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SCATTERING OF ACOUSTIC WAVES ON FREE SUBFACE PERTURBATIONS

IN AN ELASTIC HALF-SPACE

FRANCISZEK WITOS

Institute of Physics, Silesian Technical University
(44-100 Gliwice, ul. Krzywoustego 2)

This paper considers a semi-infinite, homogeneous and linearly elastic

medium with a perturbed free surface. The perturbation is material loss. Using
the Green function method, the first Born aproximation is found for the field
of displacements dependent harmonically on time and subsequently energy
relations for solutions obtained are calculated. The character and magnitude
of scattering on the perturbation are thus defined for any mode occurring in
a semi-infinite, homogeneous and linearly elastic medium. In addition, the
case of perturbation described by periodic functions, which is essential in practi-
ce, is analyzed.
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Notation

the homogeneous isotropic region occupied by the linearly elastic medium,
gome area belonging to the region ¥,

a pair defining the character and kind of wave: I = 0 the wave falling onto
the perturbation, I = § the wave scattered on the perturbation,
gpecifies modes (SH, P, SV,TR, R, L, T),

displacement of the point & caused by a wave defined by (I, J),

an acoustic Poynting vector for a wave defined by (I, J),

a directional coefficient of power transformation from the wave n into the
wave m,

the density of the medium,

the velocity, length and wave vector of a wave,

the versors of a Cartesian rectangular coordinate system,

the spherical coordinates of the ftracing vector .
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1. Introduction

Rayleigh waves have recently been the object of large interest. There are
many methods of generation of these waves [2]. The most recent method, pro-
posed by HuMPHRYES and AsH [4], uses the transformation of bulk waves
on a system of grooves on a free surface. This method can be used for the genera-
tion of Rayleigh waves in any elastic medium, and in the hypersonic range it
appears to be competitive with respect to the methods used previously. This
method, confirmed by experimental works [1, 4, 13] has one theoretical elabo-
ration, which does not exhaust the problem. At the same time there is a number
of theoretical papers [9, 10-12], which discuss the transformation in “the other
direction”, i.e. the transformation of Rayleigh waves on different kinds of free
surface perturbations. In these papers, on the basis of field theory and pertur-
bation caleulus, expressions were derived for the displacement field of scattered
waves in analytical form. These expressions were confirmed by experimental
works [7, 8, 13].

The aim of the present investigation is to analyze the transformation
properties of such perturbations, determining the behaviour of any wave occurr-
ing in a semi-infinite, homogeneous and linearly elastic medium after its
passage through the perturbation. In terms of the solution method this paper
is a generalization of the considerations of Rayleigh wave scattering given
in [6].

2. Waves in a half-space

Let there be
Vi={®:2,>0}, andlet §; ={x:2, =0}

be a free surface. For this elastodynamic problem the complete system of solu-
tions for displacement fields dependent harmonically on time is formed by
the following modes [3]:

(a) a transverse wave polarized parallel to the free surface (the mode SH);

(b) two modes containing a transverse wave polarized perpendicular to
the free surface and a longitudinal wave: one mode describes the case of the
longitudinal wave falling onto the free surface (the mode designated as P);
the other mode describes the case of the transverse wave falling onto the free
surface (the mode designated as SV);

(¢) a wave containing a longitudinal wave decaying exponentially with
increasing x; (the mode TR);

(d) a Rayleigh wave (the mode R).

Without decreasing generalization it is only possible to consider the waves
of wave vectors of the type

Y = (5", 0, &),
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since this condition can be satisfied by such a coordinate system that the 0X,
axis coincides with the projection of the mode propagation direction onto the
free surface.
The displacement vectors for the particular modes take then the form:
— for the mode SH

w0 (@, 1) = "D (x, 1) =0,
u{SH (@, t) = M cosk,wsexp [i (A", —ot) ], (2.1)

where
k" = —kpsinfycoseg,, kg = kpcos by,

M is the amplitude;
— for the other modes

™ (@, 1) = i M [ Fyexp (ik,5) +Fyexp ( —ikyes)) —ks X
% (G exp (ikyws) —Goexp ( —ikyss)) exp [¢ (k"2 —owt) ],
(2, 1) =0, (2.2)
w®™ (e, 1) = i M [k,(Fyexp (ik,ms) —Fyexp( —ik.zs)) +
+ (G exp (ikywrs) +G o X ( —iksws)) Jexp [i (k{"w; —ot) 1.

