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THE ACOUSTIC FIELD ON THE AXIS OF A CIRCULAR CONE

HENRYK TYGIELSKI, WITOLD RDZANEK

Department of Theoretical Physics, Higher Pedagogical School
(65-562 Zielona Goéra, pl. Slowianski 6)

It was assumed in this paper that the sound source was placed on the
surface of an ideal rigid circular cone. The vibration velocity amplitude at the
gsource was constant. Solution of the wave equation in a system of spherical
coordinates, by using the Kontorovich-Lebedev transformation, gave the
acoustic potential. Expressions for the acoustic pressure on the axis of a circular
cone were derived, and these calculations were represented graphically.

Notation

a, b — radial coordinates of the sound source

¢ — sound velocity

Hff) — cylindrical Hankel function of the uth order, of the second kind

J, — cylindrical Bessel function of the uth order

k — wave number

p  — acoustic pressure

P, — Legendre function

T — coordinate in a spherical system

t — time

2 — coordinate in a Cartesian system

7, — normal component of the vibration velocity amplitude on the surface of the source
conical angle (measured from the axis 2 to the surface of the cone)
— angular coordinate in a spherical system

i — variable occurring in the Kontorovich-Lebedev transformation

— nth root of equation (20)

— density of the medium

acoustic potential

— angular frequency
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1. Introduction

Vibrating planar, eylindrical or spherical surfaces are among the most
frequent practical surface acoustic sources and the deeply investigated fields
radiated by these sources.
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There is less knowledge on the acoustic field distribution radiated by
sources with more complex geometry, e.g. vibrating spheroidal or conical
surfaces.

In paper [1] CARLISE considered a vibrating source element on a cone
as a system of pairs of point sources. On the basis of the results obtained, he
analysed the radiation conditions of a conical loudspeaker and gave experi-
mental results.

The problems of the acoustic field of a source placed on a cone, the lat-
ter being in an ideal rigid and planar baffle, were considered in the papers of
SLUSARENKO and DOBRUCKI [4, 14]. These authors, using the Rayleigh-Huygens
integral, derived an expression for the acoustic pressure distribution. However,
these results were approximate and can only be used in calculating pressures
at a large distance from the source for some conical angles.

In his paper [15] TYGIELSKI considered the problem of the acoustic field
of a source situated on the surface of an infinitely long, ideal rigid cone with
circular termination. He solved the inhomogeneous equation for a Green func-
tion in a system of spherical coordinates. Integrating the Green function over
the surface of the source, he obtained the acoustic potential. He also consi-
dered the case of the acoustic field at a large distance from the top of the cone.

The acoustic field of a point source close to an ideal rigid or an ideal com-
pliant cone was analysed in the papers by CARsLAW [3], FELSEN [5, 6] and
VAyYsLEYB [16].

The present paper considered the problem of the acoustic field of a source
gituated on the surface of an ideal rigid, infinitely long circular cone. It was
assumed that the normal component of the vibration velocity at the source
was constant. Solution of the wave equation in a system of spherical coordina-
tes, using the Kontorovich-Lebedev transformation, gave the acoustic poten-
tial. An expression was given for the acoustic pressure on the axis of the cone.
Assumption that the conical angle was =/2 led to formulae representing the
pressure on the axis of a source situated in an ideal rigid, planar baffle, which
are known from the literature. These calculations were represented graphically.

The expressions derived in this paper can be used to ealculate the acoustie
pressure at any distance from the source, with conical angles from 0 to .

