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This paper gives a formulation of perturbation calculus which is useful
for the description of coherent states related to the propagation of ultrasonic
waves in erystals. This formulation is based on the results of the theory of co-
herent states, particularly on the properties of the deformation operator. The
method of the construction of the initial state, which is used in perturbation
caleulus, is verified through comparison with the regults of the method of the
quasi-equilibrium density matrix based on the use of information theory in
statistical physics. The method of perturbation caleulus which is presented
in this paper describes the time dependence of the mean value of any physical
quantity for a crystal which undergoes dynamic deformation. This method
makes it possible to grasp the dependence of phenomena observed on the phase
and amplitude of the initially excited acoustic wave.

1. Introduction

This investigation used the properties of the deformation operator which
is known from the theory of coherent states [1, 3, 6, 7, 9] to formulate pertur-
bation caleulus which describes effects related to the propagation of travelling
ultrasonic waves in crystals. The method of the construction of the initial
state, to be used in perturbation caleulus, was verified through comparison
with the results of the method of the quasi-equilibrium density matrix [2].

It was found that both methods lead to similar results, with the results
being the same in the case of harmonic crystals. The difference which occurs
in the general case is related to the fact that the method of the deformation
operator does not account for the irreversible processes which occur in the
dynamic deformation of crystals. An essential advantage of the method of
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the deformation operator is that it leads directly to a formulation of perturba-
tion ealculus. <
The considerations given in this paper concern an infinite continuous me-

dium; they can, however, be naturally extended to the case of a continuous
medium.

2. Method of the deformation operator

The method of the deformation operator consists in the description of
medium deformation by means of a unitary operator,

D({aq,p}) = exp [Z (g5, _aq,p&q,p)]i (1)
q.p
where q and p are wave vectors and phonon vibration branches [4, 53], @
and a, , are the operators of phonon annihilation and ecreation [4, 5], « I
are complex numbers, and the dash over the variable denotes its complex
conjugate.
As a result of crystal deformation, the wave function y which describes
the state of the crystal before deformation passes into the function D( {aq I'H
thus, the deformation of the crystal described by the density matrix ¢ corres-
ponds to the transformation of the density matrix

q.p

¢ D ({ag, 6D ({a,,})- (2)

Paper [3] gave a deformation operator which corresponds to static defor-

mation; the considerations in [3] lead to the determination of the value of the
coefficients a ,,

. /m w(q, p) _('-1) .
Ay == % i it G exp(—iql (3)
< g (b)j ]/ 2NVh 3 el

where N is the number of elementary cells in unit volume, V is the volume
of the crystal, I is a vector which defines the elementary cell [4, 5], ¢ is imaginary

unity (i.e. ¢ = l/—l), my, 18 the mass of the atom which occupies the place

in the elementary cell defined by the vector b [4,5], u( ;) is the jth compo-
i
nent of the displacement of the corresponding atom, related to the deformation
of the crystal, e(g) is a complex polarisation vector of the vibration mode
j.p

corresponding to the wave vector ¢ and the vibration branch p [4, 5], o(q, p)
is the vibration frequency in the particular mode, and 7 is the Planck constant
divided by 2r.

From the point of view of acoustics, the deformation operator with para-
meters defined by formula (3) has nevertheless a serious disadvantage. The
initial stage which it serves to derive is useless in describing travelling waves.
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This ean be shown in the case of a harmonic crystal which is in a state
of termodynamic equilibrium before deformation. Let o be a density matrix
which deseribes the crystal in a state of termodynamic equilibrium. The de-
pendence of the deformation field on time can be found in the case when at
t = 0 the crystal undergoes deformation which is represented by the deformation
operator with parameters determined by formula (3).