The quantities Fy, Gy, —Fk,, —ks, k¥ and F,, Gy, k,, kg, k°, which describe
the incident and the reflected waves, respectively, occurring in the particular
modes, are given by the formulae:

a) for the mode P(J = P)

B U U M S
T T R
— 4k Ty (B2 —K") 1
1= 4]5(0)2]‘; T + kz ]‘;(0)2 A "k'_y Ga S 01 (2-3)
1 a'Vp ( i Gl ) L
k) = —kysin0,c089,, k, =kycosby,, kg = kpV1—(ky [ki)sin26, ;

b) for the mode SV (J = 8V)
oo OB 1
= g =
1 4]6(10)2?6&]5'84—(102 _k(lo)2)2 kr’ )

48 ke oy — (B3 —K") 1 1
Wl D L. e (2.4)
A1 ke + (K5 =K ) Eogp kp
Y = —kpsinfyc08¢,, k = kpcosfy,

k, = kpV1—(kp/k)sin®6,, 6, €0, Oyax),

where the angle 6y,x is defined by the condition sinfy,x = er/cy;
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¢) for the mode TR (J = TR) the quantities F;, G, &, k are the same
as for the mode 8V, and

by = —ikgV (Kp/k3)sin26,—1, 0, € Oyax, ™/2; (2.5)

d) for the Rayleigh mode (J = R)

F,=—— B =G =i G = kR(kiz ""ki")—li (2.6)

KO = —kpeosgy, k, =iVhR—ks, ky =iVih—k.

In the above expressions the pair of angles (0,, ¢,) defines the propagation
direction of the incident wave in the particular modes (Fig. 1). For the modes
SH, P these are arbitrary directions in the half-space @, > 0, while the modes
8V, TR impose additional restrictions on the angle 6,, causing a case of the
incident transverse wave to be assigned either to the mode SV or to the mode TR.

X,

# Fig. 1. The ray I represents the propaga-
F tion direction for the incident waves occurr-
J ing in the particular modes

Po

The condition assumed previously for the consideration of waves with the
component k, = 0 signifies that the angle ¢, can take the values of 0 or = radians.
The coupling of waves, visible in expressions (2.1)-(2.6), is a result of the existen-
ce of a free boundary plane. The coupling waves have the form of a longitudinal
plane bulk wave and transverse plane bulk waves from an unbounded medium
(the modes L, T) and of waves decaying exponentially with increasing distance
from the boundary surface. For the boundary angles, i.e. for the rectangular
incidence (6, = 0) and the parallel incidence (0, = =/2 and ¢, = 0 or 0, = /2
and ¢, = 2x) onto the free surface the modes show a particularly simple form,
e.g. for the perpendicular incidence in the mode P only the incident and the
reflected longitudinal bulk waves couple; similarly, only the incident and the
reflected transverse bulk waves occur in the mode S8V. It is easy to see that
the variable @, does not occur in the expressions describing the modes and
that only the mode SH has the second component of the displacement vector
different from zero.
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At the conclusion of this section the following notation can be introduced
7 (x, 1) = Mu® (Ko | z,)exp (ik{) @), —ot),

2.7)
ED = (K2, 0,0), @ = (21,2,0).

The vector w®” (k{? o | @,), describing the behaviour of modes with increas-
ing distance from the free surface, was purposefully separated in expression
(2.7), since (as will be shown in the further considerations) it components on
the free surface define the scattering on perturbations. It is easy to calculate
the form of this vector for the particular modes by comparing expressions
(2.1), (2.2) with (2.7).

Tt is easy to show that for the modes P, SV propagating perpendicular
to the surface S, the following oeccurs

u(°'P)(0m [0y =0, k(iﬂ)u(ﬂ,sl"} (0w | 0) = 0. (2.8)

3. Displacement field of waves scattered on the perturbation

Let the region V, be so perturbed that its free surface is given in the form

8, = {@: @5 = F (2, 7,)},
where i -

f(@,, @y) in the perturbed region,

F (@), @3) = {0 outside the perturbed region (e

i.e. the perturbation described by the function @ = f(#y, ;) is a material loss
of the medium. For this function we assume, in addition, that its values are
low with respect to the wavelength of the wave whose propagation is considered.

