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The ultrasound scattering by blood depends on the flow velocity profile,
as can be shown by frequency analysis of the c.w. Doppler signals. Also, the
amplitude of the Doppler signals received fluctuates relatively strongly. This
fact cannot be explained completely with the random distribution of single
erythrocytes or with noise sources in the signal processing unit. These effects
can be understood assuming erythrocyte aggregations in blood.

Using the Monte Carlo method we calculate differential scattering cross-
sections of blood under the assumption of empirical distributions of aggregates.
We will present auto-correlation functions for the ultrasound scattering by
erythrocyte-aggregates, taking into account geometrical effects.

1. Introduction

We know from the frequency analysis of continuous wave Doppler signals
that ultrasound scattering by blood depends on the flow profile. Both time-
interval-histograms (TTH) and fast-Fourier-transformations (FFT) of Doppler
signals from blood flow in arterial vessels show characteristic “holes” in the
frequency spectrum which cannot be explained completely by the flow profile.
Therefore, we have to assume that the scattering cross-section of blood changes.
according to the shear rate in the flow profile.

On the other hand, there is a relatively strong fluctuation in the scattered
signals from blood. These fluctuations differ from patient to patient and cannot
be explained by noise from the measurement system alone.

Therefore, we have used the ECG-triggered averaging technique, in on-line
with a computer, for more than 4 years [4]. By this method we have achieved
an essential improvement, both in the Doppler pulsation curves and in their re-
producibility [8].
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The Monte Carlo calculations of ultrasound scattering were carried out to
improve understanding of these influences. Theories on the ultrasound scat-
tering of statistically distributed inhomogenities have been given in the works
of RAYLEIGH [11], CHERNOW [3], FoLpY [5], TWERSKY [13], MoRsSE and IN-
‘GARD [9], and applied to biological tissues by NicHOLAS [10] and WaAG [14].
‘The ultrasound scattering of blood has been calculated by BRopY and MEINEL
[2], SHUNG et al. [12], ANGELSON [1] and HANss and BOYNARD [6].

Nevertheless, a whole series of requirements must be met in order to obtain
-an analytical solution. The most essential requirements are:

1. The validity of the Born approximation, i.e. that the disturbance of
‘the incident wave by the particles remains slight. The kinematic theory of wave
«diffraction is then wvalid.

2. The radius of the scatterersshould be small compared to the wavelength

3. The mean distance between the scatterers should be large compared to
‘the wavelength. For other cases an empirical autocorrelation function of the
spatial distribution of the scatterers is introduced. In many cases the auto-
«correlation function found by LIEBERMANN [7] when investigating inhomo-
.genities in the ocean, is used. This autocorrelation function is transfered to
the calculation of the ultrasound scattering of biological tissues.

On the one hand, the mean distance of scatterers in human blood at a level
of 45 per cent in a normal hematocrite is small compared to the wavelength.
‘On the other hand, small changes in the autocorrelation function have import-
ant influence on the results.

4. The dimensions of the scattering region should be large in comparison
to both the wavelength and the correlation length of the ultrasound wave.

If we compare these results quantitatively we find that

— the results differ to varying degrees;

— they also differ from the experimental values given by SHUNG ef al. [12];

— the influences of geometric interferences are not taken into account;

— there is either no or incorrect information on the signal fluctuation.

2. Monte Carlo meodel 1

The spatial co-ordinates ;, y; and #; are calculated by the means of three
random numbers, and thus the position of the scatterer in the scattering region
is ascertained. In order to compare our results with those in the aforementioned
literature, a spherical scattering region is adopted too. Therefore, a conversion
to polar co-ordinates follows (Fig. 1):

e
fi— R'/mii% = 2nY;; O = may, s

when R is the spherical radius of the scattering region.
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We assume the incident wawve in the direction of the unit vector s,, and the
scattered wave in the direction s beneath the scattering angle 0, to be even.
Furthermore it is assumed that the receiver is situated in the farfield of
the scattering region (Frauenhofer’s diffraction). The scattered wave now under-

Fig. 1. Scattering geometry

goes a phase shift that depends on the spatial co-ordinates of the particle and
on the scattering angle o;
27
o = 7 (bi_bci)’ (2)

where 4 is the wavelength, b"i the projection of 7; on the unit vector s, and b;
the projection on s.

We must add that the scattered wave goes through an additional phase
shift on each particle.

The angle-dependent scattering factor of a single erythrocyte ¢(6); with

exp (jkr)

: @(0), - (3)

Dy (1, 0) = 4

where A is equal to the amplitude of the incident wave, & = 2xn/4 the number
of waves and p, the scattered ultrasound pressure; was calculated for a non-
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rigid sphere with a constant volume: V, = 4wa}/3. The angle-dependent sca
tering factor consists of 3 components: an inhomogenity of compressibilit
density and, to a lesser extent, of viscosity (Fig. 2).