The use of formula (2), the representation of the deformation field eperator
by the operators of phonon creation and annihilation [4, 5],

T TR i i A X =
1{‘.( ): e( ) z]/ : (B_gp—0%,)exp(—igd), (&)
b); 2‘ Blis ¥ 3 Vmcal B ™ iR T

where the notation is as in (3), the invariance of the trace with respect to the
cyclic representation of the operators and formulae which follow from the
commutation rules [6],

f)_l ( {aq,p}) &’k,g‘i) ({aq,p}) = é’k,g +ak,g;

ﬁ—l({aq,p})d{gﬁ({aq.p}) = g+ g5 (5)
give
((&(4) 0)) - 1e{D({ay,}) 6D fon 2 ) 0]
\ b) q.pS) @ .0 b ;
g 'éf)-l({aq,p})R( ; ) () D({ag,}) k9
| b/

N \16(41) tV:n— a_g,eXp[ —to(—q, p)t]—
i \b 7p 2NVmyo(q, p) { oo :

— g, eXp [io(q, p)tlexp(—iql),

where (A is the mean value of the operator 4 and Tr{d} is the trace of
this operator.

When @ denotes such a set of wave vectors that out of each pair {q, —q}
strietly one vector belongs to @, the mean (6) can be written in the form

(210~ 51 sopatsg ) oot -vm

g) 6(1,11 exp [’“U(‘Ir p) t]exp( _"MIE) i
i

xexp(—igl)—e (

( 5 e T 4
+€(b1 )aq,,,exm—im(q,p)t]eXp(qu)%( bq) d_q,,0Xp [io(—q, p)t] X
J.p

J:p

X exp (’éql)} s
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Taking into account the identities [4, 5]

o q
o(—q,p) = o(q,p); e( ) —e( ) (8)
: i b Jp b ip
and the following relation which results from (3)
Bg,p = Sl (9)

gives

({#(a), 02

0
= e i et A o {e( ) Qg OXP (4 l)}GOQw(
o E . 2). s, so(q,p)t,  (10)
‘I/Nvmb : b, “ar p(rq q.p)t, ‘

2,9eQ P)

where Im is the imaginary part of the complex number.

In expression (10) no more than one standing wave corresponds to each
vibration mode and to each pair {q, —q}. It thus follows that the initial state
which leads to the formation of a single travelling wave in the crystal cannot
be derived with deformation represented by the deformation operator with
the parameters a,, defined by formula (3).

An attempt can now be made to modify the present procedure so that
it may also be used in the case of tne travelling wave. The analogy to quantum
optics where arbitrary complex numbers can become parametres which occur
in the deformation operator may be used for this purpose [7, 8].

Let R’ (;) and P’ (;) denote predetermined values of displacement
j e
and momentum of atoms, let D({a, ,}) be a deformation operator with arbi-
trary complex coefficients (particularly those which do not necessarily satisfy
relation (9)) and let ¢ denote some density matrix which describes the crystal.
The mean values of position and momentum of the atoms in the state ¢ will
be represented by r (;) and p(;) ;
i i
The parameters of the deformation operator can be determined so that

the operation
é Q"D( {aq,}J})éD_l( {aq,p)}
leads to a change in the mean values of the position of the atoms from r( Il))
i

to ?(;) +R (;) and a change in the mean momentum values from p(;)
i i i

to p(;) —i—P'(;).. The use of formulae (5) and (8) and the representation
J J

of the momentum operators by the operators of phonon creation and annihi-
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lation [4, 5]

plt a % =y A g
( ) Zl/fm :JN(I,P) { (b)j’paq_pexp(@qu—e (b)j’pa;pexp(—qu)},

9.p
(11)

<<R(;)>> = 1ol Difa, D gD ()

A il B (G
= Prie D—l({aq,p})R(b)-D({a,m})n

el 4 3 h s
=7 e ( ) ]/ (a_q,p —@q,p)eXP(—iql);
( )j 2’ : b .1'.1)% 2NVmyo(q, p) 5 aqp)

5 4 e | A
> o TT{D( {aq,p})QD_l( {aq,p})P(b)} =3 TT{QDAI({aq,D}} X

<2(,) Dlea)

( ) v]/mbhzc; (f (g) (ag.p+0_g.p) XD (iq1). (12)
i

From the system of equations

p q) ]/ h 2 : =AW
; i (Gqp — q.p) eXD( —iql) = R ( )
2 (b io V 2NVmuo(q,p) =+ bl

9.