This is a new elastodynamie problem for which the modes in the previous
section are only a zeroth approximation to solution. The exact solution must
take into consideration the changes caused by the presence of the perturbation.
To the author’s knowledge the effect of the perturbation on the propagating
Rayleigh wave has so far been analyzed. The most important papers on this
subject were [5, 11, 8]. The aim of the present paper is to determine the scat-
tering of the other modes (i.e. the modes SH, P, 8V, TR) on such perturbations.

There are the following aspects of this new elastodynamic problem. The
perturbation can be regarded as a transforming structure. The case of the
incident Rayleigh wave solved so for permits the statement that the perturba-
tion transforms part of the energy of the incident wave, causing a generation
of the scattered wave into bulk and Rayleigh waves (according to the notation
in Fig. 2, these processes can be observed in the systems a*-b-a, a-b-¢c). What

* An inderdigital transducer and a ZnO layer permit detection and generation of
Rayleigh waves in nonpiezoelectric media [5].
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remains to be calculated is the problem of bulk wave scattering (using a relevant
bulk wave transducer and choosing the angle 0, the conditions for the genera-
tion of the modes SH, P, 8V, TR can be met). The solution of this problem
should define, among other things, the possibilities of the transformation:
bulk waves — perturbation — Rayleigh waves (according to Fig. 2 ¢, b, a).

In terms of the solution method this paper is a generalization of the consi-
derations in [6].

Fig. 2. An example of observation of the transforming properties for a free surface pertur-
bation

a — interdigital transducer, b — perturbation, ¢ — bulk wave transducer, d — ZnO layer

For this elastodynamic problem the first Born approximation for the
displacement field of scattered waves can be expressed by Green functions
with an expression of the form (expressions (2.12) and (2.13) in [6])

u (@, ) = —(27)2 Zfdzkf dugexp (il a,) Dyp (k)@ | @425) X
By 0

x | [ @ exp ( —ike,a)) LY (') exp (iK%} P (Ko | 2)exp(—iwt),  (3.2)

where D (kyw | zyz;) are Fourier transforms of the Green function, L{) ()
are operators defined in the Appendix, u{”(kjw | ;) can be any solution of
the wave equation in a semi-infinite medium with a free surface. Since the
modes selected in section 2 form a complete system, the knowledge of the
solutions for the scattered waves for these modes permits the form of scattered
waves to be obtained for any wave in the half-space. In paper [6] an analytical
form of the solution of equation (3.2) was derived for the case when the scattered
mode is the Rayleigh wave (expressions (3.48)-(3.53) in paper [6]). This solution
requires the following assumptions for the incident wave:

1) the scattered wave has the form of (2.7),

2) u{®™” (ko | z5) =0,

3) ¥V = 0.

The modes P, 8V, TR satisfy conditions 1)-3), which permits generaliza-
tion of the solution for the scattering of the mode R to include the cases when
the modes P, SV, TR, R are scattered.
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Some dimensionless quantities can be introduced,

i, (265 —¢%, (1 4K2)

Tl = g+

e
’ Ms(kuw) = cT” 2kk s,
7

oy (63 (1 -+3) —263
M, (ko) ”(L‘z;';é) .

ok ¢t e ¢ ¢ ch
o i ) o[ ) S -0 ool )
2¢p Cp ‘L cr ‘L €,
where the wave vector of the scattered wave and the coefficients of wave decay
are defined in the following way

—4:aLaTk|2| 'l;(ai'j’“kﬁf y (3'3)
dagan(ap+ky)

’ Mq.(kuw) S

kll vz k”(]::l, ];2: 0),

Vi —(w/ek 1) for k> wfeyy

TS Sl 4 (3.4)
—iV (0¥t ;) K,  for k< wfes,p-

ar.r = [

The desired first Born approximation for the case when the modes P, SV,
TR, R are scattered is the sum of the longitudinal and transverse bulk waves
and of the Rayleigh wave

u® (2, 1) = uSD(x, t) +uSD (2, t) +uSP (2, 1), (3.5)
where the particular scattered waves have the form

cost M, (kjw) 2
2 M, (ko)

u(SL)(w 1) ,._,__( )k(o ) M) k(o)w | 0 f‘ kill_ktﬂ)

| @
X y L y  (3.6)
@&

uSD (e, 1) ~ H—(E ;
[

AT [e,co8¢ +e,5inp —e;tg 6] + My (kj w) X

ooz

2mixw

X [e,sing —e,co89] — k‘“’Mu“’ D (EDw | 0) f (I —E) y (3.7)

uSB (e, 1) ~ {[e,co8g+e,5ing][exp( —kB,a;) —(1 —0.5c¢kep?)exp ( —kpBrs) 1+
+e3ifiy, [eXP( — kpfiy2s) —exp ( —kgfres) (1 —0.5¢5e5°) — 1T} (—i) (2m) ™2 ()72 x
X (0 [eg)* KO [ Mu{®" (B)o | 0)f (K* k)] exp {i[ (x/4) + (o feg) —ot]}.  (3.8)

