure results from
the independence of particular scatterings. The summary signal at the input
of the sampling system will thus have the form

,(t) = const| :f d(t—nz,—1,)] [g‘ a.H (r;)cos (kv +,)], (9)
n=—03 =1

where N is the number of particles occurring at the same time in the sample
volume,

The position of the particle r; is a function of time. We assumed that the
particle velocity v; was constant and parallel to the flow axis as the particle
flowed through the sample volume. The position of the particle can be given
as

r =r{+ogt, (10)

where 7} is the tracing vector of the particle for the time ¢ = 0. The product
of the position » and the wave vector k equals that of the Doppler frequency
and time.

In addition, we can introduce the notation

a; = krd. (11)

a; is a random variable with a distribution related to the distribution of the
initial position of the particle in the sample volume, which from the assumption
is taken as uniform.

Thus, the signal takes the following form:

+o N
u,(t) = const [ 3 s(t—nz,—1,)]|[ 3 a;H(r)cos(wi+a+y)].  (12)
N=—00 i=1

In this equation, the quantities a;, a;, ¥;, ®; and 7; are random variables.
The signal u,(f) (formula (12)) is the sum of functions of these quantities. Since
the number of the factors summed up is very large (I is of the order of 10°),
and the probability distributions for each component of it are the same, wu,(t)
is a random, approximately Gaussian, process. For this process to be stationary,
i.e., for the probabilistic quantities related to it to be constant in time, the flow
field must be stationary. In addition, we assume that this is an ergodic process —
where the values averaged over the set equal respectively the corresponding
values averaged in time. In these conditions, all the information awvailable
on this process is contained in its second-order characteristics, i.e., in the auto-
correlation function or the power spectrum.
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Thus, to obtain maximum information on this flow, we should look for it
in one of these measured characteristics. Such a solution would require, however,
an extremely complicated measurement equipment and a good theoretical
description of the process of spectrum formation.

3. Analysis of the signal power spectrum

To define the form of the power spectrum of the signal u,(f), we assume
a definition of the power spectrum which is quite often used in technology:

8 (o )—hmH} fu(t axpl—ijwt)ydt|

T—vw

(13)

where u,(t) is the time form of the signal and 8(w) is the power spectrum of
the signal.
For the signal u,(t) (formula (12)) 8(w) is expressed as

S(w) —;21(’10—‘ fconst 2 d(t—mr,— ,.)][Zaiﬂ(ri)x

x cos(ad + a;+ ;) exp( —jot)dt| .  (14)

The first term (under the integral) of the signal, which contains the sum of
the Dirac impulses, corresponds to the signal sampling. In the spectral represen-
tation, it involves the existence of successive copies of the spectrum of the sec-
ond term, which are distant by

W, = 27:—1—. (15)

Tp
By assuming that the spectrum of the second term describing the signal is
limited and zero for o > w,[2, we only consider the spectrum concentrated
round the pulsation equal to zero. It corresponds to the practical signal fil-
tration narrowing its band to the useful interval (0; ,/2). Thus, we obtain

8(w) _-hm——l f const a‘H(r‘)cos(wit+a¢+y,)><

T—bno
Xexp ( —jot)dt r. (16)

Let us denote the terms which we achieve as the integral has been introduced
under the sum sign as

Y
Fy(jo) =| [ aH(@)c0s(0f+ o+ y)exp(—jot)di|". (17)
-
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By substituting this determination in formula (16) and calculating the squared
modulus of the sum, we obtain

N N
ces o] . g
S (o) =consthm2—T[ E’Rgrﬂ,.(gw)+ EIIsz._-(Jw)]-f—

ok i=1 i=1
1 NN
lim ——
+lim (k;’ i_}! [ReFy(jo) Re Fy(jo) +Im Fy(jo) Im Fy(jo)]).  (18)

The second term in formula (18) applies to the produects of funetions of independ-
ent scatterings and is zero.
Thus, the signal spectrum becomes

8 const lim . a®
= const lim —
(w) 2 T'—c0 2T ’