T T R I I
Ze(g)ml/ h (Ggp+a_q,p)expliqh) = P'(b)j; (13)

. 2N Vmyo(q, p)

the following formula can be obtained

= SW s )V 5 ()3,
2N1/mb7iw(q,p) b/ 2NVh b/} \bliy

xexp(—iql). (14)

Tt can be seen that in a specific case of static deformation when P’ ( ;) =0
7

formula (14) can be reduced to (3). In a general case P’ (;) # 0 and the para-
i

meters «, , defined by formula (4) can take any complex values. It can readily

be shown that the deformation operator with its parameters defined by (14)

can describe perturbations which lead to the formation of travelling waves

in the erystal. The assumption of a harmonic crystal and the repetition of the
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train of thought which previously gave formula (10) now give

((#(s) “’>>
B _Z’]/ 1 {ay,e () expl—ifola, pr—aty}  (5)
N Vmbw q,p) pela ¥ ip

In particular, the choice of a,, = 0449, :(9qa and 9,  denote parti-
cular Kronecker deltas) leads to an evolution of the deformation field which
corresponds to the propagation of a single S-type travelling wave with the
wave vector d. It can thus be seen that in effect the present procedure of the

“imposition” on the crystal of arbitrary fields of the displacements R’ (;)
i

and velocities P’ (l /m,, of the atoms permits the construction of initial

bl.
states which are u;eful for describing travelling waves.

This approach is extremely convenient, since it will be seen that it leads
in a natural way to the formulation of perturbation calculus.

Let the erystal in a state described by the density matrix undergo at a time
¢ = 0 dynamic deformation represented by the deformation operator ﬁ({aq,p}),
where the parameters a, , are defined by predetermined fields of displacement
and momentum of atoms according to formula (14). After deformation the
erystal is therefore described by the density matrix D({ag,})e D~*({ag,})
and thus the mean value of the arbitrary operator A at a time ¢, ¢ >0, is

Ly — 1D (a,De D (o, HA W)
CAO> = 5 D (ag e D" ({ag,)

TI‘{ { Uy, :u} Q-D {aq,p})exp (% Ht) Aexp( — —;— Ht)}
Tr{ﬁ{(aqm})ér)*l({aq,p})}”ﬁ 0

Cyclic transpositions under the trace sign and the use of the unitariness
of the deformation operator give

(16)

Tr{f)({ aq .} e D ({a,,}) exp (% Ht) Aexp(—%Ht)}
Ay = A B L et e
4 Tr{D({aqp})gD“l(a{q_p})}

= Tr {éﬁﬁl({aq,p})exp(r Ht) % j,,})JD ,“,})fiﬁ({aq,p})f)—l({aq,p}) X

X exp ( . % Ht)fj( {aq.p})}
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= Tr {g exp [% f)'l({a,‘,’p} HD( ({ag,p}) ]f)“l({a(},p})ﬁ.f)( R (17)

X exp [ — ’% h- ({aqlp})ﬂ]j( {aqm})t]}-

It can be seen that formally explossion (17) can be interpreted as the
mean value of the operator D-'({a,,}) Al)({aq,p} ) at a time ¢, >0, when
the time dependence of the operator D' ({a,,}) yAD({a,,}) is defined by
Heisenberg representation corresponding to the “hamiltonian” D-({a,,})
HD( {a4.,}) and the state of the crystal is described by the density matrix 0.

All hamiltonians which occur in quantum acousties are, in terms of the
operators of phonon creation and annihilation, polynomials of finite order.
In this case, it follows from formulae (5) that the “new” hamiltonian ﬁ-l({aqm})
HD({a,,,}) consists of the “0ld” hamiltonian # and the “remainder” D=1({a,,})
Hﬁ({aq, &) —H. The remainder is the sum of terms each of which, in terms
of the numbers «,, and a, ,, is a polynomial of at least the first order.

