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ULTRASONIC WAVE PROPAGATION IN A LAYERED MEDIUM UNDER DIFFERENT
BOUNDARY CONDITIONS

ALEKSANDER PILARSKI

Institute of Fundamental Technological Research (00-049 Warsaw, ul. Swictokrzyska 21)

This paper presents an analysis of the possibility of using the phase velo-
city measurements of surface or plate waves for the evaluation of the adhesive
bond strength, i.e. of the adhesion degree in layered joints. Dispersive curves
are determined for phase velocities in layer on base and layer on layer systems
with two kinds of boundary conditions, i.e. welded and smooth ones, by numeri-
cal solutions of the characteristic equations. The procedure of deriving these
equations for any number of layers is given.

1. Introduction

Ultrasonic methods using the phenomenon of ultrasonic wave propagation
in elastie layered media area can be used not only for detecting the unbounded
but also for evaluating the bond strength [1].

Seismologists and geophysicists have long been interested in elastic waves
propagating in layered media [2-4]. Waves propagating parallel to boundary
surfaces in layered media can, for the sake of simplicity and by analogy to
nondestructive testing terminology, be called below surface waves in the case
of a layer, or layers on a base, and plate waves in the case of one or more solid
layers. A base means a solid medium of thickness exceeding several times the
wavelength of a surface mode, while a solid medium of thickness comparable
with the wavelength of a surface mode is regarded as a layer. For example,
a metal sheet glued to thick rubber involves surface waves, while a simple
lap adhesive joint involves plate waves. Both can, however, have a common
mathematical approach (cf. next section).

The previous attempts at using surface waves [5] or plate waves [6] for
evaluating the bond strength of adhesive joints consisted in the measurements
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of decay in these waves after they have passed through a controlled section.
The aim of the present paper is to analyze the possibility of evaluating the
adhesion degree in layered joints made by different techniques, on the basis
of velocity measurements of waves propagating along the connection. For this
purpose dispersive curves of phase velocity can be determined numerically for
different boundary conditions. The knowledge of these characteristics permits
not only the estimation of the semsitivity of the acoustic parameter, i.e. the
phase velocity, to changes in the strength of a connection, but also makes it
easier to conduct a purposive experimental research.

2, Characteristic equation

Mathematically, this problem can be formulated in the following way for
flat parallel layers (homogeneous, isotropic and ideally elastic media). The solu-
tions of the twodimensional wave equations [7] are sought

1 1
Vip = b Pu Vi = 2 Y V2 =0,,+0,; (1)

with the assumption that their solutions, i.e. their scalar potentials ¢ and p
are sought in the form

g(@, 2, 1) = g*(2)exp[ik(@+et)], yp(@,2,1) = yp*(2)exp[ik(z-+tet)]. (2)

This signifies that the wave is harmonic in time and moves in the negative
direction of the # axis. In these formulae ¢; and ¢, are the velocities of longitu-
dinal and transverse waves, respectively, while k is the wave number k = w/e.
Insertion of formulae (2) into (1) gives the simple differential equations

(0., —k*%)g* =0, (0.—k¢)y* =0, (3)
where

8 = [L—(c/er)’T", g =[1—(c/eg)']". (4)

Therefore, the general solution of equations (1) for the mth layer (Fig. 1)
can be given in the form

Fm = [Ayp_c08h (s2) +A,,,_,sinh (kse)exp [ik (@ +et)], (5)
¥ = [Ap_cosh (kg2) + A, sinh (gz) Jexp [k (z +0t)] (6)

while in the half-space (medium »--1) the solution of equations (1) can be
given as

Pui1 = Agppr0xXp( —ksz)exp [ik{z+at)], (7
Va1 = Ay i00Xp( —kge)exp [ik(z+ot)]. (8)
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The displacements w and w and also the stresses o, and o, are related to
the functions ¢ and by the relations

‘ U =@, Y. w=q9, +w,.1:? (9)
0. =G [(cfep) =294, +G ey [ep)’ @00 +2GY 42 (10)
Oz = 26@,% _G’/",zz +G'f),zz * (11)

Insertion of (5) and (6) and also of (7) and (8) into (9)-(11) gives
Uy, = {1k [A 4 _sc08h (K8,,2) +A,, ,sinh(ks,z2)]—
—kqy [ Ay, 80D (kq,,2) +A 4y, c08h (kg,2) ]} exp [i (0t +-kx)],  (12)

W,, = {ks,, [Am_;5inh(ks,2)+A,, ,cosh(ks,z)]+
+ik [A 41 008D (kgy2) + 4,y 8100 (kg,2) ]} exp [i(wt +Ek2)],  (13)