T
f H (1) co8 (8 4 a; -+ ;) exp  — joot) dt r. (19)

i=1 -T
For our signal the operation of passing to the limit in time causes the fact
that the number of particles giving the spectral components should tend to
infinity. And the integrals in formula (19) will tend to the Fourier transforms
of the subintegral functions. These transforms exist, as the subintegral functions
are limited in time in view of the bounded dimensions of the sample volume.
Thus, the components of the sum can be replaced by the squared moduli of
the respective Fourier transforms. We denote as & the Fourier transformation.
By calculating the squared modulus of the Fourier transform of the subinte-
gral function, on the assumption that F[H(r;) = 0] for |o| > w; we obtain

the dependence

|# [H (r;)cos8 (ot + a;+v:) ]I
= |F[H(r)]]?*0(0+ o)+ |F[H(r)]*+0(0—w). (20)

The sum from formula (18) should be extended to all particles flowing thro-
ugh the sample volume in the measurement time. We shall denote it as a boun-
dary transition, by designating as M the number of particles which are summed
up. We replace the normalising factor 1/T' by 1/M. Since the random va-
riable a; is, when squared, averaged, and its mean square value (_ag) can be made
part of the constant term, we obtain

8(w) = consthm —Z(IF[H(T‘)]F*& o+ o) +F[H(r)]** d(o—wy)), (21)
i=1

or otherwise

S(w) = const(hm -—Z |F [H(r)]]® * 6(w+ o)+
i=]
S W
+lim = |ﬁ[H(m]z=*a(w—w,-)). (22)

M- =



FLOW PERTURBATION 289

The signal power spectrum, expressed by formula (22), consists of two identi-
cal and separate, in view of the assumption #[H(r;)] = 0 for |o| > w;, com-
ponents situated on the pulsation axis symmetrically with respect to zero.

In the further part, considerations will be limited to one of those
components only, ie., the one on the positive semi-axis of pulsation, so as
to shorten the notation of the formula. In addition, we shall neglect the con-
stant proportionality factor. Thus, we obtain the simple form of the spectrum:

M
S8(w) = lim %5 |F [H(1;)]]2 % (00— w;). (23)

M- M s
The next transformation executed here is now strictly related to the numeri-
cal nature of the description of the spectrum to be constructed. The continuous
velocity axis will be replaced by a discrete one. Le., we assume that the velo-
city, and, thus, the Doppler frequency, will take a finite number of values,
whereas the two adjacent quantities differ by a finite quantity, called the disere-

tization step.

This way of frequency representation permits the next spectrum transfor-
mation to be carried out. Among the components of the sum represented in
formula (23), let us choose those in which the Doppler frequency wy is the same.
They are the components of the spectrum from particles moving at the same
welocity. First, the separability of the convolution operation with respect to
addition permits us to sum up the contributions from these factors, and then
convolute the result with the Dirac delta, corresponding to this frequency.
For the velocity v, the summation result will be:

: My,
d(w— wy) *( lim Mi ]ﬁ[H(ri)]ﬁ). (24)

Mp—o0 k vy

To get the whole spectrum, the above contributions must be summed up for
all wvelocities:

L My
s(0) = D sw—0y «( 1m - S i#mreoe), (26)
k=1 e i=1

where L is the number of discrete values of velocity in the vessel.

In the spectral form, the internal sum according to the index ¢ represents
the effect of a passage through the sample volume of particles at velocity cor-
responding to the frequeney w,. Indeed, a time change in #; corresponds to
the particle path through the sample volume, while H(r;) describes a change
in the scattered acoustic energy in passing through the sample volume. The
external sum, according to the index %k corresponds to the summation of the
effects for all the particle motion velocities existing in the sample volume.

