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CZESEAW ADAM ROSZKOWSKI

Institute of Telecommunication and Acoustics, Wroctaw Technical University
(50-317 Wroclaw, ul. B. Prusa 53/55)

This paper gives an approximate solution of the hydrodynamic equations
in the case of a spherical wave with finite amplitude. Using the perturbation
renormalisation method it gives the desired desecription of the acoustic field of
a spherical wave generated by a spherical source which pulsates monochromati-
cally with finite amplitude in an infinite, lossless gaseous medium. The solutions
obtained for the acoustic velocity and the acoustic pressure have the form of
asymptotic expansion of the first order relative to a small perturbation para-
meter and are valid both for the near and the far field. The analysis of the acou-
stic field hag for the first time been performed directly using the perturbation
renormalisation method for a spherical wave.

Notation

i — acoustic velocity

w — normalised acoustic velocity

P — pressure

P — normalised acoustic pressure

Py — pressure in the unperturbed medium

0 — density of the medium

0 — relative density of the medium

2 — density in the unperturbed medium

€ — weak-gignal sound velocity

t — time

t — normalised time

5 — formation time of the shock wave

7 — length of the tracing radius of a given point
r — mnormalised length of the tracing radius of a given point in spherical coordinates
r — formation distance of the shock wave
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B — static radius of the source

T — normalised time

7 — deformed coordinate

@ — potential of the acoustic velocity
L] — parameter

¥ — ratio of specific heats

0 — large Landau symbol

8 — deformation parameter

® — angular frequency

] — normalised angular frequency

g — perturbation parameter

A — amplitude of the pulsating sphere
@ Qg ¥ — constants

1. Introduction

An analytical solution of the hydrodynamic equations, which are the
basis for consideration of such problems as the generation and propagation
of acoustic waves with small but finite amplitude, is known only in the case
of a plane wave propagating in an acoustically ideal medium. This solution
has been given independently by EARNsHOW and RIEMANN (e.g. [11]). The
hydrodynamic equations for spherical and cylindrical waves of finite amplitude
have been considered in a relatively large number of papers, mainly concerned
with the description of the propagation in the far field. Experimental work
has also been performed, e.g. on spherical waves propagated in water [17]
and air [4]. In general, two theoretical approaches to these problems can be
distinguished. Some authors use a method which consists in approximating
exact equations and seeking exact solutions (e.g. [1, 3]), others employ appro-
ximation methods (e.g. [5, 8, 9, 12, 16]. The solution of exact hydrodynamic
equations for spherical and cylindrieal waves of finite amplitude in an ideal
medium has been given by AUGUSTYNIAK [2], with the assumption, however,
that the velocity is of one sign. BLACKSTOCK [3] approximated a nonlinear
wave equation which is valid for onedimensional travelling waves: plane,
spherical and cylindrical, in a lossless medium to the form of the lossless Burgers
equation and subsequently for the far field he reduced this equation to one
analogous to the equation for plane waves. Lockwoob [12] earried out appro-
ximation of the second order of the hydrodynamic equations and subsequently
solved these equations using the method of multiple scales [14] for a sphe-
rical source in a lossless medium, achieving a parametric description of the
profile of the pressure wave valid for the far field. GINSBERG [8, 9] gave a descrip-
tion of the profile of the pressure wave and the acoustic wave generated by
a monochromatic cylindrical source, taking into account a moving boundary
condition, in the case of two and three-dimensional motion of the source. Using
the renormalisation method he obtained asymptotic expansions of the first
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order of the expressions defining the pressure and the acoustic velocity in the
far field and gave a matching procedure with which he achieved a description
of the near field based on the description of the far field achieved previously.
An extension of this analysis to the case when the motion of the source is a su-
perposition of harmonic excitations was given by NAYFEH and KELLY [16].

2. Formulation of the problem

The equations of motion and the equation of state of the lossless gaseous
medium will be given with dimensionless variables defined by the relations
0 ok
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Where i is the radial component of the acoustie velocity, p is the pressure,
¢ is the density of the medium, # is the distance from the centre of the sphere,
P, and g, are respectively the pressure and density in the unperturbed medium,
¢, i8 the weak — signal sound velocity, y is the exponent of the adiabate, o is
the angular frequency and R is the static radius of the spherical source.

