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THE APPLICATION OF FOURIER INTEGRAL TRANSFORMS IN A GENERAL THEORY
OF DIFFRACTION
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Integral transforms have frequently been used to solve different specific
problems in diffraction. There has, however, been no application of this method
to the fundamental equations of diffraction theory.

The present author shows that a transition from the d’Alambert equa-
tion to the Helmholtz equation for transforms gives all pulse fields, i.e. the
acoustic potential of this field as the inverse transform of the product of the
transform of the time behaviour of the pulse and the potential for a harmonic
wave. This method permits relatively easy calculations of the sound pulse
fields, with the additional assumption that the pulse distribution on the source
can be represented as the product of a position-dependent function and one
which is time-dependent.

1. Introduction

It is now generally known that the use of integral transformation for arbi-
trary (nonharmonic) time behaviour facilitates to a large extent the solution
of diffraction problems. Papers [4, 5, 7-12, 15] in which different integral trans-
formations were used in the problems of pulse diffraction at wedges or half-
planes are now classical. It was found in [6] that a Fourier integral transform
changes the d’Alambert equation into the Helmholtz one and the authors were
thus able to caleulate the field of a pulse-excited point source.

To date, however, there has been no general formulation of this problem,
i.e. the use of integral transformation in the fundamental, general problems
of diffraction theory. It is to these problems that the present paper is devoted.

It is assumed that all pulses considered below do not exceed the condi-
tions set in linear acoustics. The theory of nonlinear pulses requires a completely
different approach, while this subjeet would go far beyond the framework
of the present paper.
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It is also assumed that the pulse which excites the sound source can be
given in the form of the product of a function dependent on spatial variables
and a function dependent on time.

2. Theory

The so-called general theory of harmonic wave diffraction is concerned
with the solution of the Helmholtz equation with definite boundary conditions

Ap+ ke =0, (1.1)

where ¢ is the acoustic potential and % is a wave number. In this case the time
dependence factor exp (+iwt) is neglected and the acoustic potential regarded
as a function of position, which can symbolically be given as

p=e9r), ¢=1,2,3 (1.2)

Naturally, the physical phenomenon in the acoustic field is, according
to the accepted convention, represented by one of the products

¢(z;)exp(int),  @(@;)exp(—iwt). (1.3)

Equation (1.1) is solved in volume area V limited by a closed surface S on
which sound sources are distributed. The sources show the vibration amplitude

%

all
Call

*, Fig. 1. The geometry of the radiating system

distribution u,(x;), where, according to the definition of acoustic potential, ¢,

oy
o (@) = — (6‘%)50’ ' (1.4)
which is shown in Fig. 1. Although the basic literature [13], [16] gives the so-
called Poisson’s integral formula which generalizes harmonic wave theory
to arbitrary time behaviour, but this formula is very complicated and no known
achievements in pulse diffraction theory have been based on it.
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The present paper is concerned with nonharmonic processes; it is assumed
that the acoustic potential is a function of position and time:

¢ = @(x;, 1), (1.5)
i.e. it satisfies the d’Alambert wave function
1 9%
Ap = — =0 1.6
P T (1.6)

in the volume V with the boundary conditions given above. In order to carry out
Fourier integral transformation, the transform of the acoustic potential (1.5)
should first be written in the form [1]

1 o0
D(@;, 0) = ——— fqo(m‘.,t)exp(—iwt)dt. (1.7)
Vor =
Consideration that [1]
O —
T ik )

gives from (1.6) the transform equation in the form

2
A®+%—®:0, (1.9)

i.e.
AP L2 — 0. (1.10)

(1.10)is a Helmholtz equation, but the transform @ (x;) must satisfy also those
conditions which are set in the classical theory of harmonie waves for the poten-
tial itself. As it was mentioned in the Introduction, the authors of paper [6] took
as the basis the fact that the acoustic potential transform satisfies the Helm-
holtz equation and used it in the case of a pulse-excited point source. In the
present paper this problem will be considered in most general terms. Since the
solution of the Helmholtz equation consists in differential and integral operations
on @ with respect to spatial variables, all solutions of the Helmholtz equation,
i.e. for the harmoniec wave potential, give simultaneously the expression of the
Fourier transform of the potential of an arbitrary time pulse.