We can note that the existence of a large number of velocities in the sample
volume can result from the presence of a specific velocity profile in the vessel.
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It can also result from instantaneous velocity oscillations related to the flow
perturbations. Since the estimation of the signal spectrum directly from its
temporary form, as used here and applied generally in analysing equipment,
requires a very long observation time, it is not possible to distinguish between
the contributions from the velocity gradient and the instantaneous osecillations.
In other words, having only the signal spectrum, we cannot say whether there
are instantaneous velocity perturbations, since the effect of a constant velocity
gradient on the spectrum can be the same. To be able to make this distinction,
we must have more information on the flow. Let us assume that we know the
mean velocity profile in the sample volume, for such a profile can be measured
by a pulsed flowmeter in the same time in which we collect data for spectral
analysis. Knowing the flow profile in the vessel the position and shape of the mea-
surement volume, we can, e.g. by numerical calculations, try to find the spee-
trum S (w) of the signal, by calculating successively the functions H (r;) and their
Fourier transforms. In practice, it is, however, very difficult, mainly because
of the geometrical complexity of the funetion H (r;). Let us then use approxi-
mations. First, we shall calculate the energy distribution of scattered waves
as a function of velocity. In other words, for each frequency w,, some distribu-
tion of the power of the scattered wave Bj(w)

My

1
Byl o) ==limn g 20 > SRRSO (26)

Mp—o0 k =

caused by the effect of particles passing through the sample volume, will be
replaced by a line of the same power from the appropriate distribution.

P, = [ Bilo)do. (27)

Thus, the power distribution of scattered waves as a function of velocity is
given by the formula

L

Sal0) = D' Prd(w—wy), (28)
. k=1

for each of the frequencies w, is, from the Doppler formula, related to the

the respective velocity v,.

Let us note that distribution (28) would correspond to the spectrum of the
Doppler signal if we neglected the effect of the finite time of the particle pas-
sage through the sample volume. For if H(r;) were functions changing very
slowly in time, their spectra would be very strongly concentrated close to zero,
i.e., equal practically to the constants P, introduced here. This would require
that the width of the spectrum of the function H(r;) should be negligible with
respect to the quantities ;.
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4. Numerical model synthesis

The spectrum analysis is now at a moment where as a result of the simplifi-
cations used, it is easy to introduce numerical calculations, to calculate for
known parameters the specific form of the power distribution of the received
signal as a function of velocity (formula (28)).

It is easier to calculate this distribution in a way other than that resulting
from the analysis carried out. Instead of following the paths of particular parti-
cles, we should calculate the sums of the powers existing at these points of the
sample volume where the velocity is constant [14]. Since we cannot neglect
the effect of the finite time of the particle passage through the sample volume,
for it influences greatly the spectral shape, some approximation was added
to the numerical calculations. To some limited extent, the flow perturbations
will also be considered in the model built. Tts construction will begin with repre-
senting an approximation of the particle passage effect (the transit time effect).

For each discrete value of the velocity v, related to w,, we introduce an
arbitrary approximation of this effect, as

By (w) = PN (0, 03), (29)
where

1
N(0,0;) = ‘“;jexp( — o*[203). (30)

N (0, 0;) is thus a Gaussian function symmetrical with respect to zero, with
a standard deviation g.

For each velocity v, the shape of the fuzziness of the power spectrum was
approximated by a Gaussian curve. The coefficient P, ensures equality of the
total scattered power for each velocity v, between our approximation and the
exact value. We shall define intuitively the width of the Gaussian curve as an
approximation of the transit time effeet, expressed by o;, and then the value
of the whole approximation will be verified experimentally.

It follows from considerations made in the conclusion of the previous sec-
tion that for a given sample volume the width of fuzziness of the power spec-
trum is the greater the shorter the time spent by particles in the sample volume.
Thus, this width should be proportional to the particle velocity and inversely
proportional to the length of the particle path in the sample volume. The part-
icle veloeity is a known parameter. Unfortunately, it is difficult to determine
the length of the particle path in the sample volume. However, it should be
expected that the power P, scattered by particles moving at the wvelocity v,
is related to the mean particle path length at this velocity in the sample volume.
The deviation o; can thus be defined in the following way:

Vg

% = PP (31)
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where b and f are constant parameters determined experimentally from the
dependence on the geometry of the sample volume. The above approximation
resembles the one which Gabrini used successfully in [6].

