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All ultrasound pulse-echo imaging systems suffer from limitations of both
lateral and axial resolution due to beam-width and pulse-length respectively.
Therefore a point-target will always be depicted as a blurred dot.

In esgence only deconvolution of the system’s impulse-response (or smear-
function or blurring) could provide further improvement. Earlier an optical
system was described potentially capable to process the echo-signals as recei-
ved by a phased-array pulse-echo system in real-time and in two dimensions.

A holographic method can be used to produce a complex spatial filter for
a particular reference-target which performs to some extent inverse filtering
or deconvolution. ‘

Both model-evaluations and experiments were carried out, showing
a reasonable agreement.

With the used amplitude transmission-characteristic of the photographic
emulsion complex spatial filters can be produced showing inverse-filter properties
for only a small dynamic range.

Further work should be devoted to increasing the filter’s dynamic range
and dynamic range compression methods prior to the filtering.

1. Introduction

Previous publications [2-6] have already described how an optical com-
puter can perform direct and quasi-inverse Fourier-transformation, and how.
filtering in the spatial frequency plane can be achieved.

Also, the conversion of the electrical signals, as received by the ultrasound
phased-array system, into optically modulatable signals, employing an Ultraso-
und Light Modulator (ULM) was described.

Therefore, here we confine ourselves only to a description of the holographie
procedure to produce a complex spatial “inverse” — filter and its performance.
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2. The complex spatial filter

2.1. Holographic process

Already in 1964 VANDER LuaT published a method for producing a complex
filter by means of a holographic process [1]. A holographic plate is illuminated
by an object beam and a reference beam simultaneously, see Fig. 1. It is assumed
that both beams originate from the same laser source in order to ensure the light
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Fig. 1. Realization of a hologram

to be monoehromatic and spatially and temporally coherent. Here, the object,
beam is the spectrum 8,(f,, f,) of the reference-target, of which both amplitude
and phase are functions of f, and f,. The reference-target is a “point”-target,
serving as a spatial d-function input to the ultrasound system. At the surface
of the holographic plate the complex function can be expressed as

8, = 8,(f. 1) exp [jo(fer f,)] = S.exp(jo). (1)

We require the reference beam to have a constant amplitude and an angle 0

with the f, — coordinate only.
It can be found from Fig. 1 that on the plate its complex amplitude can

be described as
Zr =33 Arexp( ""jafz) =3 Arexp( _Jlf’)! (2)

where a = (2nsin0)/A.
The total amplitude at the plate is now

ZT 5 Zr+§r = ArBXP(—jV’)JrSr@XP(j?’)- (3)
Since photographic emulsions respond to intensity, rather than to amplitude,
we calculate the intensity, which is

Ip = Ap-A) = A2482+4,8,expli(v+9)]+ A,8,exp[—j(p+9)] ~ (4)
— A2+82+24,8,008(p+p). (5)
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Equation (5) shows that the interference intensity-pattern consists of
a “DO”-component (although 8 is a variable) on which a modulation is superim-
posed, being proportional in amplitude with the object-beam and having a phase
being the reference-beam phase which in its turn is modulated by the object-beam
phase, since always ¢ < u. This illustrates that here in an intensity-function
still both amplitude and phase are preserved, due to the use of a reference
beam.

If the photographic emulsion would respond to the impinging light-energy
such that the amplitude transmission of the developed plate would be a linear
function of this energy, the amplitude transmission would also be expressed
by equations ((4), (5)). An impinging reference-beam at zero angle would then
fall apart into three beams as follows: (4;-+8}) at zero angle, and two beams
proportional to 8, at angles + 0 and — 0, according to equation (2).

On the other hand, if in this special case the object-beam would impinge
on the developed plate, the transmitted beams would be proportional to:

a. (A3 +82)8,exp(jp), being a distorted object beam at “zero” angle

b. 82exp [j(y+2¢)], being the squared amplitude object-beam with distor-
ted phase at an angle +0.

e. Slexp(—jy), being again the squared amplitude object-beam with
cancelled phase under an angle —0.

2.2. Holographic “inverse” filler
In [4, 5, 6] it was pointed out that the filter should have a transfer-func-
tion,

G = 1/8, = 1/(8,exp(jy) = (1/8,)exp(—jg). (6)

In paragraph 2.1 it was found that in the (— 6)-diffraction component
of the hologram this negative phase is present (leading to the phase-cancellation
as in case ¢), so this aspect is correct. However, instead of 1/8,, the amplitude
transfer-function of the hologram in 2.1 is 8, so that to obtain an inverse filter
the amplitude transmission-function of the holographic plate as a function
of the exposure energy should definitely not be linear as was assumed-in 2.1.