4 — Archives of Acoustics 1/82
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It should be noted that the following notation was used here

x = x(sinOcosg, sinOsing, cosl) = x,e;+x.e,4re,,

Kit = 2 (sinOcosp, sinfsing, 0), o
°Lr
: . . cr
kT = = (cosg, sing, 0), frr=)/ 1— ¢
. LT

It can be seen from the above notation that the bulk waves are spherical;
the Rayleigh wave, radial; and the amplitudes of the scattered waves also
depend on the direction for which the scattering is analyzed. The amplitudes
of the waves generated consist of several factors:

a) u™)(kw | 0)* — and, therefore, according to the considerations
in the previous section, the amplitudes of the scattered waves depend on the
kind of mode and are proportional to the amplitude of the incident wave;
while for the incident bulk waves a change in the incidence angle also affects
the magnitude of the scattered waves;

b) f(k”—k}f)) — the scattered waves are also defined by the shape of
the perturbation;

¢) M;(k,») — these dimensionless functions, together with a Fourier
transform of the perturbation shape function, define the angular characteristic
for the scattered waves.

As was stressed above, solutions (3.6)-(3.8) are asymptotic in character.

The mode SH does not satisfy the assumptions made in paper [6] and
requires additional caleulation from expression (3.2). In this part of the paper,
consideration will be limited to the giving of the final results (the most important
stages of these tedious calculations are given in the Appendix). Some dimen-
sionless quantities can be introduced here

oy Jo o3 il ook
MEED (L o) — —rbeh MED (o) — o1v2
e aL(a?["l'klzl)’ 8, e 20 ’
2 ik
MED (1 ) — (K - 2Ky (3.10)
i

When the quantities M,, M, M, are replaced with the quantities
MED, MED YSD  and  wfP (kPw |0)  with S (e | 0),

expressions (3.6)-(3.8) in this new form also describe the scattered waves when
the mode SH is scattered. Thus, in a medinum with a perturbed free surface

* This result can be compared to that in [12], where the form of waves scattered (in
the case of the incident Rayleigh save) is defined by additional stresses occurring in the
free surface.
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the mode SH, as also the other modes in the half-space, becomes scattered
so that the displacement field of the scattered waves is the sum of spherical
(longitudinal and transverse) bulk waves and a radial Rayleigh wave. It is
interesting to note that for points of the medium on the 0.X, axis only the ampli-
tude of the scattered transverse wave is different from zero. This signifies
that in the case of solving an analogous twodimensional problem in the scattered
field of the mode SH only the transverse bulk wave occurs. This is a specific
property of the mode SH which makes it different from the other modes in
the semi-infinite, isotropic and linearly elastic medium.

The scattering of each mode of the complete system of modes deseribed
in section 2 is thus known. An arbitrary wave occurring in a half-space can
be represented as a linear combination of modes of the complete mode system

u®(x, t) = mu®(x,t), J =8H,P,8V,TR,R, (3.11)
where m, are expansion coefficients. Accordingly, the first Born approximation
for the displacement field of scattered waves can be expressed by the formula

x o 4 cos OMY) (K w)
u® (@, 1) = mu®" (Ko | 0) {; — KO f (1], — ) e

o 2mi M (K w)
s (]
=0
._Xp o -Mfz']) (kh o)

w » 5
X - + P K f (ke —Kef) [m [e;cosg +e,sing —e,tg 0]+
R
exp[fz (;— & —wt)]
+ M) (K 0) [e,sing —echStp]] o 2fcim +

AR 2exp (in/4)
+(2) a7 o~ 00 ) S
Cr iV2n

2

Cr
2

x [€3208 0+ €;5in ][ exp( —kyz25) — (1 - )exp( nBoty)] +esify X

"Xp[”' (?6:; w"“’t)]} (3.12)