For the purposes of our model of the Doppler signal spectrum, it is con-
venient to desseribe perturbed flow through the mean profile of this flow and
instantaneous velocity fluctuations round this profile, Anyway, this deseri-
ption is accepted in fluid mechanics [17]. Let ¥, denote the mean velocity in
the elementary volume A4V, resulting from the position of the sample volume
with respect to the mean velocity profile in the vessel. We denote as p;(v) the
probability that the instantaneous velocity v = #,+» occurs at this point.
Thus, v denotes the difference between the instantaneous and mean velocities.
We continue to maintain the assumption that the velocity is parallel to the
axis of the vessel. For strongly perturbed ilows, in stenotic vessels, and for
pulsating flows, unfortunately, this assumption can deviate strongly from
reality. When the measurement time is sufficiently long, the power scattered
in the elementary fragment of the sample volume AV, (Fig. 2), defined as dH?(&;),

HY(F)

Fig. 2. The idea of the numerical calculations of the power spectrum of scattered waves

as a function of velocity 4V; — the elementary fragment of the sample volume, H2(r) — the

sample volume, P, (v) — the probability distribution of the deviation of the instantaneous
velocity by v from the mean velocity v

is divided among all the velocities occurring in AV;, in proportion to their
occurrence frequency, defined by p;(v). The vector & denotes the position of
each of the elementary fragments of the sample volume AV, (Fig. 2). By sum-
ming up all the powers related to the given mean velocity #,, we obtain the
magnitude of power related to this velocity:

Iy

P(v) = D AV, AH(&)py(v). (32)

=1
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Instead of the line of the power P, just as in the case of laminar flow, we obtain
a certain distribution on the velocity axis. When p;(v) is constant, we obtain,
in all the elementary volumes, where v, is the same:

I,
P(v) = py(v) D AV, AH(&), (33)

i=1

where p,(v) is the probability that v deviates from the mean velocity at those
points where it equals %,. Thus, this probability is now related to the velocity
profile and not to the space.

The latter formula can be changed to the form

P (v) = pp(0) ;. (34)

The values of P, are defined by the sum in formula (33) and refer to the mean
velocity profile. Thus, the power distribution of the Doppler signal as a function
of velocity becomes

L
Sge(0) = D' Pypy(v) #8(v—10;). (35)
k=1

This distribution contains two factors with a significant effect on the width
and shape of the signal power spectrum. They are the flow perturbations and
the existence of the mean velocity gradient in the measurement volume. It
should be completed by the effect of the finite time of the particle passage.
When the flow perturbations are not too large, we can approximate this effect,
just as for laminar flow, from the mean velocity profile. Thus, just as we did
previously, for each discrete value of the mean velocity %, we introduce the Gauss-
ian curve N (0, g;) as its approximation. The standard deviation o, is defined
as previously from formula (31), thus, it is based on the values of P, defined by
the mean flow profile. However, because of the existence of flow perturbations,
the transit time effect will be divided among all the instantaneous velocities
occurring round the mean @, in proportion to their occurrence frequency, i.e.,
2:(v). This division of the transit time effeet between the velocity distribution
is expressed by a convolution of the functions p,(v) and N (0, ¢;) for each mean
velocity 7.

By transforming the velocity axis into the frequency one according to
the Doppler formula, we obtain a complete approximation of the spectrum as

L
8y(@) = D) (Pl (e, ) * pi(w). (36)
k=1

Equation (36) is the final form of our model of the power spectrum of the Dop-
pler signal,
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294 M. PIECHOCKI

5. Mean value and the standard deviation of frequency in the power spectrum

From the final form of the spectrum approximation, we can calculate its
mean value and the standard deviation, in order to investigate the relation-
ships between these quantities and the flow parameters.

We obtain, as the mean frequency in the spectrum,

400 L
[ o8 (w)dw > Py,

By = s ==L . (37)
_f 8,(w)do kZlPk

In view of the direct relationship between w, and v, the mean frequency in
the spectrum corresponds to the mean bulk velocity weighted in the sample
volume. The weights P, are defined by the power distribution in the sample
volume and its position with respect to the flow profile. We can note that the
mean frequency does not depend on the transit time effect or the possible pertur-
bations. This results from our assumptions as to the effects mentioned above.
In practice, some nonsymmetricities can certainly occur, as a result of the
out-of-parrallel character of the velocity vectors with respect to the vessel
axis and the nonsymmetricity of the transit effect B,(w), described by equa-
tion (26).

