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THE SOUND POWER OF A CIRCULAR PLATE FOR HIGH-FREQUENCY WAVE
RADIATION
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Pedagogical University (65-069 Zielona Goéra, Plac Slowianski 6)

This paper gives an analysis of the sound power of a circular plate which
vibrates at a frequency much higher than the resonance one. This analysis
wag carried out for Bessel axially-symmetrie distributions of vibration velo-
city on the surface of a source placed in a rigid, planar baffle. An exact expres-
sion of the sound power of the vibrating circular plate was given in Hankel
representation. It was assumed in a specific case that the source radiated waves
at frequencies much higher than the resonance ones, permitting simplifications
to be introduced in the subintegral function. As the final result of the analysis,
an approximate expression was derived using the Cauchy theorem on residua.
The expressions derived here are very useful and convenient for numerical

calculations.
Notation
a — plate radius
G — sound wave propagation velocity in a medium of density g,

HQP(z) — Hankel function of the nth order of the first kind
Hf’(a:) — Hankel function of the nth order of the second kind

I.(®) — modified Bessel function of the nth order of the first kind
Ju(r) — Bessel function of the ath order

k — wave number

K,(x) — eylindrical MaecDonald function of the =mth order

N — real component of source acoustic power (A2), (A3)

No — real power of source for k— oc(Al0)

P — sound pressure (Al)

T — radial variable

v — vibration velocity amplitude of source surface points

vy — vibration velocity amplitude of source points of the plate (1)
Von — vibration velocity amplitude of the central point of the plate

w — characteristic funection of circular source (AS8)
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W, — characteristic function of circular plate for (0, n) vibration mode (4)
Zy(®) — cylindrical function of the nth order

A — sound wave length

2o — dengity of gaseous medium

o — source surface area

[ — angular frequency

1. Introduction

The problem of the impendance and sound power of circular sources with
an irregular vibration wvelocity distribution has been the object of analysis
in a large number of papers in the field of acoustic wave generation by surface
sources. In terms of subject papers [3-8] are above all most related to the pro-
blems considered in the present paper (a full bibliography of this problem was
given in paper [3]). Most of the investigation results obtained could be used
in partical applications only when using computers. Of the results obtained,
only the expressions of impedance and sound power appeared to be convenient
in a small number of cases, above all and most frequently for very small inter-
ference parameters. - g

These have been to date a lack of elaborations giving the form of the ex-
pressions of the sound power of a circular plate in a speciafic case which would
be convenient for numerical calculations, namely for high-frequency wave
radiation. The investigations reported on in the present paper have given such
relationships.

The present considerations of the radiation of a circular plate refer to
the results obtained in paper [6], where the object of investigation also included
the problem of the sound power of a circular membrane for frequencies much
higher than the resonance ones.

In terms of the possibility of practical applications, analysis was carried
out on the axially-symmetric vibration of a circular plate clamped on the circum-
ference to an ideal rigid and planar baffle. Linear processes harmonic in time
were considered.

Taking as the basis the Huygens-Rayleigh integral formula, exact expres-
sions were introduced for sound power in the form of a single integral. It was
assumed in a specific case that the plate radiated waves at frequencies much
higher than the resonance ones. This permitted simplifications in the subinte-
gral function and subsequently integration using the Cauchy residua theorem.

Very useful and convenient expressions were derived for numerical cal-
culations.

2. Exact calculation of the sound power

In considering the linear phenomena sinusoidally dependent on time,
the axially — symmetric proper vibration of a circular plate clamped on the
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circumference can be described in the following way [8]:

o( ﬂn)
Jo(iap,)

where a is the radius of the plate, v,, is the vibration velocity amplitude of
points of the plate, » is a radial variable, J, is a Bessel function of zeroth order
and af, is the nth root of the equation

0,(r) = O {Jo(rﬁ,,) * Tolira)s (1)

Jo(a,)I1(aB,) = —dJ(af,)I(aB,), (2)

where I, is a modified Bessel function of the sth order. The constant v,, can be
expressed by the vibration velocity of the central point of the plate v,,, from
the following relation

’ Jl] (aﬁﬂ)
bt [1 ~ Totapn))’ (28)