It can now be considered how the above statement, whose form does
not seem so far to be precise enough, can be used in practice.

In the problems related to wave diffraction the following procedure can
be used: the same Green function as that for harmonic waves [13], [16] is intro-
duced for the transform @(z;, w):

0 0
0w, 0) = [ [0, T —owh T am, @)
S
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and in the case of the so-called acoustic Green function [16] satisfying the
condition

o =0 onthe surface § (1.12)
_ on
this gives finally
oD (x?
(@) goa. (113)

D, @) = [ Glay,af) =0
§

In order to prevent their form becoming too complicated, in the above
fomulae the obvious dependence on » was not given under the integral. The
symbol o refers to the sound source.

The derivative d@/on can now be interpreted on the surface of the sound
source. From the transformation formula (1.17)

fele ]

a £ ~ o (@, t
5 ek %_i‘ o (x;, t)exp( —iowt)di = —i L(:?:—'—lexp(—iwt)dt, (1.14)

and from the definition of the acoustic potential (1.4)

oD 3 .
— = fuu(w,.,t)exp(—mt)dt = Uy lty, ), (1.15)

It can be seen that the derivative a®/on represents the Fourier transform
of the vibration velocity on the sound source. It should be stressed that in this
case ,(2;, 1) does not denote the vibration velocity amplitude but the time
behaviour of the pulse velocity, which in a general case is also a function of
Pposition. Since the direction outside from the volume V is taken as the positive
direction of the normal and the opposite direction as the positve direction
of the vibration velocity, from formula (1.15), (1.13) can now be written as

Dy, 0) = [ Gy, a?) Uy (a2, 0)do®. (1.16)
S

Particularly for a half-space bounded by a rigid plane on which the sound
sources lie, using the notation from Fig. 1, the Green function can be given
in the form

1 exp(ikir —r,))

Gr, r,) =
(r, 1) i iy

(1.17)

Formula (1.16) which represents the acoustic potential tranform as a fune-
tion of position and the angular frequency w now becomes

_ 1 rexpliklr—r)]) '
D(r, w) *Tj;_‘ S Uy (1, w)do®. (1.18)

S0
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In practical cases it is almost always possible to represent the pulse velo-
city distribution as the product of the position and time functions , L.e. to assume
that all points of the source are excited by the same time behaviour. In such
a case

o (@3, 1) = wo(a)f(1). (1.19)
Using the Fourier transform (1.15) in %,(«;, #) only the time function It
is transformed, i.e.

6@ ~ . d 0 F 1
S —uo(w‘-)_ff(t)exp(——mt) t = —uy(a}) F(w), (1.20)

where F(w) is the transform of the function representing the time behaviou
of the pulse f(?). Therefore, using the notation from Fig. 1,

Us(ro, ) = o (1) F (o). (1.21)

Since the spatial variables are integrated in formula (1.16), this formula
can be written in the form of (1.21):

D1, 0) = F(o) [, r)ury)de, (1.22)
So
and in a specific case for a half-space
F el —
o, u) « L@ f D Ol iy (1.23)
2 K jr—mr,|
0

Formulae (1.22) and (1.23) permit some very important conclusions
to be drawn. Considering that the wave number & = w/e it can be seen that
the integral

O, (r; 0) =[G, ro)uy(ry)de® (1.24)
Sy
or the integral

)
exp (a ?]r—r.ﬂ)
D (r =—
(1, @) 2= J [r—r,|

o (1) do® (1.25)

represent the spatial distribution of the acoustic field of a harmonic wave as
determined from the amplitude distribution such as the spatial pulse distri-
bution w,(r,). In addition @,(r, w) can be replaced with all solutions of the
Huyghens integral formula (1.24) known from harmonic wave acoustics. Know-
ing @,(r, w) this value should be multiplied by the transform F(w) of the time
behaviour, achieving the acoustic potential transform of a real pulse field