It is much more interesting to consider the result of the calculations of the
standard deviation of the power spectrum. By calculating the variance of the
spectrum §,(w), we obtain

L L L
Z b ¢ Icw?c _2,‘ P k“:z.: 2 P kﬂ’;k
O ol 5 b et T Boar (T8 SIBTTior 1 (38)
2 Py B8 3 Py 2

where o, is the variance of the distribution p,(w).

The expression describing the variance o§ of our approximation of the spec-
trum contains three distinguishable components. The first is the effect of the
mean velocity gradient. We denote it as

L
Z Pka’i
O = e S T (39)

T s
2
k=1

The variance o} defines the spectrum width when the effect of the transit time
and the flow perturbation are negligible. Another one, denoted by o7, is related
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to the effect of the finite time of the particle passage through the sample volu-
me: —

L
2 o
R (40)
» 3¢ A '
k=1
A third component in turn is related to the flow perturbations:
? z :
og =—5—— (41)
L 2 Py '
k=1

Both o} and o} are certain mean values of the influence of the effects of the
transit time and flow perturbations, related to the power distribution in the
sample volume and its position with respect to the mean profile of flow through
the values of Pj.

By using the new notation, we can write the total variance of the spectrum as

gy = og+op+0z. (42)

The numerical model presented here permits the caleculation of the shape
and parameters of the power spectrum and the separation of the contributions
from the different factors to the spectrum, and, by it, also, an accurate mea-
surement of the flow parameters, namely o},. For we can, by identifying of
through measurements, calculate the values of of and o7, and then calculate
the value of . When we assume that o, is constant throughout the sample
volume, o, is equal to oy.

6. Experimental studies on the model of the power spectrum of the Doppler signal

By using the numerical synthesis of the power spectrum of the Doppler
signal given above, we calculated the spectra of a signal for laminar flows. The
results obtained were compared with the measured results. Thus, we verified
the caleulations of the effect of the velocity gradient in the sample volume and
the effect of the transit time on the shape and parameters of the spectrum.

Looking at the results we can say that the elaborated description of the
Doppler signal corresponds well to reality. We observed, however, a certain
difference between the mean frequencies of the measured and calculated spectra,
which is absent from Figs. 3 and 4, for it was compensated for in the course
of matehing the peaks of respective curves. The existence of this difference
can be explained by an inacuracy of the model and also by the differences
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between the real and calculated positions of the sample volume, or by slow
changes in the output of the pump in the course of recording signals. These
differences were compensated for numerically by a change in the value of the
maximum velocity used as the calculation parameter. We should point out
that these differences were always smaller than 2.5% of the maximum velocity;
thus, quite low.

10 10
o
05t 05+ 5
1} 15 3 [kHz]l 0 15 3 [kHz]
10 10
225
Q5% 05+ |
¢ 525
0 15 3 [kHzl O 15 3 [kHzl

Fig. 3. The measured and calculated power spectra of the Doppler gignal for flow with the
 Reynolds number Re = 1450. Thick line — measurements, thin line — calculations
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Fig. 4. The measured and calculated power spectra of the signal for flow with the Reynolds
number Re = 700. Thick line — measurements, thin line —calculations
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The parameters of the spectra shown in Figs. 3 and 4 are given in Table 1.,
It contains the mean values and the standard deviations of the measured spectra
fm and o, and the calculated ones, f, and o,, and also the values of the relative
errors between these quantities.

Table 1

Sample Jm Js O Og

Ee volume [Hz] [Hz] [ %] [Hz] [Hz] [%]
position

1450 0 2619.30 2623.29 0.20 119.34 118.70 0.50
1.5 2542.61 2536.71 0.17 159.89 148.98 6.82
2.25 2543.70 2428.20 0.14 179.58 176.59 1.56
5.25 1656.30 1666.80 0.63 231.64 232.55 0.39
0 1677.40 1616.50 0.17 77.01 173.31 4.80
700 1.5 1610.20 1608.30 0.14 94.41 94.44 0.30
2.26 1571.50 1571.40 0.01 114.28 113.53 0.66
5.26 1091.90 1092.97 0.10 146.41 152.49 4.15

The differences between the parameters of the measurement curves and the
results of a numerical synthesis of the spectrum, contained in Table 1, are
random in nature. They suggest, however, the necessity for a more precise im-
plementation of measurements. In the present case, the pipe wall caused a
deformation in the sample volume with respect to the assumed symmetry,
This explains perhaps the irregular shape of the spectra for the position “5.25”
of the sample volume.