The hydrodynamic equations for the spherical wave in dimensionless
variables are respectively

o o 1 .0p

— — - —0; 2
ot 5 or 5 oy or ! (2)
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fri D = o = 0; :
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14p = ¢ , (4)

The motion of the lossless gaseous medium, under the assumption of irro-
tationality of the field, can be described with the dimensionless velocity poten-
tial function ¢(r, t) such that « — d¢/ér. The equations describing the motion
of the gas, the equation of the potential and the equation of the pressure p,
as derived from equations (2)-(4) [19] are given in the following form
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In turn, the motion of an oscillating spherical source with finite amplitude
which generates a wave in an infinite medium, written in dimensionless varia-
bles, is defined by the relation

r.(t) = 1 +ecos(Lt+¢); ; (7)

where ¢ = |A/R| € 1 is a small perturbation parameter and A is the ampli-
tude of the pulsating sphere.

The desired moving boundary condition is such that at each moment the
normal component of the velocity of the medium (in the present case only
this component of velocity occurs) is equal to the normal component of the
velocity of the surface of the source, for all points of the surface of the source
[13]

d¢ dry(t)

= . (8)
or r=rp=1+zcos(2+¢) dt

3. Description of the potential of the acoustic velocity

In the problems which involve parametric perturbations the quantities
to be expanded can depend on one or more independent variables, apart from
the perturbation parameter. Construction of the asymptotic representation
of the function f(z; &), where & is a scalar or vector variable, independent from
the parameter & in the terms of the asymptotic sequence 9, (¢), gives [14]

f@;e) ~ D) ay (@) 8,(e), &0, 9)

where a,,(x) are terms which depend only on a.
This expansion will be called asymptotic if

N-1

flase) = 3 a,(@)d,(e) +By(@; e); (10)
Ry(z;6) = O[0x(e)], lim {O[by(e)]joy(e)} =0 (11)

3 pr(g)—0

for all the considered values of x.

In the contrary case it is said that the expansion is singular.

For small but finite pulsation amplitude of the source the potential of
the acoustic field generated (and also such quantities as u, p, o) is a quantity
of low value and can therefore be expanded in a power series with respect to
the small parameter e,

P(r,t; 8) = eps(r, 1) +epy(r, 1) +--. (12)
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and similarly
w(ry 5 €) = elhy(r, 1) +eus(r, 1) +...; (13)

pryt;e) =3p1("‘"st)+52172(7"st)"}‘---' (14)

Substitution of the relation of ¢ in the form of expansion (12) into equation
(8) with the right side expanded into a Taylor series and comparison of the
terms with the same powers of ¢ give linear équations for ¢,(r, t) and ¢,(r, 1)
and the boundary conditions

order &:
R e i e
AR e (15)
o
i s —Qsin (2t +¢); (16)
or o
order &2:
P, by 2 O, 0, 0*p, g, ¢,
) i3, =92 —1
At r or o oo TV e T
2 0y 0,
+;(?—1) o ot (17)
depy 0*¢,
A 1
e cos (2t +¢) ot |, (18)

Equations (15) and (17) are linear equations. The first is a linearized equa-
tion of the velocity potential for the spherical wave, whereas the second is
a linear, heterogeneous equation which describes a nonlinear correction for
the potential funection.

Solution of these equations, with relevant boundary conditions, gave
the sought expansion of the velocity potential according to the powers of the
perturbation parameter.