D(r, w) = F(o)D,(r, o). (1.26)
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Such a simplification is valid only when formula (1.19) can be used.
The potential of the acoustic field is determined as the inverse Fourier
transform of formula (1.26), i.e. this potential is given as the integral [1]

1 o0

D(r, 1) =—— _[F(w)qb,(r, w)exp (iwt)do. (1.27)
Vor e

In the case when the source receives a pulse in the form of the Dirac

distribution é(t) and in view of the fact that the Fourier transform of this pulse
hag a value of wunity [1]:

Fplw) =1, (1.28)

the potential of the acoustic field is given direetly in the form of the integral

00
ep(ry1) = [ @(r, w)exp(iot)do. (1.29)
Formula (1.29) indicates that all acoustic fields calculated for harmonie
waves can be regarded as Fourier transforms for Dirac pulses while integral
(1.29) transforms it into the field of these pulses.
It should be pointed out that the above train of thought is most general
and can be applied to any acoustic field, also including fields of diffracted waves.
In considering the problems in wave diffraction by an obstacle two spe-
cific cases can be distinguished, i.e. an ideal rigid obstacle on which, S,, the
summary acoustic field, which is the field of incident and reflected waves,
satisfies the condition [16]

2
(_%) X (1.30)
on 8,

and an ideal compliant obstacle on which the summary acoustic field gives
zero acoustic pressure. For harmonie waves this is equivalent to the condition
[13], [16]

=0 ong,. (1.31)
In the case of pulses the relavant condition (1.31) has the form [16]

O
P =55 Q—E- =0 ong,, (1.32)

i.e., in view of the fact that p denotes here the density of the medium in rest,
there is the eondition

(1.33)
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In a general case there is the so-called impedance condition. Designating
as 2° the impedance of the obstacle surface by which waves are diffracted, ac-
cording to the definition of acoustic impedance [13], [16],

P (Op/at)g,

= oy, 0 ©): (1.34)

In a general case, the acoustic impedance on the diffracting surface can
be a function of position and frequency, whereas the acoustic field on the surface
should be such that p/u is independent of time, which would limit the class
of pulses for which the diffraction problem can be solved with general impedance
conditions.

Wishing to apply the concept given at the beginning of this section to
diffraction problems, i.e. wishing to regard the potential of the harmonic field
of diffracted waves as the Fourier transform of the pulse (after multiplication
by F(w)), one must first investigate the boundary conditions for this transform.
In view of the fact that the impedance conditions occur infrequently, the pre-
vious order will be retained, i.e. ideal rigid, compliant and, finnally, “impedance”
surfaces will be considered in that succession. From formula (1.15) condition
(1.30), after Fourier transformation, in view of the additivity of the transforms,
requires that the following equation should occur for the summary acoustic
field,

P,

f =0 on8
an sl

(1.35)

for an ideal rigid surface. In turn on the ideal compliant surface the derivative
dp,/ot undergoes Fourier transformation, i.e., in view of formula (1.8), there
is the condition [1]

®, =0 ons,. (1.36)

It can be seen that in the two specific cases, infinitely rigid and infinitely com-
pliant wave diffracting obstacles, the boundary conditions for the transform
are the same as those for the acoustic potential of harmonic waves. This permits
any acoustic field of diffracted harmoniec waves to be treated as the field of
the pulse transform @,, which when multiplied by the transform of the time
behaviour F(w) gives the transform of the diffracted pulse field and the desired
acoustic field in the form of integral (1.27) or integral (1.29) for the Dirac pulse.