In the case when

H' = D'({aq ,DHD({a,,}) —H (18)

is much smaller than #, it is possible, treating I’ as perturbation and H as
unperturbed hamiltonian, to represent the mean value of the operator A for
t > 0 by the response of the system to the sudden introduction of the pertur-
bation I’ at a time ¢ =0 [2],

((A( )y =Tt {g c,xp( Hi) 1({ay, ?,}) AD aq_p})exp(— %Ht)} +

i tp—1

(m) ff I dty ... at, Tr{(D ({ag,,}) AD ({ay ,}))t X
<[ |- [Bf a6 10)- 2 09

(The time dependence of the operators which oceur in the subintegral function
is defined by Heisenberg representation corresponding to the hamiltonian #H.)

3. Method of the quasi-equilibrium density matrix

The method of the quasi-equilibrium density matrix [2] can serve to
determine the statistical quantum state representing a crystal with predeter-
mined mean values of the displacement and wvelocity fields and with predeter-
mined mean energy. In terms of information theory it can be stated that the
task is to eliminate “excess” information (related to the description of the
microscopic state of the system) from the density matrix deseribing the crystal
and at the same time to retain that information which corresponds to the given
mean values of the predetermined physical quantities.

5 — Archives of Acoustics 2/83
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The solution results from the taking into account of the fact that in practice
the crystal is never fully isolated from the environment which plays the role
of the thermostat. The interaction between the corystal and the thermostat
is random and leads to part of the information contained in the density matrix
being “forgotten” [2]. (In classical statistical physics this process involves
a “fuzziness” of the trajectories describing the evolution of the system in the
phase space, which leads to a smoothing of the distribution function).

The information which corresponds to the predetermined mean values
of displacement and momentum of atoms and the predetermined mean energy
of the crystal is imposed by the generator execiting ultrasonic waves and the
temperature of the thermostat, and therefore it is not “forgotten”. It can thus
be seen that the density matrix of interest can be determined by the variational
method, seeking such a statistical state to which there corresponds the maxi-
mum value of information entropy [2]

8 = —Tr{olng}, (20)
under the condition of a definite mean value of the total energy of the erystal
(Hy = B, (21)

the conditions corresponding to the predetermined mean values of the displa-
cement of the atoms from the equilibrium positions

(C (;)>> . (;) (22)

the conditions corresponding to the predetermined mean values of the momentum

)j i '

and the condition of normalisation of the density matrix
ey =1. orn (28]
The solution of the present variational problem is the density matrix [2]

el o S - SR}

Lb,j

l i
where f (b) are Lagrange multipliers corresponding to the conditions of the
i
predetermined mean values of the displacement of atoms, A (;) are Lagrange
; i
multipliers corresponding to the conditions of the predetermined mean values
of the momentum of atoms, § is a Lagrange multiplier corresponding to the
condition of the predetermined mean energy of the erystal and with interpreta-
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tion 1/kT (k being a Boltzmann constant and T’ the absolute temperature of
the erystal), and @ — 1 is a Lagrange multiplier corresponding to the condition
of normalisation of the density matrix.
Tt can readily be shown that differentiation of — @ with respect to f,
h (;) and f ( ;) gives respectively the mean value of the total energy of the
i i :
crystal, the mean values of the momentum of atoms and the mean values of
the displacement of atoms from the equilibrium positions. It can be seen that
in a specific case when the predetermined mean values of the momentum of
atoms and the mean values of the displacement of atoms from the equilibrium

positions are zero, the Lagrange factors h(;) and f(;) are also zero and the
i j

density matrix (25) describes the state of thermodynamic equilibrium (corres-
ponding to the canonical distribution).

4. Comparison of the results of the two methods

The results obtained by the method of the deformation operator and by
the method of the quasi-equilibrium density matrix can first be compared
for the case of a harmonie crystal. The method of the deformation operator
can serve to find a density matrix which describes a dynamically deformed
harmonic crystal which before deformation was in the state of thermodynamic
equilibrium described by the canonical distribution.