(caz)m = {Gm kzrm [A-tm-—a cosh (ksmz) +A4m -2 sinh ( ksmz)] 9
+12G,,k*q,, [A,,,—, sinh (kg,2) + A ,,, cosh (kq,2)]} exp [i(wt +k2)], (14)

(Ope)m = {126, K8, [A,,,_;5inh (ks,2) +A4,,, ,cosh(ks,2)]—
—@,, %, [ A 4 cO8 (Kq,,2) +A,,, 8inh (kg,,2) ]} exp [i (ot +kz)], (15)
Unsr = [AynyriXD (—K8,.4,2) + Ay oy XD (—h 1) JexD[i (01 +ka)],  (16)
Wy = [ —A 4 1k8y 11 €XP( —k8, 4 12) + A0k exp ( —kg,12)]exp [i (ot +k2)], (17)
(02t = [Agns1Gnpr ki1 €XD( —K8, 412) —A 122G, 11K, 1 €XP ( —FGn117) X
xexp[i(wt+k2)], (18)
(Cedns1 = [ A4 312G, 115°8, 11 €XD( —K8,112) — Ay 420 11K 11 €XD(—Fig,112)] X
xexp[t(wt+kz)]. (19)

In these formulae the following quantity was introduced

r =2—(¢clep). (20)

Subsequently, using the relevant boundary conditions for the coordinate
2o = —(had eithpteecthy)y eesy = —(byp+.-.+h,), ..., 2, = 0 given in
Table 1, a system of homogeneous linear equations can be obtained,
4n-+2(4n)
¥
et
J=1
where for n layers on base there are (4n-2) equations with (4n +4-2) unknowns
and for » layers (4n) equations with (4n) unknowns.
System (21) has a non-trivial solution when

D, = det[a;] = 0. (22)

ayd; =0 [i=1,2,...,(4n), ..., (4n+2)], (21)
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The determinant D, is of order (4n+2) or (4n). The matrix [a,;] can be
divided into rectangular matrices in the following way

[%']o [0]
[a;] = [0] [a;]m (01}, (23)
[0] [a;],

where the particular matrices result from the assumption of relevant boundary
conditions (Table 1).

Table 1. Boundary conditions for the particular matrices

Matrices Boundary conditions
gymbol difnen- welded smooth
gions
free surface | [ag], 2x4 (0z2)y = (622); = 0 | (Ou2)y = (0z2)y = O
mth (oze)m = (Ozzdm+1 (Ozz)m = 0
interface [ﬂij]m 4 x8 (022)m = (0z2)m+1 (022)m = (Gzz)m41
Um = Um4l (0z2)m+1 = 0
W = Wt Wy = W41
(02z)n = (Ozz)ny1 (sl = 0
nth [@ij]n 4x6 (022)n = (Oz)n41 (622)n = (Gzzdn+1
interface Up = Up41 (0pz)p41= 0
Wy = Wpy1 Wy = Wn+i
free surface [aif]1n 2x4 (022)n = (Oz)n = 0 | (Oz2)n= (0zz)n = 0

For the purposes of the present work, after NICKERSON’s suggestion [8],
boundary conditions can be divided into welded and smooth. The welded con-
ditions assume a continuity of displacements and stresses, both normal and
tangent, corresponding to an ideal connection of two solids (welded contact).
The smooth conditions allow a decrease in stresses tangent to boundary condi-
tions, i.e. correspond to smooth contact. Such a case can be conceived, after
ACHENBACH [9], as two solids separated by an inviscid liquid of infinitely small
thickness. It can be assumed that real bonds of different adhesion degree fall
between these two extreme cases of boundary conditions.

Therefore, using formulae (12)-(20) and Table 1, a determinant can be
determined for any layered joint with different boundary conditions. Equating
this determinant to zero leads to a characteristic equation from which the
phase velocity can be determined for predetermined values of the density p,
the modulus of longitudinal elasticity #, the modulus of transverse elasticity @,
thicknesses of the particular layers and frequency.

For example, for a single layer (» = 1), from Table 1 boundary conditions
are chosen only for free surfaces, giving the determinant det[a;] of the fourth
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order, which when equated to zero becomes a characteristic equation for the
problem solved by Lamzs [10].

From the point of view of the evaluation of adhesion in layered joints,
the following cases are of most interest here: layer on base, layer on layer,
two layers on base and three layers. The first two cases correspond to bimetals,
while the other two to adhesive bonded joints or soldered joints.

The present paper gives a schematic procedure for determination of a charac-
teristic equation in the case of a flat parallel layer on base and of two layers,
for two kinds of boundary conditions. Using the KEILIS-BOROK [4] notation
these equations can be written as

D =0 and DI — 0,

where the lower index denotes the number of layers, the index in brackets
the subsequent layers or, possibly, the base, while D is the determinant (see
equation (22)).