2 -1
X[exp( —kpBrvs) — (1 - ;—;) exp( —kRﬁTwa)]
T

Va, ’
where
(0,) (1o(0) 15
WO (00 | 0) — u") (k) |0), J =P,8V,TE,R, (3.13)
) (kw1 0), J =A8H,
M, (KO J =P,8V,TR, R
M‘,")(k“’)w) = (k) o), ’ ’ y 4y (3.14)

MED (KDw), J =8H.
Expression (3.12) is valid for ¥z > 1.
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4. Energy transformation on a perturbation

4.1. An acoustic Poynling vector. In considering the energy relations of
waves it is convenient to use the acoustic Poynting vector q. This vector is
an analogue of the Poynting vector in electromagnetic theory and describes
the wave power crossing a unit area. Using complex notation for the displace-
ments w and the stress tensors T and with a harmonic dependence of waves
on time, the acoustic Poynting vector defined by the relation

4 .
9 = gy u; Ty, (4.1)

is also a complex quantity, and its real part represents the time averaged power
flux density for a given wave. The desired quantity is thus

k' g

4.2. An acoustic Poynting vector for waves incident o a perturbation. The
use of definition (4.2) and of the solutions of the elastodynamic problems set
in section 2 gives for the particular modes

1
g(l"'smlrazo . M owci K,

13=0

32 (o Jop)? (63 —Fe2) }
oy, [ (%3 — KO +460°k R, 12 )
[ 16RO, (1 — )" (k) }

kg [ (2 —KO ) + 450k &, )

1
(10’P] = ) m @wcikLi

1
R T

2
q(o,TR)I L= 1 M29wc§,kL{ 160K (k2 —k)* (k3 —K?2) },
1 XZa=0 T 2 2
(g 2 o [(8* —R{)* +( =4k Ty )]
s i
‘1&“’]‘) 23=0 = 5 31290303‘7”'1: {28 +2&1p +2800},

-

g™ r3=0 g w0 =0, J =8H,P, SV,TR, R,
where

9 2 2 -1
_ (1“2?;)(2——0132—)(1— ‘”i) . (43)
cr, 201' 201'



FREE SURFACE PERTURBATIONS b3

The (dimensionless) expressions in the braces result from the presence of
coupling waves in the modes. It can be seen that, as expected, on the free surface
energy is transfered only in the direction ;. It is interesting to note that for
the rectangular incidence with respect to the free surface in the modes SH, P, 8V,
no energy transport occurs in the direction #,, either. For this reason, the time
averaged acoustic Poynting vector can be calculated beforehand for the incident
waves in the particular modes. For differentiation, this vector was marked
with an additional dash ().

’ 1 ’ ] - 4
q'*" = £1 Mowcik,, '™ = S Mowcypley, J = 8SH,S8V,TR. (4.4)

The physical sense of equations (4.4) is simple. They represent the power
density for the incident waves in the particular modes; and at the same time
represent the power density to be supplied for these modes to be generated.
For the latter reason, it should be assumed that

3 1 kg (& 3 3
O,R) _ fq(o,R)dm LMl o _R{ E.5 iR I07 o T:p}_ 4B
- it T kg \28, ' ButBr  26r 35
4.3. An acoustic Poynting vector for waves scatlered on a perturbation. The
use of definition (4.2) and of solutions (3.6)-(3.8) for large k) z (or k)
gives

0

x pw'k | MY (o)
L) (g, 1) = — M2 WO (B w | 0)f (K, —ED) |* M (o) 0s 6?
q ( ) 3 STI:CL | w I )f( 1 | MgJ)(kf[ ) c L]
(4.6)
x Qw‘k(lo)z

&7
x* 8nep

| BEO (D w0 | 0)f (kY ~HO) P +

4 = TMPW,)
q'%P = (e,co5¢ +e,8ing) (mcpa) ) CN KD o | 0)F (B —K{)[* x

X | MM (Kff ) {81 exP( —2kpf125) + Eppexp[ —kg(Br, +Pr) @5l +
+ EppeXp( —2kgfyas)}.  (4.8)

Since a twodimensional Fourier transform is inversely proportional to
a squared wave vector, the Poynting vector for bulk waves is proportional
to »? and for a radial Rayleigh wave it is proportional to w3, it is interesting
to note that the relation

q® (@, 1) = D (@, 1) +¢57 (&, t) + 9B (2, 1) (4.9)

M (k))*

(1-+tg*0) + sMgJ)P}, (4.7)

does not oceur, since the acoustic Poynting vector also includes cross quantities
describing the interference of these three waves. In practice, however, it is
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the quantities defined by expressions (4.6)-(4.8) that are significant, since they
define the elements of the scattering matrix for a perturbation regarded as
a transducer.