G(ryt;e) = —eQ(22+1)"Pr-tcos {Q[t— (r—1)]+o+oo} +
+&2[Q(Q22 +1) 72 [ (22 —2) cospy+2 25ing,]r1cos? {2 [t — (r—1)]+¢} +

+Q[(22+1)(422 1)1 [.Q(Q2 —1)cosg,+ (% 02 +1) sinqno]r—lsin2 {(Q[t—
—(r—1)]+¢+v}+

1
3 = (22 4+1)"1(14+402%) " r15in2{Q[t — (r —1)] +9 +@o +7} +

1
e Q2 41)"r28in2{Q[t — (r —1) + ¢+ g} +
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1
+ 5 Q@2 41) M 1sin2 {Q[t— (r 1))+ o} +

-+ % Q422 1)y +1)rlreos2{Q[t — (r —1) ] +¢ +@o} +

- %}— QY2 +1)" Yy +1)r-1sin2 {Q[t —(r —1)] 4@ +@o} cos 4 Qr[8i(42r) —Si (42)] +

-+ ?13—.(2“(92 +1)"Y(y +1)r-18in2 {Q[t — (r —1) +@ +@,o} sind Qr [Ci (42r) —Ci(42)]—

— % QM2 +1) Yy +1)r-1eos2 { Qt —(r —1)] +¢ +po} sind Q[ 8i(4 2r) —8i(42)] —

— %— Q22 41) Yy +1)rteos2 ([t — (r —1)]+@ +po} cos4Qr [Ci(42r) —

—Ci(4D)]+..., (19)
where

i
po = tan—10Q"Y, vy = — £y tan-124.

The expansion of the dimensionless function of the potential of the acoustic
velocity as defined by relation (19) is not asymptotic. The singularity of this
expansion results from the presence in the second-order terms of the secular
term (the sixth term in the second-order terms of the expansion) which causes
the second-order terms of the expansion to take values of the same order or
greater than those of the first-order terms with large distances from the source.
This term occurs in the solution of equation (17). In turn, the nonlinear effects
which result from the moving boundary ccndition are of the second order of
magnitude. Therefore, in order to obtain the asymptotic expansion of the first
order in the case of a linearized boundary condition, it is enough to consider
the problem in the form

k. SRR PR RS o g (20

4. Description of the field of the acoustic pressure

NavrFEH and KLUWICK [15] and GINSBERG [7] have proved that in seeking
the correct expressions of such physieal quantities as the acoustic velocity
or pressure it is necessary to eliminate the secular term from the expressionsy
of these quantities and not from the expression of the acoustic velocity poten-
tial. :



W

SPHERICAL WAVE PROPAGATION 105

The acoustic velocity, defined as u = d¢/dr and derived from the expan-
sion of the velocity potential, is given by the relation

w(r,t; &) = e[Q(Q2+1)" V2008 {Q[t — (r—1)]+¢ +go} — 22(22+1)7 x
xr-1sin{Q[t —(r—1)]+@+@o} ]+

13
+? 5 (22 41) Y (y +1)rnrsin2 {2t — (r—1)] +¢ +@o} + N8 +..., (21)

where ¢, = tan-102-! and NST are the nonsecular terms of the expansion.

In order to eliminate the secular term from expansion (21), according
to the renormalisation method chosen, new independent variables of time
and distance, v and %, were introduced. GINSBERG [8] and NAYFEH [15] have
shown that in the problems which involve travelling waves it is sufficient to
transform only one variable. It is convenient to assume the following form
of the transformation of » and {,

¥ — e, T (22)
t =1, (23)
After insertion of the expressions of » and ¢ given by relations (22) and (23)
into equation (21) and expansion of the right side for small ¢, with a definite
value of the new coordinate 7 the velocity (7, 7; €) is given by expression (24):
w(y, 73 6) = e[Q(Q41)"Py-2c08{ Q[ — (0 —1)] +¢ +go} — (L +1)7 x
xntsin{Q[z—(n—1)]+¢ +eo| +
e 202 @2 +1) Pytsin (Q[r — (n —1)] o o} —2R(22+1) 2 x
xn*c0s { Q[ —(n—1)]+p+@o} +
+@(Q241) Py rcos {Q[r — (n—1) ]+ +go}] 1 (7, 7) +

1
et (@ 1)y +1)n tInnsin2 (@[ — (1~ 1)1+ +go} + VST +.. (24)