For the impedance condition (1.34)

Op dp
e (T“-)s = 2p (@, W)(W)sp' (1.37)

In formula (1.37) both the acoustic potential ¢ and its derivatives (g /at)s
and (atpfﬁ‘ﬂ)s are time functions, whereas the impedance of the surface is
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independent of time. A direct Fourier transform of equation (1.37) gives

o0 a =]
3 i (%s)spexp(—iwt)dt =l 0) ! (%)Spexp(—iwt)dt. (1.38)

In formula (1.38) the impedance, as it is independent of time, was moved
before the integral sign. '
From formulae (1.8) and (1.15), formula (1.38) becomes

0D, (7;, ) = 12, (25, ) Uye(@;, 0), (1.39)
ie.
des(mi Ll w) i
L SN game Sl s 1.40
U@ w) w20 ) e
Formula (1.34) which represents the impedance condition takes in the
case of a harmonic wave the form ((1.32) for ¢(z;, 1) = ¢(x;)exp(—iwt))
o (#;) 32 i -
) s wzp(a';i), (1.41)
i.e. the same as (1.40).

In all cases the boundary conditions are the same for transforms as those
for the acoustic potential, permitting the pulses from the diffracted acoustic |
fields of harmonic waves to be determined by the present acoustic field method.
This approach facilitates to a large extent the solution of the problems of pulse
diffraction by obstacles of different shape, and when the solution for harmonic
waves is known the pulse field is obtained in the form of a single integral (1.27) |
which can be evaluated analytically or numerically. j

3. Applications of the theory

The theory given in section 1 can be illustrated by such a large number
of examples that this would exceed the range of the present paper. In principle
it is enough to multiply all solutions for a harmonic acoustic field by the trans-
form of the relevant pulse and as a result the transform of the pulse field poten-
tial can be achieved.

Since, as it was already mentioned, various integral transformations have
been used to solve the problem of wave diffraction Dy a wedge, only a few examp-
les will be given here to illustrate direct source radiation. '

1. A system of two point sources distance d (Fig. 2) apart will be given
as the first example. Both of the sources receive the same Dirac pulse é at a time
t = 7. The acoustic field distribution in the far field will now be investigated.
The vibration velocity amplitude in the formula of the far field potential can be
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assumed to have a value of unity. The formula for a harmenic wave [13], [16]
can be written directly as the formula of the transform for the Dirac pulse

)
exp(—z?r.,)
Op(P, 1) = —— 2L

wd wd
exp (¢ — siny|cos [ — siny]. 21
7y 3 ( Ze y) ( 2¢ y) et
5
3

?
d|

I T,
ol
|
|
Fig. 2. A system of two point sources é

The acoustic potential can be achieved as the inverse transform of [2.1),
i.e. given by the integral

e}
| d ; d
gp(P,1) = K__;[ exp [’iw (Ec_ siny — ?—00+t)] €08 (%siny) do. (2.2)
In integration of (2.2) only the even part remains, i.e.
2 7 d 17 d
op(P, 1) =—f cosw(— siny — - —f—t) do + —f cos (w—si.ny) do.  (2.3)
To ¥ c ¢ To 4 2e
The use of the formula of cosine produet in the subintegral expression gives [3]
1 r d 1
op(P,1) = —f co8 (— siny —fi_u) doo+ —f cosw (ﬁ—t) do. (2.4)
ro o ¢ ¢ Toy ¢
The two integrals represent the Dirac distribution, according to the for-
mula [2] :
[ cos(an)de = mé(a). (2.5)
0
Finally,

8 —z). (2.6)

d
ol P, 1) = -"ia(— siny—ﬁ+t)+ia(
"o C ¢ ¢

" TO
a¢

It can be seen that at the point P of the far field the Dirac pulse J occurs
twice, i.e. at a time t,:

Proifsdl &
ik S oy 2.7
% . gty (2.7)

6 — Archives... 4/83
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and at a time {,:

. (2.8)

The time %, is the time required for the pulse to reach the point P from
the centre of the system, i.e. from the point 0 on the section d between the
gources. In turn the time t, is caused by the asymmetry of the position of the
point P with respect to the sources, and in the case when y = 01, =1, = ryfe.

z
Plz:)