4.4. Power transformation on surface roughnesses. What is often essential
in practice is not the absolute value of power transformed but what part of
the energy of the incident wave is radiated in the form of scattered wave or
waves. It is most simple to define the directional coefficient of power transforma-
tion from the wave n into the wave m as

(S, M)
KW 9

homi = (4.10)

When, however ¢ is replaced with ¢'™"), for the reasons given in
section 4.2., the directional coefficient of power transformation defines the
value and direction of energy transport in the wave for the points &V ;. These
values are given with respect to the energy necessary for the mode n to be
generated in a semi-infinite medium. Thus, definition (4.10) should finally
take the form

q(s , M)

KW, _,: = |q'(0 N)l

(4.11)

In specific interesting cases of the transformation of or into Rayleigh
waves, the acoustic directional power transformation coefficient is

ing) 4czw’® 5
KW, , — (emos:p-{—eismq:) Cpw ‘ ©.9) k‘°)m|0 Y —k{‘l’))x
X (M7 (ky R ) My [* {€1,exP( —2B1ks) +rpexP [ — (B +Pr) bas 1+

+E&rpexp( —2P7kpry)},  (4.12)

where J = SH, 8V, TR, P,

x EVor |, gR)(kﬁw) & 377
KW, _=— —E© it
BL T 8 Adem? I —Hii) P (] w) (2131. 4
ELT ‘STT)
+ + — (4.13)
Br+Br  2Bs]
z K0’ B (K w) 2
SR A

& & &
2 ) (7 o) [2 LL LT T ;
X (1+tg20) + | MP (K o) }{2131, + B +fy + 25'1'}’ (4.14)
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(e,cosp +e,8ing) 4wt

KWy p = . | f(RF —EF) MP) (kEw) M; [* x
Z,CgT
x(i”‘ P B 5”')_15 exp( —2BKuts) +ErrexD[ — By, +Br) ks ]+
W Putbr 2] )1 g oan ey

+&ppexp( —2Bpkgrs).  (4.15)

The expressions given above permit the perturbation of the free surface
to be regarded as a transducer with five inputs, corresponding to five modes
from the unperturbed medium, and three outputs, corresponding to three
kinds of scattered waves. The elements of the scattering matrix of such a trans-
ducer (giving the magnitude of power obtained at the outputs after supplying
an arbitrary mode to the input) are equal to the directional power transformation
coefficients calculated in section 4.4. This transducer involves the following
transformations:

1) Rayleigh waves into bulk waves (proportional to ),

2) bulk waves into Rayleigh waves (proportional to o™!),

3) Rayleigh waves into Rayleigh waves (proportional to "),

4) bulk waves into bulk waves (proportional to «?).

The first two transformations are particularly interesting in practice. Transducers
for which only these two transformations are considered are called surface-
structure transducers [1]. It is interesting to note that when a specific structure
is considered (Fig. 1), the quantities @, # are constant and only one mode of
the modes SV and TR exists. Such a transducer has thus four inputs and three
outputs, and the elements of the scattering matrix are proportional to + w. For
a twodimensional problem, in view of the lack of scattering of the mode SH
into a Rayleigh wave, the matrix of the surface-structure transducer has only
three inputs and three outputs. This agrees with the results of paper [1].

5. The effect of the shape of a perturbation on the magnitude of power transformed

The directional power transformation coefficient is proportional to a Fourier
transform of the perturbation shape function. This is a general coneclusion
from expressions (4.12)-(4.15). Very interesting results can, however, be obtained

from analysis of a certain class of the perturbation shape function, defined
as

J(@1y @) = f(@1) = fo(®1) +-fo(@1+2L) + ... +fo (@, +2Lm), (5.1)

where f,(w;) describes a perturbation over a rectangular area of dimensions
2L X L,y. Thus, f(x,;) corresponds to a periodic system of grooves of arbitrary
shape, parallel to the 0.X, axis. In practice, such a character can be observed
in surface-structure transducers, bulk wave resonators.
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The values of the Fourier transform f(k!¥ — (") can now be analyzed
for the points & belonging to the plane x,0X, (in the spherical coordinate system,
this signifies a restriction of the angles ¢ to a value of zero or = radians)

m
FHD —R) = D Loexp i (kD —k)2n]fo (KD —k)
n=0

in (kY —k 1
— Tyoxp [i(HP ) ] Stk ) Im

f (
i oz =R (62)