Fig. 2 shows a realistic amplitude transmission curve 7, as a function
of B = It, the exposure-energy, with ¢ = exposure-time. It also shows the
intensity-funetion according to equation (5). Here, S, runs linearly from 0 to 1
and the ratio A,/8,n.x 18 less than 1. Due to the very non-linear T';-curve a high
modulation-amplitude causes a low transmission-modulation and reversed.

Qualitatively this is just what we wish to achieve. However, to which
extent the obtained transmission-modulation function approximates the actually
wanted 1/8, (according to equation (6)), will be investigated further.

2.3. Bvaluation of a model
The result as shown in Fig. 2 suggests that, given a particular T, —F func-
tion, the two possible parameters which can be varied are the beam-amplitude
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ratio
Ra == Ar/Srmax (7)

and the T,,.-value, being the transmission corresponding to the maximum
D(C-component value, see Fig. 2.

Alteration of R, causes considerable variation of the DC-component as
a function of 8,. The T,p.-value can be adjusted by proper estimation of the
exposure-time 1.

modulation envelope

—— HF -‘carrier’
-——="'DC'-component

Fig. 2. Realization of a complex spatial “inverse” filter

The process as shown in Fig. 2 can be investigated further by fitting the
measured T,-curve of a particular type of photographic material under parti-
cular development-conditions by a mathematical function T,(E).

The exposure-energy E can be found from equations (5) and (7), together
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with stating that 8,,.. = 1 (for convenience), as follows

B = It = {R}+82+2R,8,co8(p+9)}t, (8)

where { = exposure-time.

In practice 6, the angle of the reference beam, is always taken large enough
to let v = af, = (2nsin 6-f,)/A (see equation.(2)) be much greater then ¢ (equa-
tion (1)). The modulation frequency, therefore, is mainly determined by y and
is very close to (sin 0)/Ap and in our case approximately 100 cycles per millimeter.

Sinee for this model the phase of the spectral function §, is assumed to be
zero (again for convenience), we can write

E = {R}+8;4+2R,8,cosy}t, (9)
with it ‘
p = 2m 100 f,, ‘ (10)

where f, is measured in mm on the holographic plate.
Substitution of equation (9) into T,(E) yields

T, = Tu(y), ) (11)

with the parameters R, as the beam-amplitude ratio, S, as the spectral ampli-
tude of the input-function to the system and ¢ as the exposure-time to obtain
the required T,,o-value. :

From Fig. 2 we will appreciate that the original cosine-function of equation
(9) is highly distorted by the non-linear T,—F characteristic, resulting in an
oscillating function with many harmonics y, 2y, 3y ete.

Tluminated by a beam this grating pattern will accordingly split it up
in diffractions at +0 and —@, 1260 and —20, 436 and —30, ete. In using
such a grating as a complex spatial filter only the first order diffraction at —6
is selected out.

In our mathematical model we assume that S, varies very slowly with the
co-ordinate f,, which means that at every position f, the spectral amplitude S,
can be considered to be constant over several grating-oscillations. This makes
T, (y), as represented by equation (11), a periodic function with y as the only
variable and thus 7,(y) can be expressed as a Fourier-series

T,(y) = Ag+A,co8p+A,00829+ ...
4, T Gt A 5 : (12)
=4,+ T(exp(w)+eXP(—w))+~5-(exp(ﬂwHexp(—JZw)Jr

As mentioned above, we are interested in the first order (—6)-diffraction
only so that we merely have to evaluate 4,.

.
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From Fourier-series theory we calculate
+7
1 F il
4, =— | T(y)eosydy (13)

for several values of 8,. Herewith we in fact obtain A, and thus @ as a function
of the spectral amplitude 8,, still with B, and 7T,;,, as parameters.

One should realize that we did not find the transfer-function G(f,) in the
spatial-frequency plane of the holographic complex spatial filter for a spectrum
8,, unless 8,(f,) is defined.

If for all frequencies G(f,) = 1/8,(f,), which is required for an inverse
filter equation (6), then G(f,)8,(f,) = 1.

Accordingly, 4,8, should be constant for all §,. We can now determine
the product of spectral amplitude and filter-function as a function of the spectral
amplitude, in other words

4,8, = f(8,). (14)

The range of S, over which 4,8, is “constant” (within certain limits) then
determines the maximum dynamic range of §, for which the used T,—F curve
can produce a suitable inverse filter.

In Fig. 3a, b, ¢ the model calculations are presented for R, = 2/3, 1/2
and 1/3 respectively. Four curves are given representing four different 7,,,-va-
lues, according to Table 1. In Table 1 the dynamic ranges of 8, are also given
for all cases (as far as applicable) within 3 dB and 6 dB limits respectively,
The first conclusion is that the dynamic ranges are very small and more depen-
dent on 7,5, than on R,.

Further comments will be given in the next chapter.

2.4. Experiments

For confirmation of the model found, a number of experiments were car-
ried out. A grey-wedge with a continuously and logarithmieally varying density
over a range of approximately 30 dB, was used for creating the function 8, (f,).