Consideration of formulae (2) and (5) and the identity, which results from
definition (1),

D{eg P = D ({ =g} (26)

gives

¢ = D({agp}) exp[ b — ﬁZﬁm sg)“kg“k.a] ({ag0})

— D ({—agPexp[—D—p 3 ik, )i, o] D({—aq,))

k,g
BXP[ B 2 liw (R, q)a’k,gak g I 2 ay,, ga'k g P 2 ak.ﬂa'k,a]
Tr{exp[ ﬁZTzw : g)a,,,gangrﬁZak i k,g+52a,&gak,g]}

k,g

(27)

(the values of the parameters a,, in (27) are defined by formulae (14) and
the other notation remains as above).

Using formula (4) and (11) the quasi-equilibrium density matrix which
describes a dynamically deformed harmonie crystal can be expressed by the
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operators of phonon creation and annihilation
d s A Y bl el
e exp[—gb _p Zhw(k, )Ly gy — Zf(b).R(b).— Z h(b).P(b)l_
k,g k.g J J kg 7 p ]
BXP [75’ '62 nw(k? g)&lt,ﬂak,qA '2 ?k,g&k,g_* 'Z yle,gdi:,{fl
50 <0 <0

‘5 Tr{eXp[_‘ﬂ’ Zhw(k, g)a‘lt,g&k,a_ Z?k.adk,a'— Z?’k,yéirr:]}r ,
kg k,g kg

(28)

where

l) . % (l) / mpho(k,g) -(E
g = —_ % +h b, b ok e( ) x
i 2( f(b);,- l/zNVm,,w(k,g) b 3-]/ 2NV b/,

b,l.j
x exp(—ikl). (29)

It can be seen that the density matrices (27) and (28) have the same form
and differ only in terms of parameters which occur in them. The imposition
- of the condition of equal mean values of the total energy of the crystal, of the
position and momentum of the atoms will permit equation of particular para-
meters and, as a result, determination of the values of the Lagrange factors
which oceur in (28).

Let us calculate the mean value of the total energy of the crystal in the
state described by the density matrix (27)

CHY — Tr{[Z ho(k, g) ﬁx’g&k,g]ﬁ({aq,ﬂ})exp[—@—ﬁ 2 ho(k, g) X
A

kg

;i X&‘lt,g&k,g-lpvl( {aq,p})}

s {1‘)—1( {aq,p})[Z Bo(k, g) a,;ga,e,g] D({ag,} exp [ _d—fx
k.9

Gt G 2 X1 Cogmikig - 30
x 3 ok, 9)di || = ,Z exp (B (e, )] —1 +g heo (R, 9) @40 (30)

k.g
Using formulae (14) and taking into account the relations serving to “dia-
gonalize” the hamiltonian of a harmonic erystal [4, 5], the second term of
expression (30) can be expressed by the changes in the mean values of the
displacement and momentum of atoms caunsed by dynamic deformation

(,) e

. g \ | i b ' '

Z L 24 Mg - Z l v - (b)-R (b')-,’

kg k.g * 1,b,j 8R( ( J i
i

R
b/.. \b'[,

J

(31)
where W is the potential energy of a crystal deseribed in adiabatic approxima-

tion [4, 5], B (;) and R'(;,) are atom displacements from the equilibrium
i 7
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positions (understood “classically”, i.e. in the sense corresponding to the des-
cription of a erystal “before quantization”), and the partial derivatives are
assumed for zero displacements.

It can be seen that expression (31) can be interpreted as deformation energy
and that the value of the expression f = 1/kT in formula (27) corresponds to
such temperature of the crystal at which the mean energy in the state of thermo-
dynamic equilibrium is equal to the difference between the predetermined
total energy and the deformation energy. This determines § = §’ as a function
of the mean energy of the crystal, the mean positions and momenta of the
atoms. From the equation

ﬁhm(ky g)ak,g T=hr My (32)

it is possible to determine

k
() Y (), o

mhat e g) (o —’(’“) Lk
f( ) ﬁl/ 71 At i va)

Consideration of formula (14) leads to an explicit form of the Lagrange
multipliers which occur in (28),

l ug_f“ ol
k(b);‘m m‘bp(b)j,

f(;)} 2 “ﬁz W 2 )__ R (:)’, )j 7 (34)

SCHE
; b’

(with notation as in (31) and previous formulae).