2. Acoustic potential of the cone

On an ideal rigid, infinitely long conical baffle with a divergence angle #
there is a surface sound source (a<r <b, 0 < ¢ < 2x) with a uniform vibra-
tion velocity amplitude distribution (Fig.1). The top of the cone is at the
origin of the coordinate system. The radiation area is defined as follows:
0<7r<o0,0<i<f<rm 0<p<2n
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The acoustic potential for the time dependence of the exp (iwt) type satis-
fies the wave equation

B(r)+ 12D (r) =0, (1)

where r — the tracing vector of the observation point, ¥ = w/¢ — the wave
number. This equation is solved with the Neumann boundary condition. In

z

Fig. 1. The sound source on the surface of a revolution cone

view of the axial symmetry of the sound source, equatmn (1) can be written
in a system of spherical coordinates

ii(,,z ob(r, e)) L= ( g 220, 0)

r2 or ar r28inf 66, a0
It is considered in the above equation that the acoustic potential does
not depend on the angle variable . The Neumann boundary condition becomes
1 éd(r, 6)

r a0

In order to eliminate the variable r from equation (2), the following sub-
stitution can be used:

) +k2D(r, 6) =0. (2)

(3)

{fvn for the source,
0=p |0 beyond the source.

Dy (r, 0)
Vr
This substitution gives an equation in which the radial part of the Laplace

operator occurs in a cylindrical coordinate system. Use of the Kontorovich-
Lebedev transformation [9]

D(r, 0) = (4)

k
(0, ) = f%rm 00y )
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and consideration that the Hankel funection HE)(kr) satisfies the Bessel equation
[8,12] lead to the equation with one independent wvariable 6

1 2 (. 0¥(@,p), 1 1
Eﬂ'nﬂ%(sm6 20 ')+(P‘_§)(F+—2‘)'ﬂp(9:#)=0. (6)

The boundary condition (3), when considering transformation (5), be-
comes
¥ (0, u)

b
- s af Vi H (kry) dr,. (7

9=p
The solution of the Legendre equation (6), with the boundary condition

(7), is the function [7,12].

P,_y;(cosB)

dP‘, 12(C08 )

g

where P, _,, represents the Legendre function.
Using the inverse Kontorovich-Lebedev transformation [9]

¥(0, ) = f Vi (kro)dry, ®)

b
1 : .
Oo(r, 0) == [ mexp(—ipum)sin um? (0, ) HE (k) dp (9)

and from formula (4),
+io0o

P (cos 0)

D(r, 0) = —— f exp ( —ium)sin urH (kr Pura(0086)

: 4iVy ol il 2 E ( )dP#_,(z (cosf)

ap

b
X f VioH® (k) drodp.  (10)

In order to calculate the integral over the variable g, formula (10), represent-
ing the acoustic potential, can be changed to another form. From the expression
[8, 12]

exp (dum)d , (kry) —J _,(kry)

HD (kry) = = y (11)
18in pm
+ioo b
¥ P, ,(cosf) —
D(r,0) = ——— f H(z)kr—i————(fl/'rJ kr dr)d+
. 4‘/‘7" SR § = ( )E;a—lfz(COSﬁ) - . ,u( 0) Y 3
dap -
v i P, (cos 0)
+—= f exp(—i nH(z)—L(er _u(kr dr)d (12)
4[/?' i .Iu p( .Iu ) I dP'u e COSﬁ) 0 ,u ) 0 ﬂ!

dp
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where J, is a Bessel function of the nth order. A new variable, u = —, i8
introduced to the other of these integrals. From the relations for the Hankel
function [12] ,

H® (kr) = exp (ivr) H) (kr) (13)
and the Legendre function [7, 12]
P,_,;(cosl) = P_,_(cosb), ; (14)

+1ic0

[ mwexp(—ipm) B i)

—i0a

P,_,;(cosb)

b
aP, s (cosp) (af l/?"uJ_,,(kro)dro) du ;

ag
ook HO (Jor) =208 9) bl/_J k )-di’)d (15)
B -——:5[0 g ( Ir) dPy—][g(CDSﬁ) (! "o '( To) ATy | GV .

ap

The integral derived here has the same form as the first integral in formula
(12). Hence the acoustic potential of the source situated on the cone becomes

4100 b
P13 (08 0) —
( ) 1/2
f pHY (kr) d——h_ﬂg B ( af l/roJ#(kro)dﬂro) ds. .. (16)