{* i &

Fig. 3. The piston in the bhaifle

2. Another example is provided by the near field on the so-called axis
of the acoustic system consisting of a rigid piston, i.e. a piston which vibrates
all over its surface, placed in an infinite, rigid baffle (Fig. 3), when it receives
a Dirac pulse. Assuming the vibration velocity amplitude in the formula of
the harmonic solution to have a value of unity, the near field expression [13],
[16] can be given in the form of the transform of the Dirac pulse

&y (2, ) = 2pcexp [ —fé% (Var+22 + z)] sin [% (Va2 + 2 —z)]. (2.9)

The acoustic potential itself on the z axis thus becomes

oo

¢@,n=zzge_£ exp[-ié%(ﬂat+zz+z{]Mn[é%(Vat+z2ﬂzﬂexp@wndw.

(2.10)

Like in the previous case, in integration only the even component remains
and therefore

@, 1) = -—213! sin [% (l/a2+z2+z)—wt] sin [;;— (}/az-l—zﬂ—-z)]dw. (2.11)
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The use of the formula of cosine product on the left of (2.11) [3] gives

(2, 1) = —ifcosm(-f—;—t)dw—]—ifcosw(%()/az-l—za—t)dw. (2.12)
0

0

Using formula (2.5) again
; 2 ] 1 ,—
p(2,1) = —ind (—E-—t)—f—'mﬁ (z l/aa-{—z“——t) (2.13)

(see formula (17) in [14]).

This result is very interesting. Apart from the term i which in complex
number notation denotes phase shift, it can be seen that at the point P the Dirac
pulse occurs twice, namely after the time {,:

4
t]_ e (2.14)
— this is a pulse coming from the centre of the piston and after the time Bt

ooy I/a,"—]—z2

C

o (2.15)

The time ¢, is the time required for a pulse from the circumference of the piston
to reach the point P. The action of the piston at all points P in the near field
can be reduced to the superposition of the pulse from the centre and the one
from the circumference.

f(t)

I |
!
| |
| L e
Fig. 4. The shape of the rectangular pulse -t, 0 t ¢

3. The final example to be considered here is a piston which is the same
as that in example 2, but which receives a rectangular pulse (Fig. 4) with height
of unity and active from ¢ = —t, to t = #,. The function f(¢) is here the distri-
bution

1 —ty <t < 1
£(1) = ) (IS AR

(2.16)
0 Wazoiagepsig:
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In view of the symmetry of f(f) the transform F(w) can be written in
the form of the so-called cosine trangform [1]

P 2si 1
F(w) = [ f(t)cos(wt)dt = b Gosac: By (2.17)
0 w
From formula (1.26) the acoustic potential transform beeomes
2si i el
D(z, o) =M exp [fi é% (l/az—}—zz—{—z)] 8in [Ew(,? (}/az-}-zﬂ —z)], (2.18)
w

whereas the acoustic potential itself on the 2 axis takes the form of the transform
inverse to (2.18):

- PSP
gz, 1) =2¢ f §m£0ﬂ exp[ —@'w(l/a :—z —t)]sin [%(Va’—f—za—z)] dw.

—00

(2.19)
Congidering the odd and even form of the subintegral function

s 4‘5f sin (oty) [w (t_ n/a=+zz+z)]sin [% (‘/—az+zz_z)]dm_
0

w 2¢
(2.20)
The use of the formula of triple sine product [3] gives

: ¢ 1 —\ do
@(z,1) = 'bf sin w (t—l—to— —l/a2+z2)—+
g ¢ ®

S z2\do [ . 1. =g
—l—@f sinw t~tn—? ——%f sinw t—t[,—l—?l/aﬂrzz ek
(4]

w )]
(1]
~ d
+¢f sinw(t—tuﬂi)—w. (2.21)
C w

0

All the four integrals have the form [3]

T

E‘, 'm>0,
f SCOIRPRE RRELED PSRRI 2.22) -
0 -

-——213, m <0

It follows from the analysis of the value of the individual integrals that they
reduce so that the gate pulse does not occur at the point P until the time (z/¢) —1,

and lasts till the time (Va2+2%/c)—1,.

T T W
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