The expression of the vibration velocity (1) can be inserted into relation-

ship (A8) and the following integral property [9] used:

f wd o(ho) T o (10)dw = ———- (T (b} To () =Wy (k) Iy ()}, (3)

_—‘g
4

Fig. 1. Integration in the plane of the complex variable # = # 4 i9" for expression (A4),
=0

4

as a result of which the characteristic function W, (9) of the circular plate for
a (0, n) vibration mode is

Wa(9) = v,, B——f‘g%{ﬁ {aB,J1(aB,)d o (kasind) —

—kasindJ o(ap,)J;(kasind)}. (4)

The real power radiated by the circular plate by the (0, ») vibration mode
can be caleulated from relationship (A9). This involves the substitution

5 — Archives... 4/83
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& = kasind, giving

2

ka | @y (@) — —— (@)
ap xdx
N, = 4(ap,)'N, et —— 5
i ! (aB,)' —w V1 —(w/ka)? s
where
Jl(aﬁn)
a, = H 6
"= Tolaf,) 5
whereas
N, = rouﬂawﬁn‘fﬁ(aﬂn) (7)

is an expression of the sound power radiated by a circular plate by the (0, n)
vibration mode in the case when k— oo(see relationship (A11)), with k = w/e,,
where o is the angular frequency and ¢, is the sound wave propagation velocity
in a medium of density pg,.

3. Approximate calculation of the sound power

In a specific case, when the wave radiation frequency is much higher
than the resonance frequenecy (k > f,), the approximate formula

a Pe 1oV St
1—|— ~ —— ——
-G =3l +56) A
can be used and integration in expression (5) extended from finite (0 <o < ka)

to infinite limits (0 <@ < o).
The expression derived for the sound power
ap,,

: 1/ = 2-L3 o \* i 2
(ap) —a* *E(E) '§(‘:5)]” S

can be given in the form of an integral sum calculated from the integral formula
(A14).

For the first derivatives of the special functions the following relations
can be used [9]:

2

bl L Jl(m)] [

N, = 4(ap)N, [

0

Jo(@) = —dy(@), (@) = ad,(v)—J,(x),
H(2) = —H{’ (@), <HY (#) =«H (2)—HP(a),
Ij(@) = Ii(x), oI(2) = al,(e)—I,(2),
K@) = —K,(@), oK (@)= —aK,(2)—K,(2),

(10)
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where H{"(x) and H{"(x) are Hankel functions of the first kind, whereas K,()
and K,(x) are cylindrical MacDonald functions, both pairs being respectively
of the zeroth and first orders.

When in addition the charaecteristic equation (2), determination (6) and

the wronskians [9]

HY (@), (@) — Jo(@) HD (@) = —-

wz’
: (11)
Ko(@) I, (x) + Io(@) Ky (@) = —
are taken into consideration, finally thus
1 ,(ap)" 3 (af,)
Ny Sl gl i L g otal B 12
. “{1+ 2 “(kay 4 " (ka)* }’ i
if & > 8,
NN
i5 \
f_4 \
13 \
\ 3
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Fig. 2. The relative sound power &
N/N, of the circular plate for (0, 1) g3 —
and (0, 2) axially-symmetic vibration \
modes, depending on ka/f,a %__——:__E

Curves 1 and 3 have been plotted from the 10
exact formula (5); curves 2 and 4, from the
approximate formula (12). It is assumed that 10 15 20 25 30 35

ﬁ] a = 3.195 and .B2 a = 6.306 ig_
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4. Conclusions

The approximate expression (12) derived is very convenient for numerical
caleulations of the sound power radiated by a circular plate with axially-sym-
metric vibration modes and can be used with less demanding assumptions than
ka > ap,. B.g. with ka > 3ap, the sound power for the first few vibration
modes involves relative error not exceeding 1 per cent (Fig. 2).

In a boundary case, for ka—»oo, it can be shown from formula (12) that
the relative sound power N/N, tends to unity.