It would seem apparently that in order to eliminate the secular term from
expansion (24) the function r, (%, ) should be chosen (according to the renorma-
lisation method) so that the secular term and the terms containing the function
r1(n, ) would zero one another. It can readily be shown that in such a case
r1(n, 7)—oc0 for given values of the variable %, which would lead to infinitely
great deformation of the profile of the wave. It follows from the analyses carried
out in the case of a plane travelling wave [6, 15] and a cylindrical wave [8, 9]
that the function of the deformation of the profile is the produet of the funciton
of distance from the source and of the acoustic velocity u,(n, 1)

ri(n, 7) = hy(n)ui(n, 7), (25)
where £, () is a function which depends only on 1.
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It was assumed that in order to obtain (7, 7) in the same form as occurs
in relation (25), it is necessary to take also into consideration, apart from the
secular term, other tcrms in the second-order terms of expansion (24), al-
though they do not cause the singularity

r4(n, 7)[(22+1)"Py-teos {2[t— (n—1)]+o +@o} +22%( 22 +1)7 x
Xn=*sin{ Qv — (n—1) ]+ +@o} —22(22+1) Py 3cos {R[r — (n—1) +o 190} 1=

= “-2!25(!22+1)“1(y+1)n-1lnnsin2{.Q[rw(97—1)]+tp+%}+
+ D gl — (1—1)]+p+g},  (26)

where f,(9)g,{2[t—(n—1)]+¢,+¢} are asymptotic terms in the second-order
terms of the expansion.
On the basis of relations (24)-(26), the function h,(z),

1
hy(n) = r (y+1)ylny, (27)

and the following elements of the second term of expansion (24), which should
be taken into account together with the secular term,

1
i = = Q42 4+1)" Yy +1)n~2Inycos* {2 [z — (n—1)]+¢ +@o}; (28)

Jeofe = “!2_“(924"1)"(?+1)n‘2lﬂﬂsiﬂz{9[f—(n—1)]+¢°—i-%}; (29)
fa9s = —92(92+1)—1(y+1)11"“1n?70032{9[r—(n—l)]+w+%}; (30)
figs = (22 41) Yy +1)y-3Inysin2 {2[r — (5 —1)] +¢ +@o} . (31)

were obtained.

From equations (22)-(27), the following asymptotic expansion of the first
order of the acoustic velocity w(r, ) was obtained in parametric form, valid
for both the near and far field,

u(y; 7) = eQ(Q2 1)y c0s (R[r— (1—1)] +9 +90} -
—eQHQ 1)y ein (e — (—1)] 4o +ou}+HO[L (1)1 (32)

1
r=n+5 (y+1)nnyu(y, 7) +0[22 (22 +1)2]; (53)

b=, (34)
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5. Description of the field of the acoustic pressure

It is convenient to represent the dimensionless equation of the acoustic
pressure (6) in the following form,

o6 1 [ep\?
1+p:{1—(y—1)[-£—+5(%f—)]} A (35)

Expansion of the binomial on the right side of this equation and insertion
of the expression of ¢(r,1;¢), given by relation (12), gave the following form
of the equation of the acoustic pressure

SegE I i z(aw i a¢1)2
P(?,t,&‘)-f - [Bﬁ"TS pr +§E or —EB W +]- (36)

In a way analogous to the expression defining the acoustic pressure, an
asymptotic expansion of the first order of the acoustic pressure was derived
in parametric form from equations (36) and (19),

Py, 7) = —e@2(Q2211)" Byn-15in {2z — (9 —1)]1+p+po} +0 [£22* (22 +1)1];

(37)
Loyl

r=nt g alanpin O+ 0[ARP 4+, (38)

$re= 7, (39)

This description is valid for the near and far field up to to the place where
the discontinuity (r*,#*) occurs in the profile of the wave. From equations
(32)-(34) and (37)-(39), it is possible to determine the relation between the
original coordinate and the deformed one. As an example, this dependence
is shown graphically in Fig. 1.