% -

The integral from —ioco to +ioco can be calculated by using the method
for calculating contour integrals. To this end, the integration contour is comple-
mented with a semicircle with an infinitely long radius, situated to the right
of the imaginary axis. The integral over the semicircle is zero for r > b. This
can be shown by using the asymptotic representations for the Bessel [9] and
Legendre functions [3, 7]. For high values of u

b
2 1 [kr\" exp(2 kb \* ka \"
J, (kr) f Ve (ko) dr, ”E;("‘z_) —;}:T&f{l[bm(?) - am(?) ], (17)

Do

2Vr

D(r, 0) = —

r

b
s i bh\* W
J_, (kr) f Vol (kro)dr, NST;“ [bm (—) — (%) ], (18)

P, ,(cos0)
dP,_,;(cosp)
ag
where the sign (+) refers to this part of the right half-plane where Im(u) > 0;
the sign (—), to that with Im(u) < 0.

~%exp[iiau(ﬁ—9)], (19)
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The subintegral function oceurring in formula (16) has its poles at points
where
fi‘}jy—l,’z(cosﬁ) 33
ag
The poles are single and oceur on the real axis [2, 3, 17]. Application of

residua theory to the integral over a closed contour [10] gives the acoustic
potential of the source situated on a cone, in the form of an infinite series,

(20)

o]

Wy T P, (cos O
D(r, 6) = ;} 2”’n+1)H»n+1;2(k7') m
ovof r—vy

b
Xf’/"_qun+1[2(k"o)d7’o (21)

for » > b. In this formula summation is carried out over all the positive roots
v, = ,—1/2 of equation (20).

' In order to obtain the potential for the region a > r, it is possible to use
formula (10), in which the Hankel function Hff’(kr) can be represented by
formula (11). Proceeding in an analogous way to the previous case, we obtain

+ioc0
Tty P, _ip(cosf) o)
@(r, 0) '"- oVr “;1; wd , (kr) dP-_—‘,,_m(GOBﬂ" (f Vr ol kro)d'-"o) du
ag
b
w P, (cosl e
0™ 2(21’ +1)Jn,§,”2( )mﬁ))— f I/Toﬂ,n_l_”z(ki"o)dro. (22)
n=0 e i b a
o |,

From formulae (21) and (22), the acoustic potential can be obtained for
the region a <r<b, :

Py, (cos0)
B(r, 6) = '/T 2(2""“) T
: vop

V:-ﬂn

x[ ®,a(r) f Vi, xn(kro)dro+d, 4ya(kr) f Vr HE H,z(kro)drﬂ]. (23)

In formulae (22) and (23) summation is also carried out over all the posi-
tive roots », = u,—1/2 of equation (20).
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3. Acoustic field on the axis of a cone

There is the following relationship between the pressure and the acoustic
potential @ for harmonic-vibrations [11, 17],

P = iwe?, (24)
where w — angular frequency, ¢ — density of the medium. In order to derive
expressions for the acoustic pressure of a source gituated on the cone, formulae
(21)—(23) should be multiplied by iwoe.

One of the quantities characterizing the acoustic field is the distribution
of the field on the main axis of the source. It is convenient to calculate the
acoustic field of a source situated on the cone on the axis z. Assuming that
0 =0 and considering that

P, (1) =1, (25)

the following expressions are derived for the acoustic pressure on the axis
of the cone,

(=]
WPV, 2v,+1

b
H!’i’+1]2(kz) f '/roJ”n-FIIZ(kTO) d?‘o (26)

2) = — =
PO = =V Lt P, (cosh)
vop —
for z> b,
WOV, T - 2y ==
p(2) = — 2&:/2 P, cosﬂ) [Hv 1p2(k2) f ‘/"onﬂ+1/2(k"o)d""o+
"o |, ‘

b
+irs) [ VRED br)an].  (27)

for a <z < b,
WOV, & 29741
ple) = — = :
9z & *P(cosp)
ovap

I, (2) f Vi () dr,  (28)

for a = 2.

Assumption in the above. formulae that f = 90° permits the acoustic
pressure on the axis of a circular ring situated in a planar, rigid baffle to be
obtained. For f = 90° the roots of equation (20) are [2,7,12]:

v, =20, n=20,1,2,... (29)
and
92n (n))?