The experimental studies on the correctness of the model, though still distin-
ctly incomplete, confirmed the usefulness of the approximation of the finite
transite time effect. These studies confirm that the present model traces well
the relative changes in the contribution in the spectrum width of the mean ve-
locity gradient and the effect of the transit time.

7. Turbulence index

The achieved relationships between the parameters of the spectrum and the
flow, (37) and (38), indicate that the initially discussed perturbation index,
defined by the parameters of the spectrum, can significantly deviate from values
characterizing the velocity distribution.

‘We now present the results of the application of the classical perturbation
index and those obtained when using the corrected turbulence index in the case
of the application of these indices for turbulent flow with a Reynolds number
of 5000. As was mentioned above, equation (42) can serve in determining the
effect of the flow parameters on the power spectrum. By transforming this
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equation slightly, we obtain
0z = Og— 0p—0g. (43)

If we assume that the presented results of the verification of the model prove
its correctness, the value of the calculated variance og is equal to the variance
o?, which was measured. The sum of the variance o7 and o is the variance of
the power spectrum for laminar flow with the same profile as the mean one
of the perturbed flow under study. The value of this sum, denoted by 0oz,
can be calculated by means of our model. Thus, we obtain the following expres-
gion of the averaged flow perturbations, determined from formula (41),

o5 = Vo, —dip (44)
In other words, the expansion of the spectrum, caused by flow perturbations,
equals a square root from the difference between the measured and calculated
gpectrum variances for the mean profile of perturbed flow.
Table 2 shows the values of the perturbation index, defined classically as
O /fm, the index calculated from numerical results of o,/f, and the values of
the corrected perturbation index ogz/f,,.

Table 2
Re | Sample |  on/fm osL/fsL oz /fm e
volume [%] [%] [ %] o [%]
position Jm 0z
0 4.56 4.52 0.47 434
1450 1.5 6.29 5.87 2.28 +1.50
2.25 7.38 7.2%7 1.30 +1.26
5.25 13.99 13.95 1.24 +15.88
0 4.76 4,52 1.46 +1.42
700 1.5 5.86 5.87 0.15 +23.61
2.25 7.22 7.27 0.83 +6.26
5.25 13.47 13.95 3.90 +£4.99
5000 | 0 12.06 2.66 11.76 +0.59

Tt follows from the data given in Table 2 that for laminar flows under study,
the values of the corrected perturbation index are, however, different from
zero. Tt means a lack of correctness in evaluating the flow perturbations by
imeans of this method. By analyzing the effect of error on the evaluation
of perturbations, we can explain these inaccuracies.

From equation (44), we can determine the effect of the error involved in
the calculations of the spectrum variance, on the effect of the error characteri-
stic of the caleulated flow perturbations:

AO'Z 1. AGSL

Oz =1""?J“§L OsL ; (45)
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where Aoy,/o; is the relative error in evaluating the value of perturbations;
Aogr|ogr, 18 the relative calculation error.

Fig. b represents two curves illustrating this dependence on two different
values of the ratio ¢,,/0g;. For og; < 0, the effect of the velocity gradient
and the transit time effect on the spectrum variance is small compared with

46, 465
6 10% 6,
0 ~ T
t
| 6, =<6,
65, 6,

Fig. 5. The relative error of the calculation of the flow perturbation variance Aoz/oz as
a function of the relative error of numerical caleulations Adogy,/osL

the effect of perturbations. In this case, the calculation inaccuracy is hardly
significant for the exactness of the perturbation determination. Unfortunately,
in the opposite case, if perturbations are small compared with the other effects
expanding the spectrum, o,, ~ og;. Then, even small error in the calculation
ogz, causes error of as much as dozens of %, in estimating the perturbation degree.
In this case, the achieved magnitude of the corrected perturbation index can
involve such significant error that it cannot be interpreted as a result of real
flow perturbations.