Consideration of this result in expressions (3.12) and (4.6)-(4.8) leads to
the conclusion that the resultant scattered wave is the sum of waves scattered
on subsequent grooves; and the scattered power is the power of the resultant
scattered wave. The latter statement also signifies that the power radiated
on a system of grooves can be expressed with the power radiated on a single
groove, modulated by the expression

sin (&S — k) Im

W = = ® g (5.3)

This expression has a maximum when the following condition is satisfied,
(D —KNL =1x, 1=0, 41, £2,... (5.4)

These conditions can be written otherwise as
a} for the scattering of Rayleigh waves into bulk waves

kS = k,sinfcosp, kO = —kzcosg,, n =1IL,T,
l -1
¥ ®ia (&3- sin Bcos<p+cos%) ; (5.5)
w n
b) for the scattering of the modes SH, P, 8V, T'R, into Rayleigh waves
leg (¢ -t
PO (—R sinB.,cos(po—l-cosw) , (5.6)
o \e¢,

where w is the frequency of the incident waves, and ! is such that for given
angles the period L is positive. At the same time, for a stable L expressions
(5.5) and (5.6) define the angles at which the value of W is maximum. This
is a result of the interference of waves generated on subsequent grooves. For
perturbations of a periodiec, large number of grooves, these are, in practice, the
only directions in which energy is radiated. These conditions provide a design
for the construction of transforming structures for which the power transforma-
tion coefficient is as large as possible. It is interesting to note that there is a mi-
nimum L
A\
Lopin = 25 (1—|— ;L—) p (6.7)

n
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This signifies that for L << L.;, no energy transformation occurs in the
surface-structure transducer. This condition is used in devices where this trans-
formation is undesired [9].

6. Conclusion

This paper considered the scattering of acoustic waves (propagating in
a semi-infinite medium) on perturbations of a free surface under the assumptions
that 1) the function describing the shape of a perturbation takes low values
with respect to the wavelength of a propagating wave, and that 2) the ratio
of power transformed to the power of the incident wave is considerably lower
than unity. This perturbation transforms part of the incident energy, causing
generation of a scattered wave in the form of a radial Rayleigh wave and spheri-
cal bulk waves: a longitudinal wave and a transverse one. It is interesting to
note that this solution is asymptotic. The amplitudes of waves generated depend
on the kind of mode, the incidence angle of the mode (for bulk modes), the
shape of the perturbation and the amplitude of the incident wave. For a perturba-
tion being a periodic function, relative to one of the coordinates, the scattering
of waves of stable frequency shows additional properties: 1) radiation only
occurs in some directions, 2) for a period less than some L, there is no sca-
ttering of Rayleigh waves into bulk waves or of bulk waves into Rayleigh
waves.

In practice, these perturbations can be regarded as transducers in which
the following transformations occur: 1) Rayleigh waves into bulk waves, 2)
bulk waves into Rayleigh waves, 3) Rayleigh waves into Rayleigh waves,
4) bulk waves into bulk waves. In these transformations the power ratio of
waves generated to the incident waves is proportional, respectively, to the

powers of frequency — 1) + [the first, 2) — the first, 3) the zeroth.

Additional properties of structures with periodic perturbations permit the
designing of optimum transformation.

Acknowledgement. This paper was written in the course of the author’s
doctoral studies at the Institute of Fundamental Technological Research.
The author wishes to express his gratitude to prof. I. MALECKI and Prof. A.
OrILskI for their advice.

References

[1] I. D. AxuroMEYEVA, V. V. Krirov, Preobrazovanye voln Releya v obyemniye
na lokalnikh defelitakh poverkhnosti, Akusticheskiy Zhurnal, XXIII, 4, 510-516 (1977).

[2] K. DraxsFELD, E. SALzMANN, Huxeitation, deteclion and atténuation of high fre-
quency elastic waves, Physical Acoustics, v. VII, W. P. Mason Academic Press, New York
and London 1970.



b8 F. WITOS

[3] H. Ezawa, Phonons in a half space, Annalg of Physics, 67, 438-460 (1971).