Inhomogenities of compressibility and viscosity act as monopole source
The sum of the three components yields — with regard to the phase shifts
a preferred backscattering of the individual erythrocyte.
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Fig. 2. Angle-dependency of the ultrasound scattering of a single erythrocyte at 10 MH
where g, = 2.75 pm, K§ = 4.09 x107° m?*/N, K¢ = 3.41 x10~1% m?/N, g, = 1.03 g/cm?
on = 1.09 g/em?, ay = 0.056 em~!, a, = 0.56 cm~!, ¢ the phase shift of the erythroc

Although too high a viscosity for the erythrocytes was assumed, the vis
cosity contributed relatively little to the total scattering as a result of the phag
shift of —=/2. The Born approximation produces a simplified solution whie
gives a good approximation of erythroeytes up to ka < .5 regardless of their shap
— whether spherical or rouloux aggregates:

1 K,—K% | en—0g

D, = P KRV, T + S 08 B), (4)

where the mean number of waves in the coherent solution is
kp = op kg ©® (5
and the mean compressibility (K%) and the mean density (oz):

: f i b 1 N
b= RPN (K —ED; = = 0 (= -, (6
€r 2o On Qo
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with the number of hematocrites being b’ = VN’ and N’ = N/V the mean num-
ber of particles N per volume V (where V, is the volume of the individual scat-
terer, K¢ and g, the compressibility and density of the scatterer, Kj and g,
those the surrounding medium, and o the radian frequency).

In the case of a large number of scatterers, for example a hematocrite
of 45 per cent (about 6-8 min erythrocytes per mm?), all the phase shifts of
the individual scatterers are taken into account. If we have identical scatterers
and adapt the Born approximation, we get the common angle-dependent scat-
tering factor:

N N
RH:@iZCOSC‘:ﬁ JH=¢iZSinai§ |®(0) = R+, (7)
i=1 i=1
where the scattering vector is
H— s —S,
At
(8)
el
|H] =—8in —,
Ag 2
and the phase shift
A ool 0
a; = 7:—9"%-5111 7 sin (q),- - E)' (9)

If we use an equal distribution of the random numbers, we obtain an iso-
tropic distribution of scatterers within the scattering area. Fig. 3 shows the
interference of the individual scatterer. On the left-hand side we see the projec-

N

dB =2.5515e -07cm =1
4 eees J45
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Fig. 3. Angle-dependent ultrasound scattering at 10 MHz of a blood-filled sphere with a radius;
R = 0.05 em
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tion of the spatial distribution of the scatterers in the sphere. This is calculated
using random numbers. In this example of a relatively small sphere with a radius
R =1 e¢m, we find that, in addition to a geometric effect, all contributions
from the individual scatterers add up by analogy with the coherent solution (9).

However, calculations for a large number of particles would have required
a relatively long period of time. For this reason we developed a second, simpli-
fied Monte Carlo model for higher hematocrite values.

3. Monte Carlo model 2

We collected all volume elements AV of the same phase shift a; (Fig. 4).
The respective volume elements were calculated to

2
AV; = 2=R* Aw— e nda® — 2 aidw, (10)

AV; (mirror plane)

Fig. 4. Scattering geometry of a specular plane

where the phase shift is

== o sin : (11)
a e — 2 l P—
¢ : A " B

and x; the distance of the specular plane from the centre of the sphere. If we
divide the volume elements into » — wavelength components, we obtain

l .
7L e i (S (12)

4n 8l :
in=—
v
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The number of scattering particles that are contained in the volume ele-
ment, must be calculated using a random number W;. We assume that the num--
or of scatterers in the volume element is Poisson distributed.
Thus:
’ N
W, = exp(—N'4V,) i i 358 (13):
N!
. The number of scatterers N in the volume element AV; with the phase-
shift «, is calculated using a random number W,
Since the sum of Poisson distributed processes is also Poisson distributed,.
specular planes of equal phase shift at the spacing

Azy = —E— (14)

can be collected.
Fig. 5 gives the calculated scattering coefficient

o _ 190

] 4 14 i

for the back-scattering as the function of the hematocrite of the Monte Carlo
lculat-ions (model 2), in comparison to the quantities given by RAYLEIGH [11],
SuuNG ef al. [12], HANss and BoYNARD [6], MorsE and INGARD [9].

As a result of an increase in interference with increasing hematocrite, we-
obtain a maximum at a level of about 20 per cent hematocrite, which corre-
sponds well to the experimental results of SHUNG et al. [12].

~ The analytical curve of SHuNG et al,, in which an empirically adjusted.
constant is used for the determination of the peak of the curve, is plotted in
Fig. 5. Hanss and BOYNARD [6] only obtain a peak with an hematocrite of
less than 50 per cent if they assume that the scattering units consist of erythro-
eyte aggregates with 50 per cent plasma.

.~ However, in that case a substantially increased scattering coefficient is:
obtained. ;

4. Conclusion

~ Monte Carlo models for the calculation of angle-dependent ultrasound
seattering of statistically and isotropically distributed scatterers by adopting
he Born approximation for continuous waves, have been given. The calculated
results correspond well to the experimental values of the aforementioned lite-
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rature. It is possible to study independently the influences of geometrical inter-
ferences, signal fluctuations, the correlation length of ultrasound impulses and
the influence of the density of aggregates with this method.

07
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Fig. 5. The ultrasound back-scattering dependent upon the hematocrite mean values over
10 Monte Carlo caleulations O, in contrast to SHUNG et al. [12] A, RAYLEIGH [11] x, and
Haxgs and Boyxarp [6] @
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