*P (cos f) e
ovop ;:293._( ) (2n)! s
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Hence
) b
wov o An+1)@2n) ., —
p@) =08 3 B () [ Vs (brodr, (31
s n=0 i a
for z> b,

DU\ An+1)(2n)! o
LOBE N i (HW;J!()QI_)[Hgﬂﬂlz(kz)f}/roJZnH,z(kru)dr‘,-}-

b
i) [ Vil plhrgan] (62
for a <z <},

-] b
WOEV,T (4n+1)(2n)! —
pe) =220 M1y R S (k) [ VroBE i (bro)r,  (33)
2Vz ot 27" (nl) :

for a > 2.

In order to calculate the sums of series occurring in formulae (31)—(33),
it is possible to use an expansion of the function exp(—ikR)/R into a series
of Legendre polynomials and eylindrical functions [12],

o0

exp(—ikR) i
5 2Vrr, £

for r > r,, where R = V7*+r2—2rr,cosf. Assuming in the above formula
that = =/2 and taking into account the value of Legendre polynomials at
this point [7,12],

(20 +1) g2 (krg) HSLy (k) Py (cos 6)  (34)

o0

exp(—ikR) in (2n)! @
s 2 —_—_— k ) k 35
R 2I/EH Sl 2% (n!)* Sonsap(kro) Hanyypp(k1),  (35)

where B = Vr241rL.
Considering formula (35), expressions (31)—(33) can be written in the
form

=0

b

—ikR
p(2) = iwoev, f m{p(ﬂ#rodro. (36)
After integration we obtain
e e
P(2) = 2igonysin = (r,—r, exp[—%k(rﬁra)], (37)

where o = ke, r, = Va*+22, r, = Vb2+z2.
Expression (37) represents the acoustic pressure on the axis of a circular
ring with radii @ and b. Assumption that a = 0 gives a formula which defines
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the pressure distribution on the axis of the circular piston situated in a planar,
rigid baffle. An analogous formula was obtained in papers [11,13,17] by
using other methods.
When the observation point is at a large distance from the top of the cone
(kz » 1), for very low values of ka and kb (ka < kb < 1), from formula (26),
1000, exp( —ikz)

p(2) = 3 cotg- [(kb)2—(ka)2]ﬂ7_. (38)

It follows therefrom that as the divergence angle of a cone, f, increases
and as the distance of the observation point from the source increases, the
pressure amplitude decreases. With the above assumptions formula (38) is
valid for the whole variability interval of the angle 6. This source thus lacks
directionality.

Assumption that z = 0 in formula (28) gives the expression
kb —Fka ( : ka—l-kb')

ex —_—,

p{2) = 2¢chvocot§sin pl—1 2 (39)

which represents the acoustic pressure on the top of the cone.

4. Conclusion

The expressions derived in the present paper for the acoustic potential
and pressure are given in the form of infinite series. The series are divergent
the faster, the greater the difference is between the observation point and

el o

14 \
a=0
' \ kb=2
b X
- ls]
0.3\ b

0.6
\ p=i20°
G b \\ e ]
\ '6 MOD\ \“'—--___
e O [
0 1 2 3 4 5 6 7 8 kz

Fig. 2. The acoustic field on the axis of a circular cone. It is assumed that @ = 0, kb = 2



314 H. TYGIELSKI, W. RDZANEK

the radial coordinates of the source (a, b). In a case when the cone divergence
angle is 90° the expression is obtained for the acoustic pressure on the axis
of the circular ring, characterized by simple notation form.

On the basis of the results presented, numerical calculations were carried
out of the absolute value of the relative pressure (the ratio of the absolute
value of the pressure |p| and the self resistance of the medium, ge¢, and the
vibration velocity amplitude at the source, v,) on the axis of the cone, depending
on the parameter kz. It was assumed that a = 0, kb = 2, f = 90°, 120° and
140°. The tables of roots of equation (20), given in paper [2] were used
in the calculations. The behaviour of relative pressure changes is shown
in Fig. 2.

The expressions derived for the acoustic potential and pressure can be
used for calculations of the acoustic far field and acoustic impedance. These prob-
lems will be considered in another paper.
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