When ka < 3afl,, or when high accuracy is required of results, calcula-
tions can be carried out by computers from the integral formula (5).
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Appendix A

At any point on the surface of the source the sound pressure p () generated
by this source can be expressed by the Huygens-Rayleigh formula [2]

ikoyCo f”("o) exp( —ik|r —ry|)

2% [r —7r,]
%

p(r) = doy, (A1)



SOUND POWER OF CIRCULAR PLATE 337

where |r—,] = V(& —@o)2+ (y —y,)? is the distance between any two points
on the surface of the source, ¢, is the sound wave propagation velocity in a me-
dium of density gy %k = 2=/1 is a wave number and A is wavelength.

The real component of the sound power emitted by the source is

1
N=3 Re{f () o(r)do, (A2)
or, considering relation (Al),
o4 ek B
N:Re{mfffv(r)v(ro) ol r"”dauda}. (A3)
4n [r—r,|
a Un

This formula represents the real power emitted by the source into the
surrounding space, i.e. the energy flux radiated by the source over one full period.

The surface integrals in formula (A3) can be calculated using the following
expansion [3], [7],

g+1'-oo 2n

exp(—ikr—r ik

p(—ik| ol) s _Lf fexp{—'iksin‘ﬂx
[r—7] 27 0 0

X [( —zp)cosa+ (¥ —y,)sina]}sindddda. (A4)

The course of the integration in the plane of the complex wvariable ¢ is
given in Fig. 1 (see p. 333).
The integral function (A4) can be substituted in formula (A3), the following
polar coordinates introduced:
& = rCOo8 Yy = rsin
¥, Y .‘P: (A5)
By = ToCOSPyy; Yo = ToS1NQ,,
changing the integration order. The following integral property can be used [9]:
2r
[ exp[tibeos(p—a)ldp = 2ndo(®).  J= ghngun J{AB)
0 {‘__‘_ o -
The expression of the sound power of a circular source with an axially —
symmetric vibration velocity distribution can be given in the form

g+i-oo
N e Re{gucoﬂkz [ Wz(z‘})sin'ﬂdﬁ}, (A7)
0
where
W(8) = [ o(r)d,(krsind)rdr (A8)
0

is the characteristic function of the source.
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The real component of sound power, i.e. the real power, can be determined
from expression (A7) when the integration in the plane of the complex variable
is carried out over a section on the real axis ¢ in the limits (0, =/2), i.e.

/2

N = gook? [ W2(9)sinddd, (A9)
0

In numerical calculations it is convenient to use the concept of relative
sound power N /N,, where N, can be assumed to be the real power of the source
for k—oco. When k— o0, p(r) = pyc,v(r), and then, according to formula (42),

N, — imN — % 04Ce f v (r)do. (A10)

k—ro0
o

When the sound source is circular and the vibration velocity distribution axially —
symmetrice,

L
Ny = moo, [v2(r)rdr, (Al1)
0

where a is the radius of the circular plate.

Appendix B

The contour integral (see [9])

(1)
f 2717, (be) %, (A12)

C

21

where a > b > 0, r is a complex number, Z, is a cylindrical function of the order
iy |u|+v] < o < 10, can be expressed in the form of the sum of the residua
at the poles of the subintegral function. When ¢ = b, then ¢ < 9.

Using the Jordan lemma and Cauchy’s residua theorem [1] the integra-
tion contour ¢ can be closed in the upper half-plane of the complex variable 2.
This integration covers the two poles of the subintegral function for z =r
and z = 4r. This gives

%f {Zy(bw)HS,‘)(am)—exp(grc'i)Z“[bmexp(ni)] X

: 2 lde R
x HY [azexp(wi)]} (534__?4); ke (=4 [Z,, (br) H (ar) +

+1407%Z, (ibr) HV (iar)]}.  (A13)
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In a specific case for Z, = J,, a = b = 1, considering the relationships
2
7,tir) = exp i 7 ) 1y, 1) = 2 exp | —i41) T | &0,
T
J(—2) = exp(uri)d,(z), HO(—2) = —exp(—ive)H:(x),

(A13) becomes

o 3. ;
£ 2fargs 2o {w-‘[ﬂJ,,(r)Hf,”(rH

[ @@ S— = g

(x* —7*)2 8% dr

+exp [ﬁ'(@—i—ﬂ—v) %] IF(T)K,(?‘)]}: (A14)

when |u|-+ |v] < o< 9.