Holograms were made under conditions defined as well as possible with
respect to R,, T,p and a high enough oseillating frequency of the grating-
pattern.

Each hologram was illuminated with the same spectral distribution 8,(f,)
as used for creating the hologram with accurately co-inciding f -scales. Then
the (—0)-diffraction was recorded (corresponding with 4, in the previous
chapter), together with the spectral distribution 8,(f,) itself. The data were
processed by a computer and f, was eliminated in order to obtain 4,8, as a func-
tion of §,, similarly to the model-evaluation in the prewous chapter (equa-
tion (14)).

The results are given in Fig. 4 a, b, ¢ in combination with Table 2.
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Apparently, the curves show a number of artefacts, affecting the accuracy
of the results in Table 2. Nevertheless, there is a very satisfactory agreement
with the figures in Table 1. '

Table 1
Dynamic range of S, in [dB]
Curve TaDC" T
< number value R,=2/3 (a) | Bg=1/2() | Ra=1/3 ()
3dB |6aB | 3aB |6dB |3 daB | 6 dB
|
1 0.01 - — — | - 5.6 7.9
II 0.005 - — 2 - 5.8 8.4
111 0.002 — — 7.2 10.7 [ 10.0
v 0.00135 | 67 | - 71 | 100 | 7.6 | 11.2
Table 2
Dynamic range of 8, in [dB]
Curve Tupo-
number value, Ry =2/3 (a) | Rg =1/2 (b) | Bg=1/3 ()
\ 3dB | 64B |3dB | 6 dB |3 dB |6 dB
I 0.5 = SR Y S
11 0.2 7.4 11.2 5.8 9.2 5.3 73
111 0.1 7.5 11.4 7.5 10.3 5.4 8.0
v 0.05 8.0 | 114 8.0 11.4 6.1 9.2
Y 0.02 7.5 } 11.0 %3 10.8 7.3 10.3

Since the T, —(F) curves were not the same, also the used T,pc-values were
chosen to be considerably different in order to distribute the T .pc-values in
both cases in a similar way.

Conclusion: The agreement between the results, together with a clearly ob-
servable qualitatively similar behaviour of the curves of Figs. 3 and 4, suggest
that the model is basically correct and useful for further investigation as to
what kind of T,(H)-curve could provide a better inverse filter than we have
been able to realize so far.

3. Practical results

From the investigation of the holographic process in chapter 2 the conclu-
sion was drawn that the dynamie range of the spectrum should be small, e.g.
no more than approximately 10 dB. In order to show the consequences of this
limitation, two complex spatial filters (4) and (B) were realized for the same
point-target in the medium. In the first case (A) the laser-flash delay was made
such that the signal s,(z,y) appeared at a position before reflection against

.
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the paraboloid reflector, whereas the second case (B) was the normal sitnation
with the signal s,(z,y) shown after reflection.

Obviously the flattening of the wave-fronts at reflection against the para-
boloid reflector causes a considerable increase of power-concentration through
the Fourier-transformation.

Fig. 5 shows case (4) with respectively the obtained spectrum (a), the unfil-
tered signal supposed to be identical to s (x, ) in the input plane (b) and zero
and first diffraction orders in the output plane (¢).

b) c)

Fig. 5. Practical results for non-reflected signals

As explained in 2.3, the filter-result appears as the (—6)-diffraction and
is indicated by an arrow in Fig. be.

Apparently, a very effective deconvolution has been cobtained since this
very small spot is depicted at the same scale as s, (v, y) in (b).

Fig. 6 represents results obtained in case (B). In (a) five signals are shown
as they appeared unfiltered in the output plane, again supposed to be identical
to the input-signals. The scanned object consisted of five “point”-targets in
a rhombus-shaped configuration and the image shows clearly the position-
deformation caused by the paraboloid reflector. A filter was realized with only
the center-target present in the medium and after installing the filter the cor-
ner-targets were mounted at their positions. In Fig. 6b we see the filter-results,
being much less spectacular than in case (A). In Fig. 6¢ and d the signals are
shown as measured quantitatively.

It is clear that the gain in spatial invariance by using a paraboloid reflector
(as a proof showing the five filtered signals in Fig. 6b as being quite similar)
has been obtained at the expense of filter-performance because of the increased
dynamic range of the spectra. Everything is in good agreement with the results
of the model-investigation in chapter 2.
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(R

Fig. 6. Practical results for signals after reflection

8. Conclusions

With a complex spatial filter in the spatial frequency plane of an optical
computer filtering can be performed. A holographic method has been described
to realize such a filter which acts as an inverse filter provided that the spectrum
to be processed has a small dynamic range.

Both inereasing dynamic range of the filter and compression of the spectr-
um’s dynamie range are the goals of further investigations.
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