Thus, it can be seen that in the case of a harmonie erystal the two methods
lead to the same results.

In a general case when the hamiltonian of the crystal is not a square func-
tion of the operators of phonon creation and annihilation, the results of the
two methods are slightly different. E.g. for the hamiltonian of the form [4, 5]

e 2 fio (e, g) dige, g8y 5+

(33)

Ie,g

9:9:9; N At 5 A4 "
t 3 V(B0 ) 0, ) O =gy (50)
91,92,

the density matrix of the deformed crystal obtained by the method of the
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deformation operator will have the form

A {aq'p} exp[—(b——ﬂfl]f}—l {aq,p}
= p{ @ —p o 79)akgakg+ﬁ2ﬁw (B, 9) g, gl +B D o (e, g) g g i —

k,g kg

—ﬁ Z h(ﬂ) I} 9 al.,gak g_”ﬁ 2 (q”qmqa) (&;l,pl = a‘]‘pi’]'j—‘llrﬁl +

a9y 039s D1,P2P3
P1:P2:P3
A4 > sy ok 2+ A ) = =i
+a—q11’1) (a'flzsﬂz Agy,my a’*ﬂzdﬂz +a—f12spz) (a!u,si"a Aqypy a‘*'hsif’a +a—'13,ﬁ ) (36)
3

(the assumption being that before deformation the crystal was in the state
of thermodynamic equilibrium, described by the canonical distribution).
The method of the quasi-equilibrinm density matrix leads to the result

é :exp{ —@' ﬁ Zhw 3-(} a’kgahg Zyk,y Qg — thya’luy

kg kg

9,99 P A 5 5+ 5 m
=g 2 (P;Pz?a a’q],m —O_g,p gy, — b_gy,p,) (Bgy,ps — G—gy,py) (37)
q1:92,93

Py:P2:P3
(k,g are defined as in (29)).

It can be seen that the density matrices (36) and (37) are different even
when they lead to the same mean values of the total energy of the crystal,
the positions and momenta of the atoms, ;

The description of dynamic deformation by means of the deformation
operator was based on the assumption that the deformation of the crystal
involves the following transformation of the density matrix which describes
the crystal

é _)'ﬁ( {aq.p}) é-ﬁ_l( {aq,p}) ’

where D({a,,}) is a unitary operator defined from formula (1).

This assumption made it possible to find a relation between the values
of the changes in the mean values of the positions and momenta of the atoms
and the values of the parameters a,, which oceur in the deformation opera-
tor. The physical sense of the above assumption is particularly conspicuous
in the case of static deformation i.e. such that leads to changes in the mean
values of the positions of the atoms, without simultaneously changing, however,
the mean values of the momenta of the atoms.

It follows from the considerations in paper [3] that the description of
static deformation by the deformation operator involves the assumption that
deformation of each wave function describing the crystal can be reduced to
the subtraction of the corresponding displacement veetors from the arguments
of the wave function. It can be said, though not very precisely, that with defor-
mation of this type the information is related to the form of the wave functions



DEFORMATION OPERATOR 167

describing the erystal remains. The mathematical counterpart of this is the
fact that no deformation represented by the deformation operator changes
the value of information entropy (this can readily be shown when ¢’ = D( {ag,0})
0 D-*({a,,}) is inserted into (20) and the operators which occur under the
trace sign are cyclically rearranged).

The case is different with the method of the quasi-equilibrium density
matrix. This method accounts indirectly for the processes which are related
to the interaction between the crystal and the environment and lead to the
destruction of information contained in the density matrix. It can thus be
expected that the results obtained by the method of the quasi-equilibrinm
density matrix are closer to reality than those of the method of the deformation
operator An essential advantage of the method of the deformation operator,
however, is that it leads directly to the formulation of perturbation caleulus.
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