rh

7=t = t*=const

—

2
Fig. 1. The dependence of the coordinate r on the deformed 7

~3
£
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When one value of the variable r corresponds to one value of the variable Ny
this then corresponds to one value of the profile of the wave (for ¢ — const.).
It follows from Fig. 1 that, from some value of the variable 7, the transformation
becomes singular, since the same value of the variable corresponds to several
values of the variable . The profile of the wave becomes a multivalent function
of the variable r, which corresponds to the formation of a shock wave. Determi-
nation of the shortest distance at which the discontinuity of the profile of
the wave oceurs can be reduced to the determination of the lowest value of
r* and of the time t*, according to relation (40).

or
— =), (40)
697 1

The use of relations (40) and (38), under the assumption that Qr > 1

(far field) gave

2(Q2241)717

rH =gt Adexh W’ (41)
cos {Q[t*— (r*—1)] +o+¢o} = —1. (42)

For another definite observation time ¢ s ¢* the discontinuity forms at
a farther distance from the source. Expressions (41) and (42), as defined for
the pressure wave for the far field, are also valid for the velocity wave.

6. Conclusions

This paper presented an approximate solution of the hydrodynamic equa-
tions in the case of a spherical source pulsating monochromatically with finite
vibration amplitude in an acoustically ideal gaseous medium, taking into account
& moving boundary condition. The equations were solved by the perturbation
renormalisation method. The field was described in the form of asymptotic
expansions of the first order of the veloecity u ((32)-(34)) and the acoustic pres-
sure p ((37)—(39)). These solutions are valid for the near and the far field for
all points (r,?) up to the place where a discontinuity occurs in the profile of
the wave. From these relations, using a computer, it is possible to calculate
and plot the profiles of the pressure and velocity waves at a given moment
and the time behaviour of these quantities at a given distance from the source.
It follows from equation (37) that the pressure amplitude depends on the para-
meter ¢ which corresponds to the dimensionless amplitude of vibration of
a sphere and on the dimensionless vibration pulsation Q. Therefore, these
quantities can be taken as arbitrary but so that the amplitude of the acoustic
pressure ¢, satisfies near the source the condition & = £Q2(Q2+1)"'* < 1
(similarly in the case of the amplitude of the acoustic velocity). This solution
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is valid for the amplitudes ye, < 0.1, which corresponds to a level of the acoustic
pressure < 174 dB in air in normal conditions. As an example, Figs. 2 and 3
show profiles of the acoustic velocity and acoustic pressure in air for ¢ = 0.01
and 2 =7 and the observation time i = ¢*.

o
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[=5]
TIrT

SO 1 T

-004 -
— nonlinear wave propagation i
= 08: —-- linear wave prcipagaf.fon ]
L 1 1 1 1 1 1 i i 1 1] 1 1 1 1 L L 1 1 1 L 1 1 ]

1 2 < 4 5 rr

Fig. 2. The profile of the acoustic Veloclty of the spherical wave, e = 0.01, 2 = 7.0,¢ = 4.996
= 0.1420, ¢ = 0, y = 1.401
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Fig. 3. The profile of the acoustic pressure of the spherical wave, ¢ = 0.01, 2 = 7.0, = 4.996,
@ = 0.1420, ¢ = 0, y = 1.401

In the case of the far field, simultaneously assuming the constant ¢ = —g,
and defining the dimensionless parameter of the wave motion @ = R[r—(y-1)],
the solution achieved was transformed to the following form

w = —e02(2*+1)"p-15in @; (43)
p = —eQ2(Q2° 1) VPyr-1gin @; (44)
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D = Q[t—(r—1)] —osin®; (45)
o= 8%93(92—!—1)_”2(3) +1)Inr. (46)

This solution agrees with that of BrLAckKsToCK [3] which deseribes the
far field of the acoustic velocity and with the solution of LockwooDp [12] which
describes the far field of the acoustic pressure. The solutions given here, valid
for the near and the far field, are verified by the solutions which were obtained
in seeking asymptotic expansions of expressions defining pressure and veloeity
in the far field by the renormalisation method and also the description valid
for the near field, achieved by the procedure given by GINSBERG [8, 9]. This
gave a solution in the same case [18] and in the case of threedimensional simple
harmonic motion of the spherical source [10]. The solution given in this paper
is the first to have been obtained directly by the renormalisation method in
the case of waves other than plane.
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