3. Layer on base [D{:) = ]

(a) Welded contact. The starting point for derivation of the characteristic
equation in the case of layer on base for welded boundary conditions is, accor-
ding to Table 1, the six boundary conditions

(sz)l = (dzz)l =0 (24)

for 2 =2, = —b;
(ozz)l = (oxz)m (Uzz)l = (azz)ﬂ? (25)
Uy = Ugy Wy = W, (26)

for 2 =2, =0.

Writing the stresses and displacements occurring in equations (24)-(26)
by means of formulae (12)-(20) gives a system of six homogeneous equations
relative to the six unknowns 4,, A ..., Ag. By forming the determinant from
indices of the unknowns and equating it to zero, after slight transformations
[11], the characteristic equation can be obtained

—28;8inh8;, 2coshsS, —ryco8h@Q, », SIH;QI 0 0
1
rycosh8;, —r, SR A 2¢;8inhQ; —2¢oshQ, 0 0
51 =0, (27)

0 2 -7y 0 298, gry
Ty 0 0 —2 —gra  —24q,
1 0 0 -1 -1 —(,
0 1 -1 0 &y 1
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where for the sake of brief notation new symbols were introduced; namely
8y = —ksizy, Q1 = —k@iz,, g = GafG. (28)

(b) Smooth contact. In this case the starting point for derivation of the
characteristic equation can be, according to Table 1, the following six boundary
conditions

(01 = (0551 = 0 (29)

for z =2, = —h;
(Ogs)1 = (0g5)a = 0, (30)
(Oeeh = (02s) 2y Wy = Wy (31)

for z =2,.=0.

By a procedure analogous to point a), after transformations, the characteri-
stic equation can be obtained

_oesinhS, 2coshS, —rcosh@y rod 4
1
rycosh@Q, —7, ot 2¢,sinhQ, —2cosh@, 0 0
51 =0, (32)
0 2 —7ry 0 0 0
71 0 0 —2 —gr, —2gq,
0 0 0 0 28, 74
0 1 —1 0 8y 1

4. Layer on laxer [D{+?) = 0]

The same procedure as in point 3a gives characteristic equations whose
left sides, in view of eight boundary conditions (two for each of free surfaces
and four for the interface), are determinants of dimensions 8 x8. A diagram
of the left sides of these equations, with plotted zero elements and those charae-
teristic of a given type of boundary conditions, is shown in Fig. 2. There is
the following set of the particular elements:

— The elements a; common to welded and smooth boundary conditions:
@y, = —28;8inhf,, a5 =2coshS,, a3 = —rcoshQy, @y, = 7r,8inhQ,/q,,
@y = 7,080 8, @y = —ry8inh8,/s;, @y = 2¢;8inh@Q,;, a, = —2cosh@y,
@5 = —28,8inhS;, Gy = 2¢0sh S,  ag = —rc08hQy, @y = rysinh /g,
@y =r1yc08h 8y, @y = —7,8inh S, [s;, @y = 2¢;8i0hQy, @y = —2cosh @,

Gy = —ragcoshS,, ay = rygsinhS,/s,, a4 = _2992SiEth Agg = 29'005_11Qsa
@ = —8,8inh §,, ags = cosh S, ags = —cosh@,, gy = sinh @, /gy,
@gs = 8,8inh 8, ags = —coshS,, g, = cosh@,, gy = —Sinh@Q,/qs,

Qg5 = Qgg = Ggg = g7 = 0, Uqg = 2, g = —Ty Ogs = Ty Ggg = —2.



ULTRASONIC WAVE IN LAYERED MEDIUM 67

— The elements a,; characteristic of welded boundary conditions:

g, = 28,5IN08s,  Gge = —2gC0shSy, g =74gC0ShQy @y = —rygsinh @,/
/@2y @51 = cosh gn A2 = —Smhgﬂsn as3 = ¢;8inh @, a5 = —cosh@,,
agy = —coshSy, a5 = sinh8;/8y, @5 = —@u8iDhQ, a5 = coshQ,.
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Tig. 1. A schematic diagram of a layered medium

— The elements a, characteristic of smooth boundary conditions:
@g = 28,8inh 8y, @y = —2coshS,, a5 =7r,008hQ, a5 = —7,8inhQ,/qs.