On the basis of the relative differences between the values of ¢, and og,
in Table 1, we are justified in stating that the accuracy of the calculations of
Aog; [ogz, 18 better than 10% . With this assumption, error in estimating the
magnitude of the corrected perturbation index was calculated from formula
(44). The absolute value of this error was set in the last column of Table 2.

8. Discussion and conclusions

The conclusions from the application of the corrected perturbation index
for the flows under study are as follows:

1. In keeping with the predictions from Section 3, the effect of the mean
velocity gradient and that of the transit time on the spectrum is similar to the
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effect of perturbations. Thus, the perturbation index is not unambiguously rela-
ted to the flow perturbations. Its values obtained for the position “5.25” of
the sample volume and laminar flow are greater than those for turbulent flow.

2. The corrected perturbation index determines much better the real per-
turbations in flow. However, it is much more complicated to calculate its value,
requiring knowledge of the flow parameter, which the mean profile is.

3. The enormous values of error in determining the corrected perturbation
index, obtained for some of its values (Table 2) are evidence of the low sensiti-
vity of the method for the measurement of perturbations through spectrum
variance measurements. Comparison of the value of the corrected perturbation
index and its accuracy for laminar and turbulent flows, and also the analysis
of the dependence of the spectrum variance on the magnitude of perturbations
(formula (45)) lead to the conclusion that:

— values of the flow perturbation ¢, which are low with respect to ogy,
are particularly not measurable, in view of the required measurement accuracy;

— for large values of the perturbation ¢, with respect to og;, the effect
of the mean gradient and the effect of the transit time are actually negligible.

The numerical way of synthesizing the spectrum, as presented here, makes

it possible to calculate the components of its variance, corresponding to the
contributions from the mean velocity gradient and the transit time effect.
This permits the ealculation of the mean variance of perturbations in the sam-
ple volume, from relation (42). It is also the basis for the evaluation and inter-
pretation of the results of perturbation measurements, and also of the optimi-
zation of the parameters of equipment, depending on the measured flow para-
meters. -
However, relation (38) is concerned with the variance of full spectrum distri-
butions. In practice, we are forced, as a result of the occurrence of equipment
noise, to fix the lower level to which the measured results are considered si-
gnificant. This can introduce inaccurracies in using this relation, since, usually,
the sum of the variances of cut-off distributions is different from the variance
of the cut-off resultant distribution.

In the extreme cases, the present model reduces, for the laminar flow, to
the forms described in the literature:

— when the transit time effect is negligible, the spectrum obtained from
calenlations corresponds to the velocity distribution in the sample volume [15];

— when the mean velocity gradient in the sample volume is negligible,
the spectrum has the shape of a Gaussian function with its width proportional
to the velocity. It corresponds to the results achived by GABRINI [6].

For perturbed flow, when the mean velocity gradient and the transit time
effect are negligible, the shape of the spectrum corresponds to the occurrence
frequency of the instantaneous velocity averaged over the sample volume.
We can calculate the mean perturbation variance from in vivo measurements.
The necessary data include:
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a. the mean flow profile, which can be determined e.g. by a multi-gate pul-
sed flowmeter;

b. the position of the sample volume, which can be determined e.g. by selec-
ting for the multi-gate analysis a signal from one gate of the profile-measuring
equipment;

¢. the shape of the sample volume which we can determine irrespective
of the flow under study. '

The calculations of the flow perturbation variance, as presented in the pre-
vious sections, are, however, complicated. Apart from measurements of the
power spectrum of the signal and velocity profile, it is necessary each time to
carry out a large number of numerical calculations. This prevents the use of
the present method, in its full version, to obtain results in real time. It is a serio-
us difficulty, since only methods ensuring a rapid achievement of results can be
expected to be used widely in medicine. It seems possible, in turn, to use a sim-
plified version of the present method. The sample volume applied should be
so small as to make the effect of the velocity profile on the spectrum variance
negligible. At the same time, the measurement of the flow profile would ensure
control of permissibility of this simplification. It is relatively easy to calculate
the effect of the particle transit time on the spectrum variance in this case,
By identifying this effect and detracting it from the spectrum, we obtain quite
an accurate value of the mean variance of the flow perturbations.
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