[4] R. F. HumpHRYES, E. A. AsH, Acoustic bulk-surface-wave transducer, Electronics
Letters, 12, 13, 175-176 (1969).

[6] G. 8. Kino, R. 8. WaceRrs, Theory of interdigital couplers on monpiezoeleciric
substrates, Journal of Applied Physics, 44, 4, 1480-1488/19.

[6] A. A. MarapuDIN, D. L. Miris, The atlenuation of Rayleigh surface waves by
surface roughness, Annals of Physics, 100, 262-309 (1976).

[7]1 A. RoNNEELEIV, H. J. SHAW, J. S0UQUET, Grating acoustic scanners, Applied
Physics Letters, 28, 7, 361-361 (1976).

[8] A. RoxxNekrLelv, H. J. 85AW, J. S0UQUET, Ezperimental acoustic-surface wave-
to-bulk-wave scattering by grooves, Electronies Letters, 12, 11, 267-269 (1976).

[9] A. RoxnegLerv, H. J. SouQuet, On the theory of acoustic surface wave to bulk
wave scattering by grooves, Journal of Applied Physics, 47, 10, 4422-4425 (1976).

[10] P. V. H. SARINE, Rayleigh — wave propagation on a periodically roughened surface,
Electronies Letters, 6, 6, 149-151 (1970).

[11] H. 8. Tuax, Acoustic-surface-wave scattering at a region with material perturbation,
Journal of Applied Physics, 47, 4, 1248-1252 (1976).

[12] H. S. TUAN, On bulk waves excited at a groove by Rayleigh waves, Journal of Applied
Physics, 46, 1, 36-41 (1975).

[13] M. Yamanisuar, M. AMEDA, T. KAWAMURA, Generation of 8§80 MHz surface acoustic
waves by transduction from bulk wave using corrugation greating on GaAs, Electronics Letters,
12, 13, 317-318 (1976).

Received on October 3, 1979 ; revised version on Jume 10, 1981.

Appendix

Integral (3.2) can be calculated for the case of the scattering of the mode SH.
According to expression (2.1), only the second component of the displacement
vector is different from zero, and the desired solution takes thus the form

U (@, 1) = exp(—iot) ' [ & (2m)~* [ dajexp (k@) Dop(kyo | X
B 0

x ayry) [ dajexp( —ikya,) I (') exp (ik{P ) ul5™ (kP> [ 0). (A1)

The operators L) (x) are defined as

delV)
) == 3y 2 Z .

0 “om 0w, %bere B, &v

(A2)

and the elastic constants are defined as

oﬂayu (m) - _f(ml! mﬂ) c,Buyu’ (A'3)
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where @, = f(a,, ®,) is a function of perturbation shape. The necessary operators
LY () are, respectively,

@) = ~gaey Lo 2
2 2
of & ) 9
(1) _ 2 a2 8
L] () GTa(%){ 2w, O, +f( o + o )J cpd’ () f oy (A4)
of o
(@) = (@) o

3

Using (A4), equation (Al) becomes finally

ul (e, 1) = exp(—iwt) f @k, (2“)"2ik(10]f(k1| s (]ll})) {ksDyy +k1 Do} exp (ikey ) ) -
(Ab)

Substitution of the explicit form of the Green function for a semiinfinite
region gives the displacement vector for scattered waves in the form

u® (e, K )

u® (z, 1) exp (iot) = f Py .
y

[elkl—l-eﬁkg-}-eai %] pg
1

ul (ke ko)

[e ky+esks--eq ﬂ X
4n%r, (k) o) WY U Ay

'L
X exp ( —apy ik 2,) + f @l (27) U (ke k) ) [€,y — ek, ] X
X exp( _az'ms‘l’ik"wu), (AG)
where

dagopk’ +(0* —20pk}) (ap—kj )

r (ke w) =

dagay(w’— 2epk])
2 iR Jele
e ) = P (o | 0)f ey D) =7
az(ap +ky)
ik klk k“

9 0 ) = I (0 | 00 Oy )

, ikyk (722 ¥
u“b)(k“k{f’w) _ Mugmsm(k}',”w | 0) f(k“_kﬁ))%_ﬂ)_‘
L

The integrals occurring in expression (A6) are those of types considered
in [6]. An asymptotic form of the solution of these integrals has already been
given in the main text of the paper.