New symbols which oecur in the elements given above denote
8y = —ksyzy, Q= —kqey, By = —kswy, Q= —kg2,

where 2, = —h, (see Fig. 1).
The quantities 8, and @, are defined by formulae (28), where 2, = — (h;+h,).
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Fig. 2. A schematic representation of the left sides of characteristic equations in the case of
layer on layer [D{+?)] for boundary conditions a) welded, b) smooth

the crisscrossed area denotes zero elements, the area dashed horizontally denotes elements characteristic of welded
econditions, the area dashed vertically corresponds to those of smooth conditions; the other elements are common
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5. Results of numerical calculations

A numerical programme in Algol 1204 permits the phase velocities to
be calculated for a given product of frequency and thickness of the superficial
(first) layer, which product is the parameter of the calculations, in the case of
welded and smooth boundary conditions; and the differences between these
velocities to be determined for given modes of surface or plate waves. In the
case of surface waves the calculations can be made only over the range of phase
velocities lower than those of transverse waves in the base, thus corresponding
to real elements [11, 12]. The complex elements involve the so-called “leaky

fg, [MHzmm] b
B
0 10 20 30 40 50 60 @
< = é £00 B03000 -Fe
m/s] " ﬂ/“u.
3500 -§ 500
o
(-8 ¥
3000 _!é 400
2500 w300
O
=2
2000 200
(¢t )ag 3000
1500 — — welded 100 M
B0 3000-Fe T (i ]

6 05 10 15 20 25 30 0 0 2 30 40 50 60
' g‘/h’i fg, (MHz-mm]
Fig. 3. Dispersion effect of phase veloci- Fig. 4. Differences in phase velocities cor-
ty of surface waves in the case of a lead responding to welded and smooth boun-
bronze layer on a steel base slide bear- dary conditions for several modes of sur-
ings in the welded and smooth boun- face waves in the case of a lead bronze layer
dary conditions on a steel base (cf. Fig. 3)

Mij — modes, g, — layer thickness, Ap] — the

wavelength of the transverse mode in layer,

f — frequency. The area dashed corresponds to
leaky waves; — welded, — — — smoth

waves” which are accompanied by a leakage of elastic energy to the base
The design of the programme assures that by way of changing the procedure
for calculation of values of the elements of the determinant, i.e. the left side
of the characteristic equation, it can be used for any number of layers. Fig. 3
shows, as an example, the solution for a layer of B03000 bearing alloy on a steel
base [13]. The curve of the differences in the phase velocities calculated ni
this case with two types of boundary conditions for the particular modes of
surface waves is shown in Fig. 4. From the point of view of the usefulness of
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velocity measurements for the estimation of adhesion degree it can be seen
that there are optimum frequencies for a given layer thickness, i.e. those at
which the differences in velocity are greatest. At the same time a further analysis
shows that at those optimum frequencies the modes M,, and M, are fairly
sensitive to changes in layer thickness. For example, at frequency of 1 MHz
a change in layer thickness by 0.05 mm causes a velocity change of 50 m/s
(Fig. 5) in the case of the mode M, in the welded boundary conditions.

.ng {MHz.mm] for M,, G | | | T T T T T
e 19 20 21 Im/s) fg, =04 MHz.mm
o N i SRR G S S o e ey judy 3 : 7
2600 — - - 5000
i » ]
2500 = " —
B i 4000
2400 |- -
400 M"”
2300 — 3000
200 - E
L T J 2000
2100 |~ ‘“”‘-ﬂ-"'.'.._ i
i i BOL 2204 77777 </!9
s o 1000 - 3 -
2000 \\\ &_\\\\\
rmﬂl =3 |Jh.~-<fy1-..1— Pt heol ! it S sl it
1 Latass 6 8
045 050 055 ! PUEZ 144 5 {97‘9 j/g
f.g, [MHz mm] for M, Lo ¥
Fig. 5. Change in phase velocity Fig. 6. Change in phase velocity of pla-
around fg; = 2.0 MHz-mm for the te waves as a function of change in the
mode M,, and fg, = 0.5 MHz-mm for ratio of the total thickness to the thick-
the mode M,,. The diagram is a ness of a bronze layer. Continuous line
magnification of the “windows” (in denotes curves of welded boundary con-
Fig. 3) ditions, discontinuous line corresponds

to smooth boundary conditions
M“ — successive modes of plate waves

When the base turns into a layer, which oceurs when the thickness of the
base is comparable to the wavelength of the longitudinal mode in the base, a ve-
locity change is caused in addition by a change in the ratio of thicknesses of
those two layers. Fig. 6 shows curves of such changes calculated for a BOL- 2204
lead bronze on steel in the case when the product fg, is equal to 0.4 MHz* mm
for the first three modes of plate waves.

6. Conclusions

Taking into consideration the practical possibilities of using the phase
velocity measurements of surface or plate waves for the evaluation of adhesion
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degree (e.g. in bimetals), it can be stated that the knowledge of numerically
determined dispersive curves for different boundary conditions facilitates
a purposive selection of investigation parameters and permits the estimation
of the effect on the quantity measured of such other factors as change in layer
thickness or change in acoustic parameters characteristic of media connected.
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